
Aberystwyth University

Speeding up the learning of equivalence classes of Bayesian network structures
Daly, Ronan; Aitken, Stuart; Shen, Qiang

Publication date:
2006

Citation for published version (APA):
Daly, R., Aitken, S., & Shen, Q. (2006). Speeding up the learning of equivalence classes of Bayesian network
structures. 34-39. http://hdl.handle.net/2160/439

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 23. Sep. 2023

http://hdl.handle.net/2160/439

SPEEDING UP THE LEARNING OF EQUIVALENCE CLASSES OF
BAYESIAN NETWORK STRUCTURES

Rónán Daly
School of Informatics

University of Edinburgh
Edinburgh EH8 9LE, UK
Ronan.Daly@ed.ac.uk

Qiang Shen
Department of Computer Science
University of Wales, Aberystwyth

Aberystwyth SY23 3DB, UK
qqs@aber.ac.uk

Stuart Aitken
School of Informatics

University of Edinburgh
Edinburgh EH8 9LE, UK

stuart@aiai.ed.ac.uk

ABSTRACT

For some time, learning Bayesian networks has been both
feasible and useful in many problems domains. Recently
research has been done on learning equivalence classes of
Bayesian networks, i.e. structures that capture all of the
graphical information of a group of Bayesian networks,
in order to increase learning speed and quality. However
learning speed still remains quite slow, especially on
problems with many variables. This work aims to describe
a method to speed up algorithm learning speed. A brief
overview of learning Bayesian networks is given. A
method is then given, so that tests of whether a particular
move is valid can be cached. Finally, experiments are
conducted, which show that applying this caching method
produces a marked increase in learning speed.

KEY WORDS

Bayesian networks, belief networks, machine learn-
ing, probability, data mining, optimization.

1 Introduction

The task of learning Bayesian networks from data has, in a
relatively short amount of time, become a mainstream ap-
plication in the process of knowledge discovery and model
building [1, 2]. The reasons for this are many.

For one, the model built by the process has an intuitive
feel — this is because a Bayesian network consists of a di-
rected acyclic graph (DAG), with conditional probability
tables annotating each node. Each node in the graph repre-
sents a variable of interest in the problem domain and the
arcs can (with some caveats) be seen to represent causal re-
lations between these variables — the nature of these causal
relations is governed by conditional probability tables as-
sociated with each node/variable. An example Bayesian
network is shown in Figure 1.

Another reason for the usefulness of Bayesian net-
works is that aside from the visual attractiveness of the
model, the underlying theory is quite well understood and
has a solid foundation. A Bayesian network can be seen
as a factorisation of a joint probability distribution, with
the conditional probability distributions at each node mak-
ing up the factors and the graph structure making up their
method of combination. Because of this equivalence, the

Rain

Cloudy

Sprinkler

C P(S=F) P(S=T)

F

T

0.5 0.5

0.9 0.1 C P(R=F) P(R=T)

F

T

0.8 0.2

0.2 0.8

P(C=F) P(C=T)
0.5 0.5

S R P(W=F) P(W=T)

F F

T F

1.0 0.0

0.1 0.9

F T

T T

0.1 0.9

0.1 0.9

Wet Grass

(a) Example Bayesian network (b) Example PDAG

Figure 1. Example network and PDAG

network can answer any probabilistic question put to it, re-
garding the variables modelled.

Finally, the popularity of Bayesian networks has been
increased by the accessibility of methods to query the
model and learn both the structure and parameters of the
network. It has been shown that inference in Bayesian
networks is NP-Complete [3, 4], but approximate methods
have been found to perform this operation in an accept-
able amount of time. Learning the structure of Bayesian
networks is also NP-Complete [5], but here too, heuristic
methods have been found to render this operation tractable.

It is with the latter remark that this paper concerns
itself, that is, the learning of the structure of a Bayesian
network from a sample of data. There are generally three
different methods used in this task. The first finds condi-
tional independencies in the data and then uses these con-
ditional independencies to produce the structure [6]. The
second uses dynamic programming and optionally, cluster-
ing, to construct a DAG [7, 8]. The third method — which
we will be dealing with — defines a search on the space of
Bayesian networks, using a scoring function defined by the
implementer, that says relatively how good the network is.

