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Abstract
Background: The inference of homology between proteins is a key problem in molecular biology
The current best approaches only identify ~50% of homologies (with a false positive rate set at 1/
1000).

Results: We present Homology Induction (HI), a new approach to inferring homology. HI uses
machine learning to bootstrap from standard sequence similarity search methods. First a standard
method is run, then HI learns rules which are true for sequences of high similarity to the target
(assumed homologues) and not true for general sequences, these rules are then used to
discriminate sequences in the twilight zone. To learn the rules HI describes the sequences in a novel
way based on a bioinformatic knowledge base, and the machine learning method of inductive logic
programming. To evaluate HI we used the PDB40D benchmark which lists sequences of known
homology but low sequence similarity. We compared the HI methodoly with PSI-BLAST alone and
found HI performed significantly better. In addition, Receiver Operating Characteristic (ROC)
curve analysis showed that these improvements were robust for all reasonable error costs. The
predictive homology rules learnt by HI by can be interpreted biologically to provide insight into
conserved features of homologous protein families.

Conclusions: HI is a new technique for the detection of remote protein homolgy – a central
bioinformatic problem. HI with PSI-BLAST is shown to outperform PSI-BLAST for all error costs.
It is expect that similar improvements would be obtained using HI with any sequence similarity
method.

Background
The development of computer programs to identify ho-
mologous relationships between proteins is a key prob-
lem in computational molecular biology. Homology
relationships between proteins allows the probabilistic in-
ference of knowledge about their structure and function.
Such inferences are the basis of most of our knowledge of
the sequenced genomes. Homology between proteins is

typically inferred using computer programs to identify
similarities between their sequences. Here we introduce a
new and general approach for improving sequence simi-
larity searches called Homology Induction (HI). Please
note we have published a precursor to this paper address-
ing the machine learning aspects of the HI methodology
in a conference proceedigs [1]. HI is based on using ma-
chine learning, specifically Inductive Logic Programming

Published: 23 April 2002

BMC Bioinformatics 2002, 3:11

Received: 27 November 2001
Accepted: 23 April 2002

This article is available from: http://www.biomedcentral.com/1471-2105/3/11

© 2002 Karwath and King; licensee BioMed Central Ltd. Verbatim copying and redistribution of this article are permitted in any medium for any purpose, 
provided this notice is preserved along with the article's original URL.
Page 1 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/3/11
http://www.biomedcentral.com/


BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/11
(ILP), to improve results from conventional sequence
similarity searches. The basic HI methodology is as fol-
lows:

1. Run your favorite sequence similarity search method on
the target.

2. Divide the results of the search into "clear hits" (se-
quences with very high probability of being homologous
to the target) and the "twilight zone" (sequences where
the sequence statistics are ambiguous about homology).

3. Collect a set of random sequences that have very low
probability of being homologous to the target.

4. Use machine learning to form classification rules which
are true about the probable homologous sequences (pos-
itive examples) and not true for the probable non-homol-
ogous sequences (negative examples).

5. Use the classification rules to discriminate the examples
in the "twilight zone" between the homologous and non-
homologous classes.

HI is based on two premises:

• The prediction of homology is a statistical discrimina-
tion task, and therefore discrimination algorithms are the
most suited to the task (conventional sequence similarity
methods do not explicitly use discrimination methods).

• All available relevant information should be used to
make decisions over homology [2] (conventional se-
quence similarity search methods only use a small set of
local sequence based properties).

The most similar work to HI is that of Jaakola et al. [3]
who employed a Fisher kernel method as a discriminative
method on top of a HMM for detecting remote homo-
logues. Also related to HI are the program BLAST PRINTS
[4]. A similar approach was taken by MacCallum et al. [5]
and Chang et al. [6] who use literature annotations and
text-similarity measures to modify PSI-BLAST. HI is distin-
guished from these approaches by its ability to use all available
background knowledge, its more general learning ability, and
by its more comprehensive experimental validation.

Sequence similarity searches
Sequence similarity searches (SSSs) are probably the sin-
gle most commonly used class of bioinformatic programs.
Many different approaches exist to the problem of predict-
ing whether two protein sequences resemble each other
enough to imply homology, [7–17]. There are two main
parts to the problem in designing a good SSS program: de-
veloping an accurate statistical model of sequence similar-

ity (or more correctly sequence divergence), and making
the program efficient enough to search the very large se-
quence databases which are characteristic of current bio-
informatic knowledge.

The most commonly used sequence similarity search
methods are probably those of the BLAST family [18].
BLAST is based on an extension of the statistics of un-
gapped local alignments for high-scoring segment pairs
(HSP) [19], and is highly efficient at searching as it uses
heuristics to reduce the search space. We chose to use PSI-
BLAST as our standard SSS [19]. PSI-BLAST is a state-of-
the-art SSS incorporating sophisticated statistics and a
highly efficient search method. The PSI-BLAST algorithm
is also iterative, a feature characteristic of the most sensi-
tive methods. PSI-BLAST performs an initial SSS through
a database according to the gapped BLAST algorithm [19],
using a standard weight matrix [20]. After this initial iter-
ation, the program constructs a profile [10,15,16] from
closely related proteins, using a so-called inclusion E-value.
This procedure iterates until, either the profile converges,
i.e. no new closely related proteins can be found, or the
number of iterations has reached a certain threshold. The
result of such a PSI-BLAST search is a list of possible
homologues, sorted by their E-value. The lower the E-val-
ue, the higher the probability that the match does not ran-
domly occur in the database, which implies that the
matches are homologous.

