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Mutations in NLRP5 are associated with
reproductive wastage and multilocus imprinting
disorders in humans
Louise E. Docherty1,2,*, Faisal I. Rezwan1,2,*, Rebecca L. Poole1,2, Claire L.S. Turner3, Emma Kivuva3,

Eamonn R. Maher4, Sarah F. Smithson5, Julian P. Hamilton-Shield6, Michal Patalan7, Maria Gizewska7,

Jaroslaw Peregud-Pogorzelski8, Jasmin Beygo9, Karin Buiting9, Bernhard Horsthemke9, Lukas Soellner10,

Matthias Begemann10, Thomas Eggermann10, Emma Baple11, Sahar Mansour12, I. Karen Temple1,11

& Deborah J.G. Mackay1,2

Human-imprinting disorders are congenital disorders of growth, development and metabolism,

associated with disturbance of parent of origin-specific DNA methylation at imprinted loci

across the genome. Some imprinting disorders have higher than expected prevalence of

monozygotic twinning, of assisted reproductive technology among parents, and of disturbance

of multiple imprinted loci, for which few causative trans-acting mutations have been found.

Here we report mutations in NLRP5 in five mothers of individuals affected by multilocus

imprinting disturbance. Maternal-effect mutations of other human NLRP genes, NLRP7 and

NLRP2, cause familial biparental hydatidiform mole and multilocus imprinting disturbance,

respectively. Offspring of mothers with NLRP5 mutations have heterogenous clinical and

epigenetic features, but cases include a discordant monozygotic twin pair, individuals with

idiopathic developmental delay and autism, and families affected by infertility and reproductive

wastage. NLRP5 mutations suggest connections between maternal reproductive fitness, early

zygotic development and genomic imprinting.
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O
n fertilization, the genome undergoes genome-wide
epigenetic reprogramming to supersede the develop-
mental programmes of the sperm and oocyte with that

of the developing zygote. A small number of gametic epigenetic
marks are impervious to this reprogramming, and survive in
the organism as genomic imprints, regulating genes under their
control according to their parent of origin1. Disturbance of
imprinting causes imprinting disorders affecting metabolism,
growth and behaviour2. Cis-acting mutations, that is, affecting
only one imprint and the gene(s) controlled by it, are associated
with a range of clinically defined human-imprinting disorders,
while trans-acting mutations may affect establishment or
maintenance of multiple imprinting marks across the genome,
and thus may have a wider impact on development2. Multilocus
imprinting disturbance (MLID) is present in a minority
of patients with clinically defined imprinting disorders.
Mutations of NLRP2 and ZFP57 have been identified in rare
cases of MLID3,4 but in the majority the cause is unknown.

Imprinted loci throughout the genome are paternalized in
molar pregnancies; like imprinting disorders these can occur in
sporadic or heritable forms, and the best-established cause of
recurrent molar pregnancy is mutation of NLRP7 or KHDC3L5–7.
NLRP7 and KHDC3L are maternal-effect genes, expressed from
the maternal genome and required for zygotic development
before activation of the zygotic genome8, such that loss of
function has no effect on males or their fertility, nor on the
females themselves, but females are sterile because their oocytes
do not support early development. Another NLRP (nucleotide-
binding domain and leucine-rich repeat-containing receptor
protein) family member, NLRP5 or its murine counterpart
Mater, was the first-described maternal-effect gene in mice9.

We performed whole-exome sequencing of a large cohort of
MLID patients, to seek genetic causes of the epigenetic errors in
MLID. This led to the identification of NLRP5 variants in five
mothers of patients with MLID. As well as offspring with MLID,
though without consistent clinical presentation or consistent
epimutations, some mothers with NLRP5 variants also have
periods of infertility, and reproductive outcomes including
miscarriage and reported molar pregnancy. NLRP5 is a novel
candidate gene causing MLID, with deleterious maternal-effect
variants in 15% of our cohort.

Results
NLRP5 mutations in mothers of MLID patients. We performed
whole-exome sequencing on patients with clinically defined
imprinting disorders and molecular evidence of MLID, and with
no known genetic cause of disorder, including eight with
Beckwith–Wiedemann syndrome (BWS; MIM #130659), 10 with
Silver–Russell syndrome (SRS; MIM #180860) and 7 with
transient neonatal diabetes mellitus (MIM #601410). In addition,
parental samples were exome sequenced for four BWS–MLID,
five SRS–MLID and four transient neonatal diabetes mellitus–
MLID patients, and the mother of two siblings with MLID
(SRS and BWS presentations). NLRP5 was the only gene in which
rare and novel variants were found in more than two individuals.
Using Sanger sequencing, NLRP5 was sequenced in 14 further
MLID patients and 19 mothers. In total, 39 MLID patients and 33
mothers were sequenced for NLRP5 in this study (summarized in
Supplementary Data 1).