This paper will seek to establish a method to increase
the learning speed of a search algorithm. This will be done
by caching certain data, necessary to establish the validity
of a move in the search space of a learning algorithm. This

is in order to minimise the effort in recomputing data. Also,
the conditions under which the cache entries are valid will
be examined. To this end, the rest of this paper will be
structured in the following fashion.

Firstly, there will be a more in depth study of the prob-
lem of searching for an optimum Bayesian network, in both
the space of Bayesian networks themselves and of equiva-
lence classes of Bayesian networks. Then, a new method
of caching validity tests will be shown, along with the con-
ditions under which the cached results are valid, invalid or
out of date. Next, results of tests against uncached algo-
rithms will be discussed and finally, any conclusions and
possible future directions will be stated.

2 Learning Bayesian Networks

To start out this section, some definitions and notation are
introduced.

A graph G is given as a pair(V,E), whereV =
{v1, . . . , vn} is the set of vertices or nodes in the graph
andE is the set of edges or arcs between the nodes inV .
A directed graph is a graph where all the edges have an
associated direction from one node to another. A directed
acyclic graph or DAG, is a directed graph, without any cy-
cles, i.e. it is not possible to return to a node in the graph
by following the direction of the arcs.

A Bayesian network on a set of variablesV =
{v1, . . . , vn} is a pair(G,Θ), whereG = (V,E) is a DAG
andΘ = {θ1, . . . , θn} is a set of conditional probability
distributions, where eachθi is associated with eachvi.

In learning a Bayesian network from data, both the
structureG and parametersΘ must be learned, normally
separately. In the case of complete multinomial data, the
problem of learning the parameters is easy, with a sim-
ple closed form formula forΘ [9]. However, in the case
of learning the structure, no such formula exists and other
methods are needed. In fact, learning the structure is
an NP-Hard problem and consequently enumeration and
test of all network structures is not likely to succeed. In
fact with just ten variables there are roughly1018 possible
DAGs, which leaves heuristic search methods through the
space of different structures as possibly the only tractable
solution.

In order to create a space in which to search through,
three components are needed. Firstly all the possible solu-
tions must be identified as the set of states in the space. Sec-
ondly a representation mechanism for each state is needed.
Finally a set of operators must be given, in order to move
from state to state in the space.

Traditionally, in searching for a Bayesian network
structure, the set of states was the set of possible Bayesian
network structures, the representation was a DAG and the
set of operators were various small local changes to a DAG,
e.g. adding, removing or reversing an arc. Successful
application of the operators was also dependent on the
changed graph being a DAG, i.e. that no cycle was formed
in applying the operator. In keeping with the terminology
used by Chickering this space shall be called B-space [10].

Once the search space has been defined, two other
pieces are needed to complete the search algorithm, a scor-

ing function which evaluates the “goodness of fit” of a
structure with a set of data and a search procedure that de-
cides which operator to apply, normally using the scoring
function to see how good a particular operator application
might be. An example search procedure is greedy search,
that at every stage applies the operator that produces the
best change in the structure, according to the scoring func-
tion. As for the scoring function, various formulæ have
been found to see how well a DAG fits a data sample, e.g.
by giving the relative posterior probability [11], or using a
large-sample approximation such as the Bayesian informa-
tion criterion [9].

3 Searching in the Space of Equivalence
Classes

According to many scoring criteria, there are DAGs that
are equivalent to one another, in the sense that they will
produce the same score as each other. Looking at this in
more depth, it is found that these equivalent DAGs produce
the same set of independence constraints as each other,
even though the structures are different. Independence con-
straints show how a set of variables are influenced or depen-
dent on another set of variables, given a certain third set of
variables. These constraints can be checked by analysing
the DAG for certain structures. It turns out, according to a
theorem by Verma and Pearl, that two DAGs are equivalent
iff they have the same skeletons and the same v-structures
[12]. By skeleton, it is meant the undirected graph that re-
sults in undirecting all edges in a DAG and by v-structure,
(sometimes referred to as a morality) it is meant a head-to-
head meeting of two arcs, where the tails of the arcs are not
joined. From this notion of equivalence, a class of DAGs
that are equivalent to each other can be defined, notated
here asClass(G).