Assessing the success of sequence similarity searches in de-
tecting homology
To test whether HI can improve on standard SSSs in de-
tecting homology we require a method of determining
whether sequences are truly homologous to each other or
not, i.e. we need a "gold standard". Most approaches to
developing a "gold-standard" have been based on analysis
of protein three-dimensional structure. The justification
for this is that protein structure is better conserved than se-
quence, and so if two sequences have a closely related
conformation, they are almost certainly homologous. Ear-
ly applications of this idea used extensively studied hand-
curated protein families or small example sets to measure
the effectiveness of the SSS tested [7,12,16,19,21]. A more
systematic approach was proposed by Park et al. [22]. This
approach is based on using a subset of the Structural Clas-
sification of Protein (SCOP) database [23]. We adopt the
Park approach.

Using this benchmark Park et al. [22] showed that the in-
termediate-sequence search method (ISS) outperforms
FASTA. This work was later extended to compare single
and multiple database pass SSS methods [24]. These re-
sults show that PSI-BLAST is among the best SSS methods,
but it still misses ~50% of all homologies when using a
rate of false positives of 1/1000.
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ROC curves
Ideally a SSS should identify all the homologous sequenc-
es to the target in the database and no other sequences
(i.e. be complete and consistent). However in practice the
SSS results may overlap with homologous sequences
missed and/or non-homologous sequences identified as
homologous. The problem is illustrated in Figure 1 where
the two separate distributions overlap: the first distribu-
tion closer to the y-axis and with lower E-values represents
the true homologous proteins; while the second distribu-
tion represents the non-homologous proteins. The dilem-
ma is that for a high SSS cut-off value non-homologous
sequences will be considered to be homologous; while for a low
cut-off value homologous sequences will be considered not to be
homologous.

Two separate types of error are possible when inferring
homology: errors of commission, and errors of omission.
In an error of commission a homology relationship is in-
ferred when no such relationship truly exists: in an error
of omission, a true homologous relationship is missed.
The costs associated with these two types of error are not in gen-
eral equal, and these costs will vary from application to appli-

cation. For example, with conservative cut-offs the implicit
assumption is that it costs more to miss-identify a se-
quence as homologous when it is not, than to miss a ho-
mologous sequence. It is therefore clear that using a fixed
cut-off value together with a simple error rate is a crude
measure for comparison of homology searches. A better
measure is to use Receiver Operating Characteristic (ROC)
curves. ROC curves were first developed for signal detec-
tion [25–28]. The main value of ROC curves in comparing
homology detection approaches is that: if one prediction
method produces a curve to the left of another method,
then the method to the left is superior regardless of the
particular costs associated with errors of commission and
omission (assuming linearity of costs) [26,27,29]. ROC
curves are produced by plotting the true positive rate (or
sensitivity) against the false positive rate (1-specificity) for
all possible cut-off values of a criterion value. Sensitivity is
the probability that a sequence is predicted to be homol-
ogous when the protein is actually homologous. Specifici-
ty is the probability that a sequence is predicted to be non-
homologous when the protein is actually non-homolo-
gous. Both measures are expressed as percentages. A ROC
curve is produced by ordering the predictions by some

Figure 1
A graphical representation of two different distributions of a homology search. The first distribution represents homologous
sequences found by the search; while the second distribution represents the non-homologous hits produced by the search.
Depending on the cut-off value used, a part of the distribution is called true positives (TP) as they were predicted by the search
to be homologous and are homologous; while a small part of the real homologous proteins is predicted to be non-homologous
proteins. This part of the distribution is called false negatives (FN). The second distribution is split as well into two parts: the
first part being the so-called false positives (FP), non-homologous proteins being predicted to be homologous. The second part
of this distribution are non-homologous proteins predicted to be non-homologous. This part is called true negatives (TN). The
cut-off value is indicated by a vertical line. It is clear that for any cut-off value, false positives will be included in a prediction.
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sort of criterion value (typically some kind of confidence
in a prediction), and then plotting the measures against
each other. The true positive rate is plotted along the y-ax-
is, while the false positive rate is plotted against the x-axis.
As both measures are expressed as percentages, the range
of both values is between 0 and 100%. This produces a
square space ranging from 0 to 1 along the two axes, or
unit-square. This space is called the ROC space. An ideal
ROC curve, resulting from a perfect discrimination be-
tween homologous and non-homologous proteins,
would be a line along the left-hand border of the ROC
space, as it would not produce any false positives. In most
applications this rarely occurs, instead, the ROC curve for
a good prediction should always be to the left of the diag-
onal between the two axes. The closer the curve follows
the left-hand border and the top border of the ROC curve,
the more accurate are the predictions made. In general a
ROC curve indicates the trade-off between sensitivity and
specificity, as an increase in sensitivity is accompanied by
an decrease of specificity. The ROC curve can be seen to
summarise all possible sets of confusion matrices that re-
sult when the cut-off value of the criterion value is contin-
uously varied from the smallest to the largest possible
value.

To compare two different prediction methods, both ROC
curves are plotted in the same ROC space. The curve run-
ning closer to the left and top border is considered to orig-
inate from the better prediction. A good measurement to
compare ROC curves analysis is that of the area under the
ROC curve (AUROC) [28,29]. The AUROC gives an over-
all measure of accuracy of a prediction. The best possible
prediction would have an area of 1, while the worst would
be 0.5, running along the diagonal. This can be used to
make an overall comparison of two predictions. However,
it is possible when comparing predictions using ROC
curve analysis, that for certain trade-offs one prediction is
better than the other one. Or, when comparing more than
one prediction, that switching between multiple predic-
tions will give the best trade-offs.