NLRP5 variants were detected in 5 of 33 unrelated MLID
imprinting disorder pedigrees, where maternal samples were
available (Fig. 1), a detection rate of 15% in our cohort. In
family 1, two heterozygous single-nucleotide polymorphisms
(SNPs) were identified: NM_153447.4:c.2320T4C (Cys774Arg;
rs370837790; unknown minor-allele frequency) in the mother

and proband 1 with SRS–MLID, and the novel variant
NM_153447.4:c.1664G4T (Gly555Val) in the mother and
proband 2 with BWS–MLID; neither of them was within a
known functional domain. In family 2, NM_153447.4:
c.2353C4T: (Gln785X; rs200446614, unknown minor-allele
frequency) was found heterozygously in both affected siblings
(proband 1 with BWS–MLID and proband 2 with a clinically
non-specific autism and obesity–MLID) and their mother; the
variant truncates NLRP5 in the first of 10 leucine-rich repeats
(LRR). Sanger sequencing identified a further heterozygous
variant in the mother, not inherited by either affected
offspring: NM_153447.4:c.2840T4C (Leu947Pro; rs202181446;
minor-allele frequency 0.15%). The mother inherited the
nonsense variant from her father and the missense variant
from her mother. In family 3, two novel heterozygous
SNPs NM_153447.4:c.155T4C (Met52Thr) and NM_153447.4:
c.226G4C (Glu76Gln) were identified, one near and one within
the DAPIN (Domain in Apoptosis and INterferon response)
domain. The variants were found in cis, being both present on
individual exome sequencing reads, and present in both the
proband with BWS–MLID and his mother. In family 4, a novel
heterozygous duplication NM_153447.4:c.1156_1158dupCCT
(386dupP) was identified within the NACHT (NAIP, CIITA,
HET-E and TP1) domain. Strikingly, the duplication was
found neither in the proband with SRS–MLID, nor in her twin
sister, but in their mother. Sanger sequencing identified an
additional novel variant in family 5, NM_153447.4:c.1699A4G
(Met567Val), which was present heterozygously in the
proband (clinically non-specific growth, developmental delay and
unusual behaviour MLID) and homozygously in her mother.
Copy number variation analysis by digital PCR confirmed there
to be two copies of NLRP5 exon 7 in the mother (Supplementary
Table 1), eliminating a deletion as the cause of homozygosity
for this variant. All the mothers had a normal phenotype
and epigenotype, but MLID cases had overlapping imprinting
disorder features often with abnormal neurodevelopment.
The clinical details of each pedigree are detailed in the
Methods section.

Epigenetic effects in affected offspring. Figure 1 summarizes key
regions of methylation disturbance at known imprinted loci
in patients exposed to maternal NLRP5 variants. Complete
data on all detected regions of methylation disturbance from
targeted testing and Illumina Infinium HumanMethylation450
BeadChip array are provided in Supplementary Data 1 and 2,
respectively. Only hypomethylation of imprinted loci was
observed by targeted testing of MLID patients. However,
the methylation array data available for some MLID patients
identified additional regions of dysregulation, the majority
hypomethylated with a small number of hypermethylated
imprinted loci. Hypomethylation was observed at both
maternally and paternally imprinted imprinting control
regions, including, for example, both the H19- and KCNQ1OT1-
imprinting control centres on chromosome 11p15. Regions of
both hypo- and hypermethylation were observed within
the GNAS locus, with hypomethylation of the maternally
methylated GNASAS-imprinting control region (ICR), and
hypermethylation of the neighbouring somatic GNASAS
differentially methylated region (DMR), methylated on the
paternal allele in inverse relation to the hypomethylation of the
ICR. The distribution and severity of methylation disturbance
varied between patients; and, as expected given the divergent
clinical presentations of probands in families 1 and 2, there were
also significant differences in the imprinted loci affected despite
the shared genetic exposure to NLRP5 variants.
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The amino-acid conservation, pathogenicity and location
within the polypeptide for each variant are illustrated
(Supplementary Fig. 1 and Supplementary Table 2). The amino

acids affected by the variants were well conserved between
primates, with progressive loss of conservation of the surrounding
amino acids in more phylogenetically distant species. The variants