Because of this apparent redundancy in the space of
DAGs, attempts have been made to conduct the search for
Bayesian network structures in the space of equivalence
classes of DAGs [10, 13, 14]. The search set of this space
is the set of equivalence classes of DAGs. To represent the
states of this set, a different type of structure is used, known
as a partially directed acyclic graph (PDAG). A PDAG (an
example of which is shown in Figure 1) is a graph that con-
tains both undirected and directed edges and that contains
no directed cycles and will be notated herein asP. Again,
the equivalence class of DAGs corresponding to a PDAG is
denoted asClass(P), with a DAGG ∈ Class(P) iff G and
P have the same skeleton and same set of v-structures. Re-
lated to this is the idea of aconsistent extension. If a DAG
G has the same skeleton and the same set of directed edges
as a PDAGP then it is said thatG is a consistent extension
of P. Not all PDAGs have a DAG that is a consistent exten-
sion of itself. If a consistent extension exists, then it is said
that the PDAGadmitsa consistent extension. Only PDAGs
that admit a consistent extension can be used to represent
an equivalence class of DAGs and hence a Bayesian net-
work.

Directed edges in a PDAG can be either compelled, or
made to be directed that way, whilst others are reversible, in
that they could be undirected and the PDAG would still rep-

resent the same equivalence class. From this idea, we can
define a completed PDAG (CPDAG), where every undi-
rected edge is reversible in the equivalence class and ev-
ery directed edge is compelled in the equivalence class.
We shall denote a CPDAG asPC . It can be shown that
there is a one-to-one mapping between a CPDAGPC and
Class(PC).

With this representation of equivalence classes of
Bayesian network structures and a set of operators that
modify the PDAGs which represent them (e.g. Insert an
undirected arc, Insert a directed arc etc.), a search proce-
dure can proceed. But one might ask why go to the bother
of this type of search. Firstly, an equivalence class can rep-
resent many different DAGs in a single structure. Search
in the space of DAGs often moves between states with the
same equivalence class and so, in a sense, is wasted effort.
This also affects the connectivity of the search space, in
that the ability to move to a particular neighbouring equiv-
alence class can be constrained by the particular represen-
tation given by a DAG.

There is also the problem given by the prior proba-
bility used in the scoring function in that whilst searching
through the space of DAGs, certain equivalence classes can
be over represented by this prior because there are many
more DAGs contained in the class.

These concerns have motivated researchers, with
the results that recent implementations of algorithms that
search through the space of equivalence classes have pro-
duced results that show a marked improvement in execu-
tion time and a small improvement in learning accuracy,
depending on the type of data set [13, 15].

3.1 Techniques for Searching through
Equivalence Classes

Note that here we refer to amoveas an application of an
operator to a particular state in the search space.

To be able to conduct a search through the space of
equivalence classes, a method must be able to find out
whether a particular move is valid and if valid, how good
that move is. These tasks are relatively easy whilst search-
ing through the space of DAGs — a check whether a move
is valid is equivalent to a check whether a move keeps a
DAG acyclic. The goodness of such a move is found out
by using the scoring function, but rather then scoring each
neighbouring DAG in the search space, the decomposabil-
ity of most scoring criterion can be taken advantage of, with
the result that only nodes whose parent sets have changed
need to be scored.

However, this task of checking move validity and
move score is not as easy in the space of equivalence
classes. For one, instead of just checking for cycles, checks
also have to be made so that unintended v-structures are
not created in a consistent extension of a PDAG. Scoring a
move also creates difficulties, as it is hard to know what ex-
tension and hence what changes in parent sets of nodes will
occur, without actually performing this extension. Also, a
local change in a PDAGmightmake a non-local change in
a corresponding extension and so force unnecessary appli-
cations of the score function.

These problems were voiced as concerns by Chick-
ering [10]. In this paper he performs validity checking of
moves by trying to obtain a consistent extension of the re-
sulting PDAG — if none exists then the move is not valid.
Scoring the move was achieved by scoring the changed
nodes in the consistent extension given. These methods
were very generic, but resulted in a significant slowdown
in algorithm execution, compared to search in the space of
DAGs.

To alleviate this problem, authors proposed improve-
ments that would allow move validity and move score to
be computed without needing to obtain a consistent exten-
sion of the PDAG [14, 13]. This was done by defining an
explicit set of operators, with each operator having a va-
lidity test and corresponding score change function, that
could be calculated on the PDAG. These changes resulted
in a speedup of the execution time of the algorithm, with
the result that search in the space of equivalence classes of
Bayesian networks became competitive with search in the
space of Bayesian networks.