Information describing sequences
Sequence similarity searches are used for many bioinfor-
matic purposes. Perhaps the two most important are: to
predict the function of a newly sequenced gene based on
homology to a protein of known function, and to predict
the conformation of a protein based on homology to a
protein of known conformation. The information availa-
ble on the sequence will tend to be different under these
two conditions. In the case of a newly sequenced gene, all
that is likely to be known about the protein is its se-
quence. However, in cases where a structure is sought
much more information may be known about the pro-
tein. We tested HI under both information poor and in-
formation rich circumstances.

Algorithm
The HI approach is based on the following steps:

1. Collection of possible homologous sequences using
PSI-BLAST.

2. Accumulation of information on these homologous se-
quences;

3. The use of machine learning (ILP) to infer rules which
are true for the sequences which are clearly homologous
(training-set positive examples), and not true for sequenc-
es which are not homologous.

4. Application of these rules to a set of more remote
homologues (the "twilight zone").

5. Comparison of the HI predictions with PSI-BLAST

Collecting possible homologous sequences
Our methodology for comparing SSS methods is based on
the PDB40D database method first described by Park et
al.[22], and subsequently used by Brenner et al.[30]. The
PDB40D database is a subset of the Structural Classifica-
tion of Protein (SCOP) database [23], consisting of all
SCOP entries with 40 percent or less sequence similarity.
We used version 37 with 1434 sequence entries; 4011
pairs are considered to be homologues. It was not possible
to directly compare our results with those of Park et
al.[22], or Brenner et al.[30] as the SCOP databases they
used are not available from SCOP nor the authors of the
papers.

We concatenated the PDB40D database with a large non-
redundant database of primary sequence structures (spe-
cifically: Nr-Prot database 16.11.1998) from the National
Center of Biotechnology Information. This concatenation
was necessary to achieve the best possible starting results
from the SSS. The Nr-Prot database is assembled daily by
collecting protein sequences from multiple sources world-
wide, and clustering together all sequences with 100 per
cent sequence similarity.

We used PSI-BAST as our SSS method. It is state-of-the-art,
very commonly used, and allows qualitative comparison
with the results of Park et al.[24] and Brenner et al. [30].
However HI is not specific to PSI-BLAST and could be ap-
plied with other methods, e.g. FASTA [12], hidden Mark-
ov Models [13,14,21].

For each of the 1434 entries in the PDB40D database a
PSI-BLAST run was performed to collect a set of possible
homologous proteins. We used 10 as the E-value to report
hits, 0.0005 as inclusion value for building up the profile,
and allowed up twenty PSI-BLAST iterations – following
Page 4 of 13
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Park et al.[24]. The rest of the PSI-BLAST parameters were
left in their default values. As the PSI-BLAST profiles
sometimes vary extremely from previous iterations, we al-
lowed the good hits to be kept as results; hits occurring in
a previous iteration as close homologous proteins, and
not occurring in the final result, were assumed to be good
hits. The cut-off value taken for these proteins was the E-
value of 0.0001 [24]. The individual results of each run
were parsed to extract all sequence hits having a SWISS-
PROT entry, and split into a set of positive homologous
proteins to learn from, and a set of uncertain proteins to
test. A third set of random SWISS-PROT entries was gener-
ated for each test protein. The list with E-values of ≤
0.0005 were considered positive examples. The list with E-
values of (> 0.0005 and ≤ 10) were considered to be uncer-
tain examples. Machine learning methods work most effi-
ciently with positive and negative examples, as the
negative examples stop the over generalisation of predic-
tion rules [31]. To form these negative examples we ran-
domly selected for each case 1000 SWISS-PROT entries
that did not occur in either the positive or uncertain exam-
ples.

Data Accumulation and Data Preparation
For each example in the three different example sets infor-
mation was collected from a database. This included all
the translated SWISS-PROT annotation, as well as the fre-
quency of singlets and pairs of residues and the proteins
predicted secondary structure. This information was se-
lected for relevance to the detection of homology. For
each target sequence we collected:

1. Its amino acid distribution for singlets and pairs of res-
idues, as used by the PROPSEARCH algorithm [32].

2. Directly from SWISS-PROT: the description, keywords,
organism's classification, molecular weight, and database
references (PROSITE, HSSP, EMBL, PIR – excluding SCOP
classifications) from each sequence found by the SSS to be
homologous to the target.

3. The predicted secondary structure – we used the DSC
method [33] on single sequences (as a multiple sequence
method would require a homology search).

4. The predicted cleavage sites from the SignalIP [34].

5. The total hydrophobic moment assuming secondary
structure [33,35].

6. The length and starting point of local PSI-BLAST align-
ments.

A complete list of the predicates generated and their de-
scriptions is in Additional File.

This information was taken from our local bioinformatics
databases. These databases are formed with datalog [36].
The advantage of using datalog is that it allows easy incor-
poration of deduction and induction. The flexibility of
such datalog bioinformatic databases is shown by essen-
tially the same databases being used to predict the func-
tion of proteins [37–39].

Assembling all the information for each target into one
large table would in principle be possible, but highly com-
plex and inefficient. However, the assembly of such a ta-
ble is required as the staring point for statistical, neural
networks, or standard machine learning. This limitation
of standard learning techniques is known as the "multi-ta-
ble problem", i.e. learning from multi-relational data
stored in multiple tables [40,41].