Proband-1

Mother

Proband-2

Family 1 

Ref

Family 2 

Proband-1

Mother

Proband-2

Ref

Father

c.155T>C; p.M52TFamily 3 c.226G>C; p.E76Q

Proband

Mother

Ref

Father

c.2353C>T; p.Q785X c.2840T>C; p.L947P

c.2320T>C; p.C774Rc.1664G>T; p.G555V

Proband-1 H19–,
PEG3- & GNAS–

Proband-2 PLAGL1–, GRB10–,
MEST–, KCNQ1OT1– & GNAS–

Family 4 

Proband

Mother

Ref

Father

c.1156_1158dupCCT; p.386dupP Family 5

Proband

Mother

Ref

Father

c.1699A>G; p.M567V

Proband-1 PLAGL1–,
MEST– & KCNQ1OT1– 

Proband-2 GRB10–,
MEST–, H19– & GNAS–

Proband   PLAGL1–, MEST–,
KCNQ1OT1–, H19– & GNAS– 

Proband
MEST–, KCNQ1OT1–,
SNRPN–, PEG3– &
GNAS–

Proband
KCNQ1OT1– &
H19–

a

b

Exon 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Family 3
M52T & E76Q

Family 4
P386dupP

Family 1
G555V

Family 5
M567V

Family 2
L947P

Family 1
C774R

Family 2
Q785X

DAPIN
domain

NACHT
domain

Leucine-rich repeats

X

X

X

X

X

X

X

X
1 2

X

X

1 2
X

A A G G A  C  T T T C  T G C  T

C  G  G C  A  G  C C C C T  C  G  T

A  G A  T G  G A G A  A G  A  A T

A  G C  C T C  C G T T C A  C C C C A C A  T  G A 

c

d e

f

Figure 1 | Sequence analysis of mutations in NLRP5. (a–e) mutations, sequencing electropherograms, pedigrees and key multilocus imprinting

disturbance (MLID) imprinted loci from pedigrees 1–5. The mutation, nucleotide and amino-acid information is summarized for each pedigree, below this

the wild-type sequence is provided (ref), followed by available parental genotypes and proband sequencing electropherograms. Filled symbols in pedigrees

represent individuals with SRS–MLID (orange) BWS–MLID (blue) and clinically non-specific-MLID (green), red dots indicate those affected by pregnancy

losses with black crosses indicating one or more NLRP5 mutations. For each proband a list of key MLID loci are included (the — symbol indicates

hypomethylation relative to controls) (f) Diagrammatic structure of the human NLRP5 protein showing DAPIN, NACHTand leucine-rich repeat domains is

aligned to the cDNA; arrows indicate the position, variant and pedigree information of each protein alterations with novel alterations in red text.
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Cys774Arg, Gln785X and Leu947Pro all lie within the ten LRR
of NLRP5; LRR domains are thought to function as the
ligand sensors of NLRP proteins, such that ligand-binding
causes conformational change permissive for nucleotide binding
and oligomerization (reviewed in ref. 10). The variants
386dupPro, Gly555Val and Met567Val lie within the NACHT
nucleotide-binding domain, which is thought to mediate the
nucleotide-dependent oligomerization of NLRP proteins in
response to ligand binding. The two variants Met52Val and
Glu76Gln lie within the N-terminal effector domain of the
protein. NLRP5 variants with similar damaging potential were
identified in The Database of Short Genetic Variation (dbSNP
version 138) and are presented in Supplementary Table 3. All of
these variants were rare or undetected within dbSNP.

Clinical and reproductive effects in NLRP5 families. The most
severe clinical and reproductive outcomes were observed in two
of the three mothers with biallelic NLRP5 mutations. The mother
of family 1 had biallelic mutations affecting the NACHT and
LRR domains, both predicted to be deleterious. She had no
healthy offspring, two children with different imprinting
disorders (SRS–MLID at 24 years and BWS–MLID at 30 years),
and multiple pregnancy losses with three unrelated partners,
including one termination for a presumed molar pregnancy.
The mother of family 2 had biallelic variants in the LRR domain,
one a truncation and the other predicted to be deleterious.
She had two healthy offspring, followed by a period of
reproductive wastage, a child with BWS–MLID (at the age of
35 years) and a child with non-specific developmental and
marked behavioural problems diagnosed as autism with extreme
separation anxiety, born when she was 39 years of age.
The mother of family 3 had two NLRP5 variants in cis, one
near and one within the DAPIN domain. The mother had
one healthy child before the proband at the age of 34, presenting
with BWS–MLID. The offspring of family 4 have previously
been described11: she was the affected twin in a discordant
monozygotic (D-MZ) pair; interestingly, the mutation in the
mother was not inherited by either twin. The affected child of
family 5 has previously been described12; she received a
serendipitous diagnosis of MLID, presenting with atypical
clinical features of BWS and Prader–Willi syndrome, and it is
also remarkable that her heterozygous variant was present
in homozygous form in her mother, though her siblings
were reportedly healthy. All mothers with NLRP5 variants were
clinically healthy, and none had methylation disturbance at
imprinted loci (Supplementary Data 1; further clinical history is
presented in Methods).

The median age of mothers affected by NLRP5 variants, at the
birth of affected offspring, was 34.3 years (range 24–35 years),
compared with a median age of 30.1 years among other
mothers of MLID patients (range 18–40 years; interquartile
range 25.4–33.2 years). No offspring of NLRP5-variant
mothers were conceived by assisted reproductive technology
(ART), compared with 2 of 20 other MLID (where data were
available). One of seven offspring of NLRP5-variant mothers was
a monozygous twin, compared with 6 of 26 other MLID
(Supplementary Data 1).