4 A Caching Method for Increasing Learn-
ing speed

Whilst the execution time of searching for equivalence
classes of Bayesian networks has decreased, it still remain-
squite high for problem instances with many variables.
This is especially so if the search algorithm needs multi-
ple traversals through the search space. Upon analysing
the execution of a typical greedy search, it was found that
much of the time was spent computing validity tests for the
various operators. However, the results of many of these
tests are still valid after most moves in the space. This led
to the realisation that these results could be cached, so as
to be used in the next iteration of the search. For this to
be useful, a method would be needed that could say when
certain cached tests became invalid and when new entries
could be added into the cache. In this paper, such a method
is proposed. A high level description is as follows.

Each state of the search space is represented as a
CPDAG. A particular move might change this into a gen-
eral PDAG. This needs to be transformed back into a
CPDAG for the next iteration. In general, due to this trans-
formation, there can be an arbitrary number of differences
between the two CPDAGs, which can be represented by a
set of primitive changes of the type of arcs in the CPDAGs.
There are seven such primitive changes Insert Undirected,
Delete Undirected, Insert Directed, Delete Directed, Re-
verse Directed, Direct Arc and Undirect Arc. If the effect
of each primitive change on the validity of all moves can be
ascertained, there will be a method to update cached values.

One such way to find the effect of changes is to look
at what makes a particular move valid in the first place.
For the purposes of this paper, the set of six operators pro-
posed by Chickering will be analysed [13]. Take, for ex-
ample, the InsertU operator that inserts an undirected link
betweenx andy. For this move to be valid, two tests must
be passed. Firstly, every undirected path fromx to y must
contain a node inNx,y, that is, the intersection of the undi-
rected neighbours ofx andy. Secondly, bothx andy must

Op Action

IUxy Check :=Ξx (Ξy , x) ∪ (Ξx, y)

DUxy Check :=(Ξy , x) ∪ (Ξx, y)

IDxy Check :=(y, Nx)

DDxy Check :=(y, Nx)

RDxy Check :=(y, Nx) ∪ (x, Ny)

DAxy Check :=(y, Nx) ∪ (y, Ξx)

Invalid := (Ξy , x)

UAxy Invalid := (y, Nx)

Check :=(Ξy , x) ∪ (Ξx, y)

Table 1.Ωx,y is a clique

Op Action

IUxy —
DUxy —
IDxy Invalid := {y, V \Ξx}

Check :={y, Ξx \ y}
DDxy Invalid := {y, Ξx}

Check :={y, (V \Ξx)\y}
RDxy Invalid := {y, Ξx ∪ x}

Check :={y, V \(Ξx ∪ x)}
Invalid := {x, V \Ξy}
Check :={x, Ξy\x}

DAxy Invalid := {y, V \y}
Check :={y, Ξx\y}

UAxy Invalid := {y, Ξx}
Check :={y, V \Ξx}

Table 2.Πx = Πy

Op Action

IUxy Check :=x ∪ y ∪Nx,y

DUxy Check :=x ∪ y ∪Nx,y

IDxy Check :=y

DDxy Check :=y

RDxy Check :=x ∪ y

DAxy Check :=x ∪ y

UAxy Check :=x ∪ y

Table 3.Ny is a clique

have the same parent sets. Looking at the first test we
can see that inserting an undirected linkw− z in the graph
might affect whether the first test is true or not. In fact it
might only affect it if x has an undirected path tow and
y has an undirected path toz. With observations such as
these, we can limit the number of tests that we need to do at
each iteration of the algorithm. Specifically, for eachprim-
itive operator, we can find the affect it has on each validity
test in terms of three sets of parameters to the validity tests
— whether the test is valid, whether it is invalid or whether
it needs to be checked. We can then take the parameters
from each of the validity tests of an operator, couple this
with whether a move’s score might have changed and find
out whether a move needs to be added, deleted or updated
in the cache. A list of the effects on each of the validity
tests by each of the primitive operators will now be given,
after a short word on notation.