Machine Learning
The most natural solution to the multi-table problem is to
use inductive logic programming (ILP) [42]. ILP is the
form of machine learning that is based on first-order logic
and is particularly suitable for problems where the data is
structured, there is a large amount of background knowl-
edge, and where the formation of comprehensible rules is
desirable. We used the ILP system Aleph [43] version 2.75
which is based on inverse entailment. Aleph (and the re-
lated program Progol) have been successfully applied to a
variety of problems in computational biology, such as
learning rules to obtain Structure-Activity Relationships
(SARs) [44], and protein topology prediction [45].

Aleph searches for rules (logic programs) which are true
for positive examples and not true for the negative exam-
ples. In HI the positive examples are the sequences known
to be homologous by use of the SSS, and the negative ex-
amples are 1000 random sequences that are not homolo-
gous. As the problem of remote homology detection is a
real world application, one cannot omit the possibility of
errors in the data. To accommodate this possibility, Aleph
was set to accept learning rules with up to 15% noise. Fur-
thermore, to avoid overfitting of the rules, a minimum of
ten positive examples is required to allow to proceed to
the induction step.

Aleph is in general versatile, bringing together the power
of first order logic and the possibility of using background
knowledge. However, it is not very suitable for use directly
on numerical values, as Aleph searches the lattice for each
single value for one attribute; the search using numerical
values can be inefficient, depending on the number of dis-
tinctively different values. Possible solutions are to intro-
duce operators, such as < and ≥ or to use discretisation.
We choose to discretise all numerical values into 10 levels.
Page 5 of 13
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Application of the rules
After the rules were learnt they were applied to the uncer-
tain examples. If the rule was true for an uncertain exam-
ple, this was considered evidence, along with the weak
sequence similarity towards identifying the example as
homologous. We therefore used the rules to identify pro-
teins which have uncertain evidence for homology based
only on sequence, but have sufficient evidence based on
sequence and the other information from our annotated
deductive database. Following the induction step, initial
results collected from PSI-BLAST are re-arranged accord-
ing to the rules found by Aleph. This is done by modifying
the original E-value reported by PSI-BLAST. The results
covered by the rules found, are assigned with an lower E-
value, while proteins not covered persist with the same
value as before. This is done by multiplying the original E-
value, received by PSI-BLAST, with a constant evidence
factor (EF; with EF < 1). This approach is based on the as-
sumption that if protein covered by a rule then this gives
further evidence of homology. Hence, it should be moved
further up the list of close homologous sequences found
by PSI-BLAST. We call the resulting value EHI-value.

Comparing the HI predictions with PSI-BLAST
Following the methodology of Park et al. [24] we used the
sub set of SCOP, the PDB40D database as our gold-stand-
ard:

• Every PDB40D entry found, sharing the same family or
superfamily with the query entry was considered to be a
true positive.

• Every entry found, sharing the same fold was considered
to be of type uncertain.

• Every other entry was considered as a false positive.

We applied this testing procedure to the HI algorithm.
However, there are certain technical bioinformatic techni-
cal limitations with testing using the PDB40D database.
The database consists of PDB entries, while HI uses the
SWISS-PROT annotation data to induce homologous rela-
tions. Therefore a database look-up table has to be con-
structed dealing with a mapping between SWISS-PROT
accession numbers and PDB accession numbers. This
could generally be done relatively easily, by parsing the
SWISS-PROT database reference annotation to get an ex-
plicit pointer to the PDB database; or by parsing the PDB
annotation for references to SWISS-PROT. However, this
was not always possible: some PDB entries do not occur
in SWISS-PROT; while some references in SWISS-PROT
point towards a wrong PDB entry; and vice versa, the PDB
annotation points to the wrong SWISS-PROT accession
number. In the case of the PDB40D database used here,
there were 10 unresolved relations between the PDB40D

database and SWISS-PROT (given in the form [PDB acces-
sion, SCOP classification]: [1alla, 1.1.1.2.3], [1tnm,
2.1.1.4.5], [1wiu, 2.1.1.4.6], [1smva, 2.8.1.2.3], [2tpra1,
3.4.1.4.3], [2tpra2, 3.4.1.4.3], [1nzya, 3.8.1.1.1], [1leha1,
3.19.1.7.3], [1leha2, 3.54.1.1.3], [1idm, 3.57.1.1.1]).

Another source of uncertainty originates from the design
of the PDB40D database and the use of a homology
search method based on SWISS-PROT annotation. As-
sume a SWISS-PROT protein s1 with the PDB domain d1
and another protein s2 with domains d1' and d2, with d1
being in the same SCOP family as d1' (having a sequence
similarity of over 40 per cent), and d1 and d2 being in the
PDB40D database but not homologous. A PSI-BLAST
search for d1 in the SWISS-PROT database should result in
s1 and s2 being detected as homologous sequences based
on the homology of d1 and d1'. However, as d1' is not in
the PDB40D database the hit would be counted as a false
positive as d1 and d2 are not homologous; while it genu-
inely has a homologous domain. In our analysis these cas-
es were labeled uncertain and not counted as false or true
positives.

Results
To illustrate that the HI approach is universal and can
work equally well with data generated from sequence
alone, two different settings were used:

• The first setting made use of all the available informa-
tion – HIall.

• The second setting used information that can directly be
computed from sequence, called HIseq.

The information used for the HIall setting, was taken from
a datalog database containing annotated facts from
SWISS-PROT [46] like keywords or descriptions, as well as
information purely based on the amino acid sequences
alone. The HIseq setting used all entries from the datalog
database not originating from SWISS-PROT, except
mol_weight and seq_length, as they can be calculated
from the primary structure. This left 19 possible predicates
to be used in learning (see Additional File of data types
available).