Discussion
Nlrp5 (Mater) was the first-described maternal-effect gene, with
maternal ablation causing developmental arrest at the two-cell
stage in mice9. In rhesus macaque, NLRP5 depletion results
in arrested zygote development before the 16-cell stage13.
NLRP5 is a component of the subcortical maternal complex
(SCMC) of proteins (KHDC3L, TLE6, OOEP and NLRP5)14

essential for developmental progression beyond the first zygotic
cell divisions15,16. The SCMC is polarized to the external
subcortex of the cleavage-stage embryo, such that cells of the
inner cell mass—destined to contribute to the embryo—contain
lower SCMC levels than external cells destined to form
extraembryonic structures15. While the role of NLRP5 within
the SCMC is not established, it is striking that variants predicted
to disrupt its ligand-binding and consequent oligomerization
appear to disrupt the epigenetic reprogramming and development
of the embryo.

The variants described here were located in conserved residues
within the DAPIN, NACHT and LRR domains, but were not
predicted to cause total loss of function, which may account for
their association with both viable and nonviable outcomes. Two
other NLRP genes (NLRP7 and NLRP2) and their binding partners
are also associated with a spectrum of reproductive wastage and
stochastic disturbance of genomic imprinting4,7,17–19, with known
mutations of NLRP7 being enriched within the NACHT and LRR
domains18,19. It remains possible that the incidence of NLRP5
mutation in our cohort is underestimated, because further variants
(including, for example, large rearrangements or copy number
changes, or noncoding regulatory variants) may remain to be
identified, which may contribute to the affectedness of some of the
families described here. Our findings do not exclude the possibility
that variants in other genes may contribute to the MLID seen in
the families described here. It is also possible that some MLID
cases may be caused by compound heterozygosity of variants in
NLRP5 and its functional partners. Further exome analysis of
patients and mothers is ongoing to address these questions. In
addition, functional analysis is required to determine how NLRP5
coding variants alter the interactions between NLRP5 and its
binding partners, and whether these reduce the developmental
competence of the oocyte, or compromise its intrinsic biology or
stability, or deplete the oocyte pool in affected females. Moreover,
given the existence of other rare but potentially deleterious
missense and nonsense variants within its coding sequence
(Supplementary Table 3), NLRP5 warrants investigation as a
genetic factor in female reproductive problems.

The imprinting disturbance in offspring of mothers with
NLRP5 variants comprised variable loss of DNA methylation at
both maternally and paternally imprinted germline imprints in
different individuals, suggesting that the maternal effect of the
mutation is exerted in the first cell divisions of the fertilized
zygote. It may be that the variants caused much broader epigenetic
disturbance in the concepti of affected mothers, but the natural
epigenetic resetting of development1 corrected most disturbances,
leaving only imprinting disturbances detectable postnatally.

The phenotypes of affected offspring were variable, with
growth and neurodevelopmental problems. While the majority
of probands had clinically recognizable imprinting disorders, two
of seven cases had clinical features not consistent with a diagnosis
of any imprinting disorder. Therefore, it is likely that in general,
such patients remain undiagnosed. Although patient numbers in
this study are too low to describe trends, the severity of clinical
outcome seemed to reflect both the severity of NLRP5 mutation
and the age of the mothers at the birth of their offspring, in that
four of five mothers had healthy offspring before the offspring
were affected by MLID. We observed that affected mothers
with NLRP5 variants had a median age of 34.1 years, as compared
with other MLID mothers (30.1 years) and the median
maternal age for all births in the general population 29.5 years
(http://www.ons.gov.uk/ons/rel/vsob1/birth-statistics--england-
and-wales--series-fm1-/no--29--2000/index.html). It is well
recognised that the progressive decline in female reproductive
fitness may reflect non-genetic factors such as the chronological
age of the mother, or the reproductive age of the oocyte. Dankert
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et al.20 recently reported that in vitro aged oocytes show a decline
in the abundance of transcripts including NLRP5, suggesting that
delay in fertilization may jeopardize oocyte fitness.