Op Action

IUxy CNΞ
x , CN

y , CN
x , CNΞ

y in P ′ \ (Nx,y ∪ x− y)

Invalid :=

(
CNΞ

x \CNΞ
y , CN

y \ y
)

∪
(
CNΞ

x \Ξx, y
)

Invalid :=

(
CNΞ

y \CNΞ
x , CN

x \ x
)

∪
(
CNΞ

y \Ξy , x
)

Check :=(Ξx, y) ∪ (Ξy , x)

Check :=

(
CNΞ

x ∩ CNΞ
y , CN

y

)
∪

(
CNΞ

y ∩ CNΞ
x , CN

x

)
DUxy CNΞ

x , CNΞ
y , CN

x , CN
y in P ′

Valid :=
(
CNΞ

x \ CNΞ
y , CN

y

)
Valid :=

(
CNΞ

y \ CNΞ
x , CN

x

)
Cx, Cy , CN

x , CN
y in P ′ \Nx,y

Check :=

((⋂
i∈Nx,y

Ξi

)
∩ CΞ

x ,(⋂
i∈Nx,y

Ni

)
∩ Cy

)
Check :=

((⋂
i∈Nx,y

Ξi

)
∩ CΞ

y ,(⋂
i∈Nx,y

Ni

)
∩ Cx

)
IDxy CΞ

y , CNΠ
x in P ′

Invalid :=
(
CΞ

y \ y, CNΠ
x

)
∪

(
y, CNΠ

x \Nx
)

Check :=(y, Nx)

DDxy CNΞ
y , CNΞ

x , CNΠ
x in P ′

Check :=
(
CNΞ

y \CNΞ
x , CNΠ

x

)
RDxy CNΞ

x , CNΞ
y , CNΠ

x , CNΠ
y in P ′

Invalid :=
(
CΞ

x \ x, CNΠ
y

)
∪

(
x, CNΠ

y \Ny
)

Check :=
(
CNΞ

y \CNΞ
x , CNΠ

x

)
DAxy CNΞ

x , CNΠ
y in P ′

Check :=
(
CNΞ

x \CNΞ
y , CNΠ

y

)
Check :=(y, Nx)

UAxy CNΞ
x , CNΞ

y Cy in P ′ \ (Nx,y ∪ x− y)

Invalid :=

(
CNΞ

x \CNΞ
y , CN

y

)
∪

(
CNΞ

x \Chx, y)
)

Check :=(Chy , x)

Check :=
(
CNΞ

x ∩ CNΞ
y , Cy

)
Table 4. Every semi-directed path fromy to x contains a
node inΩx,y

Much of Chickering’s notation is reused and hence
Nx is the set of undirected neighbours ofx andΠx is the
set of parents ofx. We also addΞx as the set of children
of x. Nx,y is Nx ∩ Ny andΩx,y is Πx ∩ Ny. In order
to specify nodes that are removed from a particular prim-
itive operator, we useCΣ

x whereΣ is a combination ofN,
Π andΞ. This stands for the set of nodes that are reach-
able fromx, including x, by a combination of the given
arc types. For example,CNΞ

x is the set of nodes reachable
from x by following undirected arcs and directed arcs away
from the current node. As a shorthandCx is equivalent to
CN

x . Continuing on,P is the previous PDAG andP ′ is the

Op Action

IUxy CNΞ
x , CNΞ

y in P ′ \ (Nx,y ∪ x− y)

Check :=
(
CNΞ

x , CNΞ
y

)
∪

(
CNΞ

y , CNΞ
x

)
DUxy CNΞ

x , CN
y , CN

x , CNΞ
y in P ′ \Nx,y

Check :=
(
CNΞ

x , CN
y

)
∪

(
CNΞ

y , CN
x

)
IDxy CNΠ

x , CΞ
y in new graph

Check :=
(
CΞ

y , CNΠ
x

)
Check :=(Πy , y)

DDxy CNΠ
x , CΞ

y in P ′

Check :=
(
CNΠ

x , CΞ
y

)
RDxy CΞ

x , CΞ
y , CNΠ

x , CNΠ
y in P ′

Check :=
(
CΞ

x , CNΠ
y

)
∪

(
CΞ

y − CNΠ
x

)
Check :=(Πx, x) ∪ (x, Ξx) ∪

(
y, CΞ

x

)
DAxy CNΞ

x , CN
y in P \ x− y

Invalid :=
(
CN

y , CNΞ
x

)
Check :=(Πx ∪ x, y) ∪ (y, Ξy)