For the HIall setting, HI induced rules for 1,015 PDB40D
examples. The original PSI-BLAST results were used for the
sequences where no rules could be induced. In total HIall

produced 1851 rules for the 1,015 PDB40D entries. The
most commonly used predicate of the single predicate
rules was db_ref, utilized by 651 rules. These rules consist-
ed mainly of references to PROSITE (639) [47] and some
to the HSSP database [48]. This was expected as both da-
tabases cluster homologous families of proteins together.
Page 6 of 13
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For the HIseq setting HI induced rules for 949 PDB40D en-
tries, and the original PSI-BLAST output was taken in cases
where no rules could be learnt. The distribution of the
number of the rules in the HIseq rule sets is quite different
from HIall (Table 2). This reflects the lower expressive
power of the information used in HIseq compared to HIall.

The distributions of the size and complexity of the rules
found by HIall and HIseq are in Table 3 and Table 4.

ROC analysis
The first method we investigated to compare PSI-BLAST
and HI with PSI-BLAST was based on the concepts of pre-
cision and recall from information retrieval [49]. This com-
parison is more elementary than that of ROC curves.
Precision is defined as follows:

Recall is defined as follows:

Table 4 shows the precision and recall for PSI-BLAST, HIall

and HIseq using a cut-off E-value of 10. The recall of both
HI methods exceed the recall of PSI-BLAST alone. Howev-
er, the precision decreases slightly with HIall and HIseq

compared with PSI-BLAST, i.e. at the cut-off value HI iden-
tifies less homologous sequences than PSI-BLAST, but
makes more right identifications, as expected. It is there-
fore unclear if the large gain in recall is worth the loss in
precision. The answer to this question is determined by
the relative cost of the errors of commission and omis-
sion.

The most common measure for comparing two prediction
methods is to use accuracy. Accuracy is defined as follows:

In the PDB40D database there are 8022 true homology re-
lationships, and 2,046,900 false ones. This makes the
measure of accuracy inappropriate, as the number of neg-
ative relationships compared to the number of positive re-
lations is very large. The accuracy for PSI-BLAST is
99.68991%, for HIall it is 99.70072%, and for HIseq it is

Table 2: The distribution of number of rules learnt for different 
targets using HIall and HIseq. HIall can generally describe patterns 
using fewer rules. This is expected as it uses more background 
types of biological knowledge. Note the strange bimodal distribu-
tion for HIseq rules. The reason for this is unknown.

Rule number HIall HIseq

0 423 485
1 425 371
2 701 228
3 133 137
4 38 81
5 37 49
6 37 38
7 14 31
8 11 119
9 2 4
10 1 0

Table 3: The distribution of the size of the rules learnt, i.e. the 
number of predicates used in each rule in a rule set. The most 
common predicate used in the HIall setting with only one predi-
cate was references to databases, followed by SWISS-PROT de-
scription arguments and keywords. The larger the number of 
predicates used in this setting, the more dominant becomes the 
use of predicates based on pure amino acid distributions and pre-
dicted secondary structure. In the HIseq setting a similar shift of 
use from predicates involving amino acid distributions towards 
predicted secondary structure predicates was observed. Rules 
with more than eight predicated are solely based on secondary 
structure.

Number of predicates used in each rule HIall HIseq

1 1030 169
2 369 940
3 314 810
4 121 340
5 14 86
6 1 18
7 1 6
8 1 1
9 0 1

Table 4: The precision and recall for PSI-BLAST, HIall and HIseq.

Method Precision Recall

PSI-BLAST 0.34 0.717
HIall 0.32 0.787
HIseq 0.30 0.789

precision
# true positive predictions 

# true positive pred
=

iictions + # false  positive predictions

recall
# true positive predictions 

# true positive predict
=

iions + # false  negative predictions

accuracy
# true positive predictions + # true  negative pr= eedictions 

# all predictions 
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99.69449%. Although both HI with PSI-BLAST accuracies
are higher than PSI-BLAST alone, it is not clear at first sight
if it is significantly higher. To test significance we per-
formed a two-sample χ2 test to compare the actual fre-
quency of a prediction with the estimated frequency of the
prediction. The contingency table and the expected values
for the test set in the "twilight zone" are shown in Table 5.
χ2 is calculated as follows:

Where Or is the observed value and Er is the expected val-
ue. For HIall theχ2 value is 45.35 and for HIseq is 47.85.
Comparing these values with the critical χ2 values from a
significance table, indicate that both methods are inde-
pendent from each other. The critical value of χ2 for 1 de-
gree of freedom and 99.995% confidence is 7.879, which
indicates that HIseq and HIall are both significantly better than
PSI-BLAST alone.

This test is based on one cut-off value (i.e. one set of
costs). To test all linear costs we performed a ROC analy-
sis. In this ROC analysis both HI set-ups (HIall and HIseq)
were compared with PSI-BLAST (Figure 2). As described in
the methods section, the HI results for the twilight exam-
ples are re-ordered according to their E-values. This is
done by multiplying the original E-value, received by PSI-
BLAST, with a constant evidence factor. To optimise this
factor, the area under the ROC curve (AUROC) [28,29]
was calculated systematically for different possible factors
settings in order to choose the factor setting which mini-
mizes the area. A variety of different factors was used,
starting with 9 × 10-1, ending with 1 × 10-100. The initial

step for changing a factor is 0.1, resulting in the AUROCs
calculated for the factors 0.9, 0.8, 0.7, ..., 0.1. Then the fac-
tors were changed an order of magnitude to 0.09, 0.08,
0.07, ..., 0.01.

