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RThe carbon cycle in salt pans is complex and poorly understood. Field-based data are needed to improve regional
estimates of C storage and land�atmosphere CO2 �uxes from dryland environments where pans are prevalent.
This paper provides a �rst estimate of C stores and CO2 ef�ux within the salt pan, grassland and woodland of
Ntwetwe Pan in the Makgadikgadi Basin, Botswana. C �uxes and stores associated with cyanobacteria-salt crusts
are also determined. Total C stores are approximately an order of magnitude greater than on neighbouring
Kalahari Sands at 675 ± 41, 760 ± 94 and 274 ± 15 tons ha�1 to 1 m depth in the woodland, grassland and
salt pan respectively. Most of the C is found as carbonate, with organic C comprising 4.6�10% of total C. CO2 ef�ux
increased with temperature and also increased for a few hours after �ooding of the pan surface. Crusts were a
small net contributor to CO2 ef�ux in the dry season but could be a net CO2 sink in the wet season. The biogeo-
chemistry of the sediment is likely to facilitate rapid conversion of organic C from aquatic organisms, biological
crusts and algal mats into inorganic carbonates. Although further work is required to improve estimates of the
spatial and temporal distribution of C, our data have demonstrated the substantial C store with the Makgadikgadi
environment and the important role of biological crusts in the C cycle.

© 2014 Elsevier B.V. All rights reserved.
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R1. Introduction

The amount, distribution and form of soil carbon (C) are of consider-
able importance for climate, agricultural productivity and ecosystem
functioning (Lal, 2009; Schmidt et al., 2011). Yet for many sub-
Saharan African environments, processes affecting soil C and land�at-
mosphere C �uxes remain poorly understood (Bombelli et al., 2009;
Bond-Lamberty and Thomson, 2010; Ciais et al., 2011). This is especially
true for African salt pans (also known as playas or sabkhas) and their
peripheral saline and alkaline habitats where there are very few, if
any, data on the form and amount of C in pan sediment or the atmo-
spheric �ux of C (Xie et al., 2009). In most natural terrestrial environ-
ments, the size of the soil C store is determined by the balance
between inputs from primary production and outputs from gases pro-
duced during the decomposition of organic matter, with additional
losses in groundwater and eroded material. The C store on salt pans is
also affected by these processes but their lack of vascular plant cover
and unique hydro-geochemistry means that C cycling has additional
complexity and few similarities to soil C in mesic environments
(Chairi et al., 2010; Day, 1993; Jellison et al., 1996; Mörner and Etiope,
2002).
8182
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l., Seasonal differences in soil
rg/10.1016/j.geoderma.2013.
Salt pans are nutrient-rich and productive systems. When in �ood a
variety of algae, cyanobacteria and crustaceans proliferate in conditions
of high nutrient concentrations, high temperatures and intense light
(McCulloch et al., 2008). Upon desiccation, both organic and inorganic
C from aquatic organisms are returned to the sediment (Fig. 1) with pri-
mary productivity continuing with algae and cyanobacteria in mats,
crusts and surface sediment (Lebogang et al., 2009) (Fig. 2). Organic C
inputs from biological crusts to soils are known to be regionally and
globally signi�cant (Elbert et al., 2012; Thomas, 2012), but there are
very few estimates of their contribution to the C store of salt pans
(Chairi et al., 2010 is a rare example).

Salt pan sediment typically contains high concentrations of inorgan-
ic C. This is commonly in the form of calcium and magnesium carbonate
and bicarbonate, derived from parent material (lithogenic), and from
dissolution and precipitation of in-situ carbonates (pedogenic). Pedo-
genic inorganic C is common where there is an abundance of Ca+ and
Mg+ ions and where carbonate can precipitate and accumulate
(White and Eckardt, 2006; Wright and Tucker, 1991). Conditions that
lead to carbonate accumulation in soils are varied, but simpli�ed chem-
ical reactions (Eq. (1)) for calcium carbonate are illustrative (see Bohn
et al., 2001):

Ca2þ þ H2O þ CO2�CaCO3 þ 2Hþ: ð1Þ
CO2 ef�ux and carbon storage in Ntwetwe Pan, Makgadikgadi Basin,
12.028
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Fig. 1. Simpli�ed schematic of the principal inputs and outputs of carbon on the salt pan. Currently there are too few data to quantify these stores and �uxes.
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An increase in partial pressure of CO2 can lead to dissociation of
CaCO3 (Eq. (2)), however in most soils, high Ca2+ concentration and
scarcity of water prevent this from occurring (Bohn et al., 2001).
HCO3

� can be formed as CO2 dissolves into pore waters, bringing Ca2+

and/or Mg2+ ions into solution, and initiating precipitation of carbonate
salts (Day, 1993).

CaCO3 þ CO2 þ H2O�Ca2þ þ 2HCO�
3 : ð2Þ
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Fig. 2. Crusts, algal mats and salt pan sediments. A) The underside of a salt crust, coloured by c
red-pink colouration of cyanobacteria. C) Surface patterns on a salt crust surface. D) Algal mat a
with cyanobacterial �laments (arrowed). F) Carbonate and salt granules from 0.75 to 1 m dep
reader is referred to the web version of this article.)