The affected offspring of mothers with NLRP5 variants
included a D-MZ twin pair. Some imprinting disorders are
associated with an elevated rate of twinning, almost invariably
monozygotic and discordant, and enriched for MLID, but the
causal relationship between imprinting disorders and twinning
has remained unclear21. Notably, among MLID patients without
NLRP5 involvement, 6 of 26 (23%) were D-MZ twins, far in
excess of the B3% in the general population. There is also a
recognized excess risk of imprinting disorders in children
conceived by ART though the absolute risk of imprinting
disorder in ART remains low22. None of the children affected
by MLID with NLRP5 involvement were conceived by ART,
though one sibling (family 4) was conceived by ART, which may
be indicative of reproductive difficulties. By comparison, 2 of 20
other children in the MLID cohort were conceived by ART,
against a population rate of B2% (http://www.hfea.gov.uk/docs/
HFEA_Fertility_Trends_and_Figures_2013.pdf). The relationship
between imprinting disorders, ART and age of parents is
complex. ART is often sought by parents with fertility
problems, and it may be that the risk of imprinting disorders is
associated less with ART per se than with the reduced fertility of
the parents or the increase in age following a delay in conception.
The small case numbers in this study and the potential for
ascertainment bias preclude definitive conclusions, but our
observations suggest that collection of detailed data on ART,
twinning, fertility history and parental ages in families affected by
MLID may reveal some novel associations.

The finding of NLRP5 mutations in five mothers of offspring
with MLID suggests links between maternal-effect genes,
maternal reproductive fitness, epigenetic and developmental
reprogramming of zygotes, and reproductive outcomes. We
suggest that NLRP5 mutations may have been overlooked in
the past as a cause of imprinting disorders or reproductive
problems because their effects encompass both, and might not be
captured by studies of either alone; an integrated investigation
of the relationship between NLRP5, imprinting disorders and
reproductive wastage is now warranted. Furthermore, maternal
effect genes in general may be underestimated as a cause of
developmental problems in children. Recent technological
advances in the epigenetic analysis of gametes and zygotes23,24

now make it possible to explore the impact of genetic mutations
and environmental insults on developmental and epigenetic
reprogramming in early development.

Methods
Ethics. All patients were consented into the research study ‘Imprinting disorders—
finding out why’ (IDFOW: Southampton and South West Hampshire Research
Ethics approval 07/H0502/85) through the UK Comprehensive Local Research
network (www.southampton.ac.uk/geneticimprinting/informationpatients/imprin-
tingfindingoutwhy.page, accessed on September 2013), with the exception of the
patient in family 4 and patients 17–23 who were consented into the research study
‘Disorders caused by imprinting defects’ funded by the Bundesministerium für
Bildung und Forschung (BMBF grant 01GM1513), and approved by the Ethical
committee of the University Hospital Aachen, Germany.

Because the consent framework of the IDFOW study does not encompass the
deposition of whole-exome sequence data in an open-access repository, whole-
exome sequence files are instead deposited in a restricted-access repository under
doi:10.5258/SOTON/378548. Data access are managed by the Wessex Imprinting
Governance Team, to which application can be made by contacting the
Corresponding Author, or the Study Administrator (via www.southampton.ac.uk/
geneticimprinting/informationpatients/imprintingfindingoutwhy.page).

Whole-exome sequencing. Whole-exome sequencing for samples from the
IDFOW cohort was performed on DNA derived from peripheral blood, and
sequenced on an Illumina HiSeq2000 sequencer at the Wellcome Trust Centre for
Human Genomics using the Agilent SureSelect v5 capture kit encompassing 51Mb

of genome sequence. Exome sequencing of the parents and proband of family 4 and
four additional SRS–MLID families was performed using the NimbleGen Human
SeqCap EZ v3.0 Kit and the Illumina HiSeq2000 system for sequencing according
to the manufacturers’ protocols. Paired-end exome sequence reads were aligned to
the hg19 human reference genome using Burrows–Wheeler Aligner (BWA-MEM v
0.7.5a) to produce binary sequence alignment format (BAM) files and Picard
(v1.95) was used to remove duplicate reads. Local indel realignment and base
quality recalibration were performed using the Genome Analysis Toolkit (GATK
v3.0–0) before the realigned and recalibrated BAM files were used to determine
single-nucleotide variants including SNPs and indel (insertion–deletion) alleles.
GATK was used to predict and genotype variants for each sample, raw variant calls
were outputted in variant call format file, and variant filtration was performed for
both SNPs and indels to remove low quality and potentially false-positive variants.
Variant data were annotated using Annovar (v 2013Aug23) and KggSeq (v 0.6).

Sanger sequencing. Sanger sequencing of NLRP5 was used to confirm exome
variants, establish their inheritance, fill gaps in exome coverage and screen a further
14 patients (four BWS–MLID, five SRS–MLID, three transient neonatal diabetes
mellitus–MLID and two idiopathic-MLID) and 19 mothers of individuals with
MLID.

M13 universal tagged primers were designed to 14 of the 15 exons of NLRP5
(see Supplementary Table 4). Exons were amplified using Q5 High-Fidelity DNA
Polymerase (New England BioLabs). Amplicons were then treated with ExoSAP to
degrade any remaining primers, before sequencing with M13 forward and reverse
primers using BigDye 1.1chemistry (Applied Biosytems). Sequencing reactions
were analysed on an ABI Prism 3130XL sequencer (Applied Biosystems).