To find the optimal re-sorting factor f for both HI ap-
proaches, a k-fold cross-validation (with k = 5, 10, and 25)
was performed on the set of uncertain examples in the twi-
light zone. The set of uncertain examples was therefore
randomly split into k subsets. For each of the subsets Si,
with I = 1,....,k the factor fi was calculated maximising the
AUROC for the whole set of uncertain examples without
Si. This factor fi was then applied to the subset Si and the
AUROC calculated. The averages of these factors and the
average AUROC for each of the k-fold cross-validations
can be seen in table 6. This cross-validation was necessary
as no independent test set was available.

Figure 3 shows the different results from this analysis for
the whole set of examples in the twilight zone. This is for
illustration purposes only, as the optimal re-sorting factor
was calculated using a k-fold cross validation. For HIall the
AUROC peaked at 2 × 10-5 while for HIseq it peaked at 8 ×

Table 5: The contingency tables for χ2 comparing PSI-BLAST 
with HIall and HIseq in the twilight zone. The numbers in brackets 
are the expected values.

PSI-BLAST HIall

True Positives 460 (512.68) 312 (259.32) 772
False Positives 574 (521.32) 211 (263.68) 785

1034 523 1557

PSI-BLAST HIseq

True Positives 460 (490.21) 208 (177.79) 668
False Positives 574 (543.79) 167 (197.21) 741

1034 375 1409

χ2
2
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=
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=
∑

O E

E
r r

rr
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Figure 2
The three ROC curves produced by PSI-BLAST, HIall, and
HIseq for predictions in the twilight zone. While the ROC
curve for PSI-BLAST results from applying ROC analysis
directly to the results produced, the ROC curves for both HI
methods are maximized using an optimal value for re-sorting.
The ROC curve for HIall dominates over the other two
curves at all times; while the curves for PSI-BLAST and HIseq

oscillate around each other. HIseq dominates the PSI-BLAST
curve between ~0.38 and ~0.5.
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10-2. The AUROC value using the optimal factor from the
10-fold cross-validation for the whole set of uncertain ex-
amples the maximum AUROC value for HIall is 0.652892,
and the maximum for HIseq is 0.613196. As expected the
AUROC for HIall is greater than for HIseq as more informa-
tion is used. The AUROC for PSI-BLAST is 0.608506, both
HIall and HIseq have greater AUROCs indicating that they are
better than PSI-BLAST alone at predicting homology. The
ROC curve for PSI-BLAST along with the optimal ROC
curves for HIall and HIseq are shown in Figure 2. The dom-
inating curve is that of HIall, being to the left of the other two

curves. The ROC curve of HIseq does not entirely dominate
the PSI-BLAST ROC curve, and for large sections of the
false positive axis, the two curves have a similar true posi-
tive rate. However for the false positive rate interval of
0.38 to 0.5 the ROC curve produced by HIseq does clearly
dominate that of PSI-BLAST.

Analysis of typical HI rules
To illustrate the biological utility of the HI rules we have
selected three examples for in-depth analysis: C-Phycocy-
anin (1CPC), Malonyl-Co-enzyme A Acyl Carrier Protein
Transacylase (1MLA), Pepsin (1MPP), and Cyclodextrin
Glycosyltransferase (1CDG) see Table 7.

Table 8 shows the rules learnt for C-Phycocyanin both in
their original Prolog form and in English translation. Phy-
cocyanins are light harvesting proteins. Applying PSI-
BLAST to the data produced three proteins in the twilight
zone: allophycocyanin alpha-b chain (Anabena), eryth-
roid transcription factor (gata-1 Mus musculus), and oryza-
in gamma chain precursor (Oryza sativa). All the rules in
the HIall and HIseq rule-sets correctly identified the allo-
phycocyanin as homologous to 1CPC – there is convinc-
ing experimental evidence for this homology [50]. No rule
in any rule-set identified the other two twilight sequences
as homologous, and this would appear to be correct (no
structures exist to be certain). Further evidence for the
power of the HI rules is that the HI analysis was done on
version 37.0 of SWISS-PROT, and each of the 13 positive
examples not covered by this rule have had the keyword
"phycobilisome" added to their annotation since version
38.0 of SWISS-PROT. It is particularly intriguing that the
most characteristic feature of the amino-acid type rules is
low histidine and trypotophan content, and that both
amino-acids have nitro-cyclic aromatic rings. Phycocy-
anins have covalently linked bilin prosthetic groups
which consist of linked nitro-cyclic aromatic rings. We hy-
pothesise that evolution has selected for low histidine and trypo-
tophan content in phycocyanins to reduce electron transport
interference. The requirement for a high number of leu-
cine-arginine pairs is also structurally significant as these
arginines from salt-bridges with the prosthetic groups
[51]. The structural rule s2 is also consistent with the known
structure of phycocyanins which are well known to have an all
α-helix globin like fold.

Figure 3
This figure shows the calculated areas under ROC curve for
both HI methods (HIall and HIseq) for a range of re-sorting
factors. The AUROC values for HIall increases steadily and
reaches its maximum value at 6 × 10-5 with a value of 0.651;
while the AUROC values for HIseq first increases and then
decreases again with a peak at 8 × 10-2 with an AUROC
value of 0.613. Comparing both methods with PSI-BLAST
shows that HIseq has a smaller improvement over PSI-BLAST
which has an AUROC value of 0.607. HIall increases the
AUROC value by approximately 7.4 per cent.
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Table 6: The results of the k-fold cross-validation with the different areas inder ROC curve and the optimal parameters. The varations 
in the optimal factors are due to some factors fi being an order of magnitude higher than the rest of the factors.