UAxy CN
y , CNΠ

x in P ′

Check :=
(
CN

y , CNΠ
x

)
Table 5. Every semi-directed path fromx to y that does not
include the edgex → y contains a node inΩy,x ∪Ny

Op Action

IUxy Check :={x, Nx,y} ∪ {y, Nx,y} ∪ {x, y}
DUxy Check :={x, Nx,y} ∪ {y, Nx,y} ∪ {x, y}
IDxy —
DDxy —
RDxy —
DAxy Check :={x, Nx,y} ∪ {y, Nx,y} ∪ {x, y}
UAxy Check :={x, Nx,y} ∪ {y, Nx,y} ∪ {x, y}

Table 6.Nx,y is a clique

current PDAG. When we sayP \ (Nx,y ∪ x− y) we mean
the PDAGP less the nodes inNx,y and the arcx− y.

A list of the effects of each primitive operator on each
validity test are given in Tables 1, 2, 3, 4, 5, 6, 7 and 8. The
notation{X, Y } means the set of unordered pairs given by
each pair of the elements inX andY . The notation(X, Y)
is similar, but for ordered pairs instead of unordered. The
set ofinvalid entries show the parameters for which a par-
ticular test could not succeed. Therefore any operator rely-
ing on this test could delete the relevant entries in a cache.
The set ofvalid entries show the parameters for which that
particular test is valid (though perhaps not other relevant
tests). Assuming that the other tests are valid, the cache
entry can remain, though perhaps with a changed score.
Finally the set ofcheckentries show parameters that will
have to be rechecked to see if they are valid or not.

5 Experimental Results

Experiments on two datasets were performed in order to as-
certain whether a measurable improvement was gained by
implemented the caching system. For the first experiment,

Op Action

IUxy Cx, Cy in P ′ \ (Nx,y ∪ x− y)

Check :=
{Cx \ x, Cy \ y} ∪ {x, Cy \Ny}

∪ {y, Cx \Nx}
Check :={x, Ny} ∪ {y, Nx}

DUxy Cx, Cy in P ′

Valid := {Cy \ Cx, Cx\Cy}
Cx, Cy in P ′ \Nx,y

Check :=

{(⋂
i∈Nx,y

Ni

)
∩ Cx,(⋂

i∈Nx,y
Ni

)
∩ Cy

}
IDxy —
DDxy —
RDxy —
DAxy Cx, Cy in P \ x− y

Valid := {Cx, Cy}
UAxy Cx, Cy in P

Invalid :=
{Cx \ x, Cy \ y} ∪ {x, Cy \Ny}

∪ {y, Cx \Nx}
Check :={x, Ny} ∪ {y, Nx}

Table 7. Every undirected path fromx to y contains a node
in Nx,y

Op Action

IUxy —
DUxy —
IDxy Valid := (y, V \Ξx)

Check :=(y, Ξx\y)

DDxy Add := (y, Ξx)

Check :=(y, V \ (Ξx ∪ x))

RDxy Add := (y, Ξx)

Check :=(y, V \ (Ξx ∪ x))

Add := (x, V \ (Ξy ∪ y))

Check :=(x, Ξy\x)

DAxy Check :=(y, V \Ξx)

Check :=(y, Ξx\y)

UAxy Add := (y, Ξx)

Check :=(y, V \ (Ξx ∪ x))

Table 8.Πx 6= Πy

5000 instances were sampled from the ALARM Bayesian
network, which contains 37 variables [16]. The second ex-
periment used 5000 samples from the Insurance Company
Benchmark (COIL 2000) which contains 86 variables. For
both experiments, the time taken for a particular score was
averaged over 100 runs, for both the cached and uncached
algorithms. Plots of the results can be seen in Figure 2.

As can be seen the cached version of the algorithm
performed better than the uncached version, especially with
the larger COIL dataset. This is consistent with the hy-
pothesis that caching results from validity checks speeds
up algorithm execution. In fact, for large periods of the
runtime, each step appears to run in roughly constant time.
This is in contrast to the uncached version where the av-
erage step period appears to increase as the search contin-
ues. One plausible explanation for this behaviour comes
from the fact that as the search progresses, the graph be-
comes increasingly more connected. This would cause the

0 0.5 1 1.5 2 2.5 3 3.5
5

6

7

8

9

10

11
x 104

Time (s)

Sc
or

e

No Cache
Cache

(a) Alarm Dataset

0 2 4 6 8 10 12 14 16 18
3

3.2

3.4

3.6

3.8

4

4.2
x 105

Time (s)

Sc
or

e

No Cache
Cache

(b) COIL Dataset

Figure 2. Score of an equivalence class as a function of the search time

“path” validity conditions (which would normally take time
in O (|S|+ |E|)) to increase in time needed. When the
caching system is used, most of these conditions can be
reused, with only a small amount of tests needing to be re-
run, mostly independent of the number of variables in the
graph.