Co-amplification of exons 5 and 6 was observed with both primer sets due to
their highly similar sequence and required the use of internal sequencing primers
with exon-specific terminal-30 bases (see Supplementary Table 4) to generate
exon-specific sequencing. Repetitive sequence at Exon 4 required the use of primers
(see Supplementary Table 4) without M13 universal tags and Phusion High-
Fidelity DNA Polymerase (New England BioLabs) to generate the sequencing
template. Exon 4 amplicons were sequenced as previously described using the
amplification primers.

In silico prediction of variant pathogenicity. The pathogenicity (SIFT, Polyphen2
and PROVEAN) scores of the variants identified was predicted using the online
tools Ensembl Variant Effect Predictor (http://www.ensembl.org/Homo_sapiens/
Tools/VEP), Polyphen-2 (http://genetics.bwh.harvard.edu/pph2/) and PROVEAN
v1.1.3 (http://provean.jcvi.org/index.php), applied with standard procedures and
settings and presented in Supplementary Table 2. These tools were also used to
predict the pathogenicity of NLRP5 variants in dbSNP138. Nonsense variants and
variants predicted to be pathogenic by one or more programmes are presented in
Supplementary Table 3.

Epigenetic and epigenomic analysis. For patients from the IDFOW cohort and
mothers of families 1–5, targeted methylation-specific PCR (MSP) analysis was
performed on bisulfite-converted DNA (Zymo Research, Orange, CA). MSP was
used to determine DNA methylation at 17 DMRs of imprinted genes25. For each
DMR, bisulfite treated DNA was competitively amplified using forward primers
derived from methylated or unmethylated genomic DNA, against a common
fluorescently labelled reverse primer (Supplementary Table 5) using HotStar DNA
polymerase (Qiagen, Hilden, Germany). Products amplified in a ratio reflecting
that of genomic source DNA were visualized by capillary electrophoresis on an ABI
3130 Genetic Analyzer (Applied Biosystems, Foster city, CA), and then peak height
ratiometry was calculated and normalized to control samples. NESP DNA
methylation was determined using the SALSA MLPA ME031 probemix, MRC-
Holland, according to the manufacturer’s instructions. DNA methylation analysis
in patients from the BMBF cohort used methylation-specific single-nucleotide
primer-extension (MS-SNuPE) of eight loci and methylation-specific multiplex
ligation-dependent probe amplification (MS-MLPA) analysis (SALSA MLPA
ME030 BWS/RSS probemix, MRC-Holland) of a further two loci. For
MS-SNuPE analysis a primer was designed to end directly in front of the C of each
CpG of interest. After bisulfite conversion (Zymo Research, Orange, CA) and
amplifying PCR, this primer is elongated by one base. The incorporated base
corresponds to the methylation status of the CpG. This information can be used to
calculate the degree of differential methylation at the CpG. For each sample,
bisulfate-treated DNA was amplified in a multiplex PCR using the QIAGEN
Multiplex PCR kit (Qiagen, Hilden, Germany) with the SNuPE-PCR primer mix
(Supplementary Table 6). Excess primers were degraded using ExoSAP (USB,
Cleveland, OH, USA) before the primer-elongation reaction with ABI Prism
SNaPshot Multiplex Ready Reaction Mix (Life Technologies, Darmstadt, Germany)
and either SNuPE-Primer-Mix 1 or 2 (Supplementary Table 6) according to the
manufacturer’s protocol. The final product was resolved on an ABI 3130 Genetic
Analyzer (Applied Biosystems, Foster city, CA) and analysed using GeneMapper
Software 4.0 (Life Technologies, Darmstadt, Germany). Peak areas were used to
calculate percentage of methylation. In each assay 3–4 normal controls were
analysed and used for normalization26.
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Genome-wide DNA methylation analysis was generated using the Illumina
Infinium HumanMethylation450 BeadChip (Illumina, Inc., CA, USA) and a single-
sample analysis pipeline27. Significant deviation of methylation from a group of 50
normal controls was defined as a P value (adjusted using false discovery rate)
o0.05 across a minimum of three consecutive CpGs within 2,000 nucleotides; the
additional requirement of M values between � 1 and þ 1 in normal controls was
applied to enrich differential methylation at loci consistent with genomic
imprinting. Regions associated with known imprinted genes (http://igc.otago.ac.nz/
home.html) or loci previously identified as disregulated in individuals with MLID28

are presented for probands from families 1, 2, 3 and 5 in Supplementary Data 2.