k AUROC Hiall factor f Hiall AUROC Hiseq factor f Hiseq

5 0.6525 ± 0.059 9.6 × 10-5 ± 6.07 × 10-5 0.6135 ± 0.0589 6.0 × 10-2 ± 2.82 × 10-2

10 0.6728 ± 0.1085 7.8 × 10-5 ± 4.47 × 10-5 0.6391 ± 0.1022 7.5 × 10-2 ± 2.12 × 10-2

25 0.7342 ± 0.1234 6.6 × 10-5 ± 2.8 × 10-5 0.6951 ± 0.1029 7.56 × 10-2 ± 1.73 × 10-2
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The rules for Malonyl-Co-enzyme A Acyl Carrier Protein
Transacylase are shown in Table 9. The catalytic activity of
the enzyme is: malonyl-coa + [acyl-carrier protein] = coa +
malonyl-[acyl-carrier protein]. The HIall rule covers 4 out
of a possible 17 test proteins in the twilight zone. All four
are alpha subunits of fatty acid synthase (SWISS-PROT:
FAS2_CANAL, FAS2_PENPA, FAS2_SCHPO, and
FAS2_YEAST). Only one fatty acid synthase is not covered
by this rule (SWISS-PROT: FAS_CAPHI); despite having
the SWISS-PROT annotation of "synthase", it has only a
sequence length of 35 residues – not long enough for the
second part of the rule, and suspiciously small. The other
proteins in the twilight zone are SWISS-PROT:
ANP4_PSEAM, BRAB_PSEAE, CA16_MOUSE,
CAPP_MYCLE, COBS_MYCTU, CYAA_STIAU,
DCUP_MYCLE, HUR_STRAU, PUM_DROME,
SRF1_BACSU, THL_BACSU, and XYLB_STRRU. The HIseq

rule covers five test proteins in the twilight zone. The same
fatty acid synthase subunits as HIall and a surfactin syn-
thetase subunit 1 (SWISS-PROT: SRF1_BACSU). It would
seem at least possible that SRF1_BACSU is related to the
target 1MLA as their functions are somewhat related. Both
rule-sets rely highly on predicted secondary structure. It is
surprising how well the rules do considering how notori-
ously difficult it is to predict secondary structure. The rules
concentrate on the C-terminal end of the predicted struc-
ture, but vary on the type of secondary structure they focus
on. According to SCOP the catalytic domain of the en-
zyme has: "3 layers,α/β/α; core: parallelβ-sheet of 4
strands, order 2134".

The rules for pepsin are shown in Table 10. Pepsin is an
acid protease formed from the zymogen pepsinogen. The

HIall rule uses the PROSITE pattern "PS00141" with the
additional condition of the sequence coming from a eu-
karyotic species. The PROSITE pattern PS00141 is that for
aspertate proteases, as expected. However, this pattern is
designed for "Eukaryotic and viral aspartyl proteases ac-
tive site(s)". Note that the HI rule is specific for eukaryo-
tes. This is structurally significant as SCOP draws a
distinction in the super-family "Acid Proteases" between
the "Pepsin-like" family where all the structures crystal-
lised so far have been eukaryotic (SCOP: duplication: con-
sists of two similar barrel domains N-terminal: barrel,
partly opened; n* = 6, S* = 10), and the "Retroviral pro-
tease family" (dimer of identical mono-domain chains,
each containing (6,10) barrel). This distinction was auto-
matically formed by HI. In the twilight zone the HIall rule
correctly covers two proteins: SWISS-PROT: PEPC_PIG a
pepsinogen [52] and SWISS-PROT: CHYM_FELCA a chy-
mosin [53]. There were no other clear pepsinogens in the
twilight zone. The HIseq rule-set is interesting in the selec-
tivity of the three separate rules. For s1 nearly a third of the
positives covered by the first rule are direct pepsin hits
(with EC number 3.4.23.1), while the main group in the
positives covered by s3 are acid/aspartic protease precur-
sors. The second part of the rule does not seem to have any
tendency towards any particular pepsin group. The em-
phasis in s1 on SER-SER and GLY-SER residue pairs is in-
triguing and may have something to do with low pH
stability. The HIseq rule-set is not very effective in the twi-
light zone covering three example SAS2_YEAST (a SAS2
protein), YJ83_MYCTU (a hypothetical pe-pgrs family
protein) and PDR5_YEAST (a possible ABC transport pro-
tein).

Table 7: Three selected examples of rules generated by HIall and HIseq. Where # rules is the total number of rules found, # pc is the 
number of positive examples covered in the training data, # pnc is the number of positive examples not covered in the training data, % 
CovP is the percentage coverage of the positive examples in the training data, % CovN is the percentage coverage of negative examples 
in the training data, # uc is the number of uncertain examples covered, and # unc the number of uncertain examples not covered.

HIall

HIall

1CPC 2 120 0 100.00 1.00 1 2
1MPP 1 91 1 98.91 0.00 2 13
1MLA 1 17 5 77.27 0.00 4 13

HIseq

PDB # rules # pc # pnc % CovP % CovN # uc # unc
1CPC 2 89 31 74.17 1.20 1 2
1MPP 3 62 30 67.39 1.20 3 12
1MLA 1 16 6 72.73 0.20 5 12
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Web server
To make the HI method generally available we have devel-
oped a web/email server  [http://www.aber.ac.uk/~phiw-
ww/hi_V2/] . To the best of our knowledge this is the first
bioinformatics server providing an ILP service. The server
is a simple HTML form, supplying the desired informa-
tion to a CGI-Perl script. The user has the opportunity to
select the parameters of the initial PSI-BLAST search, like
inclusion E-value, maximum E-value to be reported,
number of PSI-BLAST iterations, and if a low complexity
sequence filter should be used. The user is also offered the
possibility to select a different E-value to divide between
positive examples and examples in the twilight zone. In
the induction step, it is possible to select which descrip-
tors to use in the induction, as well as ILP specific options,
like the minimum number of positive examples required
and the percentage of noise allowed.