6 Conclusions and Further Work

A method has been demonstrated that shows promise
in speeding up the computation of learning equivalence
classes of Bayesian networks by searching through a state
space. This method would be especially useful in algo-
rithms that take multiple passes through the state space.
Results of experiments have shown that a measurable speed
up was gained by caching the results of validity tests whilst
looking through the state space.

There remains much work to be done in investigat-
ing the long term effect of this work. Firstly, the long
lists of actions complicate the implementation and render
it more opaque. If a method could be found to render the
lists shorter or more comprehensible, this would be of great
benefit. Secondly, formal proofs for each of the operators
actions given are needed in order to be confident in the re-
liability of the method. Thirdly, a more extensive range of
experiments needs to be run in order to check performance
over many problem domains.

References

[1] D. Heckerman, A. Mamdaniet al., Real-world applications
of bayesian networks,Communications of the ACM, 38(3),
1995, 24–26.

[2] N. Friedman, Inferring cellular networks using probabilistic
graphical models,Science, 303(5679), 2004, 799–805.

[3] P. Dagum and M. Luby, Approximating probabilistic infer-
ence in Bayesian belief networks is NP-hard,Artificial In-
telligence, 60(1), 1993, 141–154.

[4] S. E. Shimony, Finding maps for belief networks is NP-
hard,Artificial Intelligence, 68(2), 1994, 399–410.

[5] D. M. Chickering, Learning Bayesian networks is NP-
complete, in D. Fisher and H. Lenz (Eds.)Learning from
Data: Artificial Intelligence and Statistics V, chap. 12
(Springer-Verlag, 1996), 121–130.

[6] P. Spirtes, C. Glymouret al., Causation, Prediction, and
Search, Adaptive Computation and Machine Learning, 2nd
ed. (The MIT Press, 2000).

[7] S. Ott, S. Imotoet al., Finding optimal models for small
gene networks, inProceedings of the Ninth Pacific Sympo-
sium on Biocomputing(World Scientific, 2004), 557–567.

[8] S. Ott and S. Miyano, Finding optimal gene networks using
biological constraints,Genome Informatics, 14, 2003, 124–
133.

[9] D. Heckerman, A tutorial on learning with Bayesian net-
works, Tech. Rep. MSR-TR-95-06, Microsoft Research,
1995.

[10] D. M. Chickering, Learning equivalence classes of
Bayesian network structures, in F. Jensen and E. Horvitz
(Eds.) Proceedings of the Twelfth Conference on Uncer-
tainty in Artificial Intelligence(San Francisco, California:
Morgan Kaufmann, 1996), 150–157.

[11] D. Heckerman, D. Geigeret al., Learning Bayesian net-
works: The combination of knowledge and statistical data,
Machine Learning, 20(3), 1995, 197–243.

[12] T. Verma and J. Pearl, Equivalence and synthesis of causal
models, in P. Bonissone, M. Henrionaet al.(Eds.)Proceed-
ings of the 6th Annual Conference on Uncertainty in Artifi-
cial Intelligence(New York: Elsevier, 1991), 255–268.

[13] D. M. Chickering, Learning equivalence classes of
Bayesian-network structures,Journal of Machine Learning
Research, 2, 2002, 445–498.

[14] P. Munteanu and M. Bendou, The EQ framework for learn-
ing equivalence classes of Bayesian networks, inProceed-
ings of the 2001 IEEE International Conference on Data
Mining (Washington, DC, USA: IEEE Computer Society,
2001), 417–424.

[15] D. M. Chickering, Optimal structure identification with
greedy search,Journal of Machine Learning Research, 3,
2002, 507–554.

[16] I. Beinlich, H. Suermondtet al., The ALARM monitoring
system: A case study with two probabilistic inference tech-
niques for belief networks, inProceedings of the Second
European Conference on Artificial Intelligence in Medicine
(1989), 247–256.