Copy number variation. For digital PCR, genomic DNAs were fragmented by
MseI digestion (New England Biolabs) for five normal controls and one sample
where a novel homozygous variant was identified in a region of homozygosity by
Sanger sequencing. Droplet digital PCR amplification of two regions of exon 7
generated a 91- and 90-bp amplicon, respectively, in 20-ml reactions containing
64-ng digested DNA, using 900 nM primers (NLRP5 ex7 CNV 1F and NLRP5 ex7
CNV 1R or NLRP5 ex7 CNV 2F and NLRP5 ex7 CNV 2R, respectively,
Supplementary Table 1), 200-nM probe (50FAM, 30BHQ1; NLRP5 ex7 CNV
1probe or NLRP5 ex7 CNV 2probe, Supplementary Table 1), 1� PrimePCR KRAS
wild-type for pG12D (human) mutation assay primer/probe mix (Bio-Rad
Laboratories Inc., Hercules, CA) and 1� droplet digital pcr supermix for Probes
(no dUTP; Bio-Rad Laboratories Inc.).

Droplets were generated using the QX200 Droplet Generator (Bio-Rad
Laboratories Inc.) and 70ml Droplet Generation Oil (Bio-Rad Laboratories Inc.).
Droplet PCR cycling conditions were 95 �C for 10min, then 40 cycles of 94 �C for
30 s, 55 �C for 60 s and final enzyme deactivation at 98 �C for 10min. Fluorescent
droplets containing amplified products were read using the QX200 Droplet Reader
(Bio-Rad Laboratories Inc.). Copy number variation of NLRP5 relative to the
wild-type KRAS reference was calculated by the formula (concentration of NLRP5/
concentration of KRAS)� copy number of KRAS reference (¼ 2).

Patients. In family 1, patient 1 (atypical SRS), was born at 32 weeks gestation with
a birth weight of 1,040 g (o0.4th centile). She had a cleft palate, a right unilateral
cleft lip and bilateral fifth finger clinodactyly. There were feeding difficulties for the
first 6 months of life requiring nasogastric tube feeds. By two years of age minimal
body asymmetry was documented (with the left side appearing smaller than the
right); her height and weight were on the 0.4th centile with a head circumference
on the 9th centile. A diagnosis of SRS was made and confirmed using routine NHS
testing for hypomethylation at H19. In childhood, she showed mild developmental
delay and behavioural difficulties including poor sleep and self harm. By 9 years of
age her height, weight and head circumference were all on the 25th centile
without treatment, and the asymmetry was less marked. There were ongoing
concerns regarding her behaviour and she required significant additional help in a
mainstream primary school, including a statement of educational need and, speech
and language therapy. Her mother reported that throughout her childhood, patient
1 showed episodic excess sweating, but there have been no documented episodes of
hypoglycaemia. Investigations including calcium, phosphate and parathyroid
hormone were normal.

Patient 2 in family 1 (BWS), the maternal half-brother of patient 1, was born at
36 weeks gestation with a birth weight of 3,425 g (between the 91st and 98th
centiles), and a head circumference of 33.7 cms (50th centile). During the
pregnancy, antenatal ultrasound scans identified a cystic appearance of the placenta
and by 30 weeks, macroglossia was diagnosed. Post-delivery maternal b-HCG
levels were normal. At birth macroglossia was confirmed and he was also reported
to have bilateral ear creases and a natal tooth. During the neonatal period there was
one documented episode of hypoglycaemia. By the age of three months, Patient 2
had developed an umbilical hernia. He was diagnosed with BWS and this was
confirmed on routine NHS testing to show a loss of methylation at ICR2. There
was no hemihypertrophy. At around 1 year of age a renal ultrasound scan revealed
discrepant size of the kidneys, but no evidence of a tumour.

There was no further family history of SRS, BWS or any other imprinting
disorder; however, the mother of these two children had suffered significant
pregnancy related morbidity. She had six pregnancy losses, with three unrelated
partners, and one medical termination of pregnancy for a presumed molar
pregnancy, associated with a developing fetus (interpreted as either a partial mole
or a twin pregnancy with one twin developing as a hydatidiform mole). Aside from
the pregnancy losses, there was no other medical history of note: she herself was
born with a normal birth weight to non-consanguineous parents. Her own mother
had suffered three miscarriages.

In family 2, patient 1, (BWS) was the third of four children, born when the
mother was 35 years of age. He was born at 32 weeks of gestation with a birth
weight of 1,700 g, following a diagnosis of preeclampsia in his mother. The placenta
was described as showing mesenchymal dysplasia. He had an uneventful neonatal
period, requiring tube feeding initially but not ventilation, and was discharged at 4
weeks of age. He was admitted following an episode of apnoea at 3 months, and at
that time was diagnosed with macroglossia, though surgical resection was not
performed. He was also noted to have an umbilical hernia, undescended testes and
hemihypertrophy. A diagnosis of BWS was made and confirmed on routine NHS
testing to show hypomethylation at ICR2. He had an episode of pneumonia at 5

months and was diagnosed with asthma. He had delayed development, walking at
18 months and was diagnosed with speech delay and subsequently dyslexia and
dyscalculia. He required an educational statement and is currently educated at a
special school. On examination at 8 years 5 months, his height was 126.5 cm
(25th centile), weight 28.9 kg (50th–75th centile) and occipital frontal
circumference (OFC) 54 cm (90th centile) and by 13 years his height was 161.7 cm
(75th centile) and weight 55 kg (90th centile). He had a naevus flammeus on his
forehead. He was noted to have asymmetry, with the right side of the face, tongue
and right leg being larger than the left (2-cm difference in foot length), and showed
a mild positional scoliosis.