Discussion
Many improvements are possible to HI. The existing se-
quence description is simply the percentage composition
of singlets and pairs of residues. Although this is surpris-
ingly effective it can clearly be improved. Avenues for im-
provement are to use wavelets [54] to describe the
sequences, and the Santa Cruz approach [3]. Other sourc-
es of bioinformatic data and more biological background
knowledge could be used, for example: comment lines
from SWISS-PROT could be included (although this
would require a more refined computational linguistic
analysis); database links to Medline abstracts could be ex-
ploited, etc. In addition much of the data in the logical da-
tabase is still propositional in form, and this does not
allow us to fully exploit the power of ILP. More back-
ground knowledge could also be used to allow ILP to use:
≥ and ≤, numerical neighbourhoods, hierarchies of key-
words, phylogenic trees, etc. The learning step in HI could
be improved by using resampling approaches such as
cross-validation [31] to get better estimates of the accuracy
of rules. Data mining algorithms such as Warmr [55]
could be used to pre-process the data to find frequent pat-
terns which would make learning easier and more success-
ful. Warmr can naturally include relational information
such as sequence and could be use to find frequent sub-
sequences that characterise sequences [55,56]. Multiple
theories could be learnt and combined, e.g. using boost-
ing and bagging [57,58]. Also different algorithms could
be used and their predictions combined together [59]. We
expect that these improvements would greatly improve
the sensitivity of homology detection over the level
achieved by HI.

HI provides a new approach to homology prediction. One
of the most interesting results of Park et al.[24] was how

Table 8: The HI rules learnt to identify 1CPC (C-Phycocyanin) are 
illustrated first in their original Prolog form and in English trans-
lation. Two sets of rules are shown those using HIall, and those 
learnt from HIseq. All numbers were discretised into 10 levels for 
ease of symbolic induction (1 low – 10 high).

PDB 1CPC C-Phycocyanin
HIall

Prolog
homologous(A) :-
desc(A,chain),
amino_acid_ratio_rule(A,h,1).
homologous(A) :-
keyword(A,phycobilisome).

English
A protein is homologous if

a1 it has the word 'chain' in its SWISS-PROT 
description line and
it has a level 1 histidine content in the resi-
due chain and

a2 or it has the word 'phycobilisome' as a 
SWISS-PROT keyword.

HIseq

Prolog
homologous(A) :-
amino_acid_ratio_rule(A,w,1),
amino_acid_ratio_rule(A,h,1),
amino_acid_pair_ratio_rule(A,l,r,10).
homologous(A):-
mol_wt_rule(A,3),
sec_struc_distribution_rule(A,a,10).

English
A protein is homologous if

s1 it has a level 1 tryptophan content and
it has a level 1 histidine content and
it has a level 10 leucine-arginine pair content.

s2 or
it has a level 3 molecular weight and
it has a level 10 predicted α-helix content.

Table 9: The HI rules learnt to identify IMLA are shown in English 
translation. The secondary structure elements along the se-
quence are ordered into ten equal groups (deciles). The 1st decile 
are the 10% of elements near the N-teminal and the 10th decile 
at the C-terminal.

PDB 1MLA Malonyl-Co-enzyme A Acyl Carrier Protein 
Transacylase
HIall

A protein is homologous if
a1 it has the word 'synthase' in its descrip-

tion line and
it is in the 10th decile of predicted sec-
ondary structures a coil of length level 4.

HIseq

A protein is homologous if
s1 it has in the 10th decile of predicted α-

helices a helix of length level 3 and
it has in the 10th decile of predicted β-
strands a strand of length level 1.
Page 11 of 13
(page number not for citation purposes)

http://www.aber.ac.uk/~phiwww/hi_V2/


BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/11
relatively uncorrelated the errors were for the three differ-
ent homology prediction methods examined. This means
that better results could be obtained by combining predic-
tion methods when inferring homology. Combining pre-
diction methods with different biases is a standard
method of improving prediction method accuracies [60].

The inference of homology based on sequence similarity
is generally based on a threshold approach: homology is
inferred if a sequence similarity search detects a match
over a threshold probability; if the match is below this
threshold, no matter by how little, no homology is in-
ferred. This is a mistake. In decision theory this approach is
equivalent to assigning a particular loss function to errors
of commission and omission. Generally we wish to make
the decision which minimises the expected loss, and this
is achieved if:

The use of ROC curves allows us to show that one predic-
tion method dominates others over all standard loss func-
tions [29]. In this paper we have shown that HI with PSI-

BLAST dominates PSI-BLAST alone. We recommend that
in future work on homology prediction that ROC curves
are adopted as the standard analysis method.

Conclusions
Within molecular biology there is an urgent need for new
approaches to inferring protein homology. The results of
Park et al.[24] show that ~50% of homologous relation-
ships are currently identified by the best methods using
standard cut-offs. HI is a first step in the application of
machine learning to aid in the inference of homology by
exploiting bioinformatic data other than that of local se-
quence. We have shown that HI is more sensitive than the
state-of-the-art sequence method PSI-BLAST, and that HI
performs better for all reasonable error costs. Comparison
over different error costs is essential in comparison of ho-
mology prediction methods. Although our result only
shows that HI is an improvement over PSI-BLAST, the ba-
sic approach of HI is applicable to all sequence based ho-
mology search methods.
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