Patient 2 in family 2 was the fourth of four children, born when mother was 39
years of age. Pregnancy was normal with a birth weight of 3,118 g at term. He fed
well, but made a rapid gain in weight. Obesity was diagnosed at 16 weeks, when he
weighed 9.22 kg (499.6th centile). At 11 months he weighed 14.2 kg and a
diagnosis of BWS was considered because of excessive weight gain and a forehead
naevus flammeus; but routine testing was negative. He walked at 17 months and
started to say single words at 2 years, but did not progress to speaking in sentences
until 4 years, and marked expressive speech delay was diagnosed. He required
special education, with an educational statement of need. At the age of 8 years and
6 months, he had markedly unusual behaviour, with extreme separation anxiety
such that he was able to attend school only on three mornings a week. He was
diagnosed with autism, with episodes of severe anger. He was constantly hungry,
but did report satiety after eating, and there was no history of stealing food. He
suffered from gastrointestinal reflux and severe constipation. His general health
was good. On examination aged 8 years and 6 months his OFC was 58 cm
(98–99.6th centile), his height at 134.8 cm was on the 75th centile, and his weight
was 54.4 kg well above the 99.6th centile. He had a round face with long, narrow
palpebral fissures, a short nose with anteverted nares, normal ears and tongue, no
clinical asymmetry. He had hyperextensible fingers but no evidence of shortening
of the metacarpals. He was prepubertal. The rest of the examination was normal.

There were two older siblings with normal development and growth (male and
female) born 3 years and 2 years before patient 1. The older male sibling had mild
anxiety in early childhood but is doing well at school with well above-average
educational attainment. Mother suffered one miscarriage before patient 1 and 3
miscarriages before patient 2.

The proband in family 3 was the son of young, healthy and unrelated parents.
He was born at 39 weeks gestation with a birth weight of 3,500 g (50th centile),
birth length of 53 cm (90–97th centile) and a head circumference of 36 cm
(50th–90th centile). At birth he was confirmed to have macroglossia, cheek and
tongue right-side hemihyperplasia, a naevus flammeus of the forehead and occipital
region. A diagnosis of BWS was made but no episodes of hypoglycaemia were
reported during the neonatal period. At around 2 years, diastasis recti was
observed, but surgery was not needed. At the age of two and a half years the child
had age-appropriate psychomotor development and abdominal scanning was
normal. He has one healthy elder brother, and no miscarriages were documented.

The proband in family 4 has previously been published as patient 3 (ref. 11).
The female proband presented neonatally and was a monozygotic twin; her sister is
healthy. After a pregnancy reported as normal, the twins were born at 31 weeks
of gestational by Caesarean section. The affected twin’s birth weight was 995 g
(� 1.88 s.d.), length 35 cm (� 1.74 s.d.) and head circumference 28 cm (� 0.45
s.d.). She was diagnosed with SRS because of growth restriction, relative
macrocephaly, facial gestalt (prominent forehead, triangular face, downturned
corners of the mouth, micrognathia), asymmetry and clinodactyly of the fifth digit.
During the first days of life, gastric tube feeding was required. Her twin sister
showed birth measurements within the normal range.

The family history was unremarkable. The German parents were not
consanguineous; the maternal age at birth was 30 years and paternal age was 33
years. The twins were the product of a normal conception, but their elder (healthy)
sibling was the product of assisted reproductive therapy and has normal growth
and psychomotor development.

The proband in family 5 has previously been reported12. The proband is the
third of four children, born to healthy Tamil parents with no reported
consanguinity; the mother was aged 34 and the father 42 years at her birth. After an
unremarkable pregnancy she was born at 42 weeks’ gestation with a birth weight
of 3,460 g. Her neonatal course was unremarkable; she fed well, though
macroglossia was noted. On examination aged 3 years 6 months her height was
97 cm (25–50th centile) and weight 17 kg (75–91st centile). She had persistent
tongue protrusion, mild facial dysmorphism, mild hypotonia, speech and language
difficulties, social communication problems and extreme shyness. Her unusual
clinical features prompted molecular genetic testing for both BWS and
Prader–Willi syndromes, but she was found to have mosaic imprinting disturbance
at multiple loci.

No details of health or reproductive issues are reported among other family
members, except for atrial septal defect and ventral septal defect in one sibling.
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