Please cite this article as: Thomas, A.D., et al., Seasonal differences in soil
Botswana, Geoderma (2014), http://dx.doi.org/10.1016/j.geoderma.2013.
O
O

FCO2 uptake can also occur due to CO2 absorption by alkaline soil pore
waters (Xie et al., 2009), forming carbonic acid and decreasing pH, and
is another potential route for long-term C storage (Eq. (3)):

CO2 þ H2O�H2CO3: ð3Þ

The amount of organic and inorganic C in salt pan sediment is also a
function of preservation, and organic C and CaCO3 concentrations are
E
D
 P

R

hlorophyll produced by autotrophic microorganisms. B) The underside of a salt crust with
fter rainfall in April 2011. E) Salt/carbonate aggregate in surface salt pan sediments bound
th on the salt pan. (For interpretation of the references to colour in this �gure legend, the

CO2 ef�ux and carbon storage in Ntwetwe Pan, Makgadikgadi Basin,
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often inversely correlated (Dean, 1999; Jellison et al., 1996). For exam-
ple, CO2 produced by decomposition of organic C and production of
organic acids in lake sediment from Minnesota lowered the pH of anoxic
pore waters enough to dissolve CaCO3 (Dean, 1999). Conversely, bio-
genic removal of CO2 and the accompanying rise in pH increased
CaCO3 production.

Anaerobic microbial processes such as sulphate reduction,
acetogenesis, and methanogenesis also play important roles in the cy-
cling and storage of C in salt pan systems (Fig. 1). Anaerobic conditions
will be generated in pan sediments when oxygen utilised in microbial
respiration cannot be replenished by photosynthesis and diffusion. This
state is likely to occur in surface sediments during �ood events when res-
piration rates are very high, and more permanently below the water
table where organic C is present. In the absence of oxygen, alternative
electron acceptors such as sulphate may be utilised to enable continued
microbial respiration of organic C and sulphate-reducing bacteria are
likely to be a major component of the C cycle. They are known to be
abundant in microbial mats and to be associated with lithi�cation and
the precipitation of carbonate (Baumgartner et al., 2006; Dupraz et al.,
2004). Acetogenic bacteria can also utilise CO2 as a terminal electron
acceptor and in doing so they generate acetate, a key metabolite of C in
anoxic sediments. This generates organic C which can serve as a sub-
strate for other anaerobic organisms including sulphate reducing bacte-
ria and methanogens (Heuer et al., 2009). Methanogenesis has been
observed in many hyper-saline environments and methane generation
is a potential route for C loss from salt pan systems, but little is known
about the methanogenic microbial communities of hyper-saline systems
(Smith et al., 2008).

Most of the pathways in Fig. 1 are not well parameterised and the
major inputs and outputs of C to salt pans remain poorly quanti�ed
(Briere, 2000; Emmerich, 2003). Alkaline soils and sediments are, howev-
er, a potentially signi�cant store of global C (e.g. Xie et al., 2009) and new
data are needed to improve estimates of C storage and land�atmosphere
C �uxes. Only then will there be improvements in regional C �ux models
and budgets across southern Africa and other dryland environments
where salt pans are prevalent.

The aim of this research was to provide the �rst �eld-based
estimate of the C store and CO2 ef�ux from the salt pan, saline grass-
land and palm woodland of Ntwetwe Pan in the Makgadikgadi Basin,
Botswana. The objectives of the �eldwork were to determine: i) how
much organic and inorganic C is contained in the soils and sedi-
ments; ii) CO2 ef�ux from the sediment and how this is affected by
temperature and moisture; and iii) the proportion of C and CO2

ef�uxes originating from salt-cyanobacteria crusts on the pan.
These data, together with the conceptual model, can then be used
as a basis for testing future hypotheses relating to size of and pro-
cesses affecting the C cycle in salt pans and their peripheral
environments.

2. Research design and methods

2.1. Study site

The Makgadikgadi Basin comprises a series of shallow ephemeral
lakes covering an area of approximately 37,000 km2 in northern
Botswana (Fig. 3). The contemporary pans of Ntwetwe, Sua, and the nu-
merous smaller pans that surround them are relics of paleolakes that
once covered much of northern Botswana (Burrough et al., 2009;
Ringrose et al., 2005). Average annual rainfall ranges from 359 mm in
Rakops to 545 mm in Maitengwe, along a southwest�northeast rainfall
gradient. Highest mean monthly rainfall is in January�February, and
July�August are the driest months, with average evapotranspiration
rates exceeding 2500 mm per year (Department of Environmental
Affairs and Centre for Applied Research, 2010).

Pan soils are solonchaks, with shallow leptosols, regosols and
arenosols in fringing areas (De Wit and Nachtergaele, 1990; Wang
Please cite this article as: Thomas, A.D., et al., Seasonal differences in soil
Botswana, Geoderma (2014), http://dx.doi.org/10.1016/j.geoderma.2013.
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et al., 2007) which can become calci�ed in areas immediately surround-
ing the pans (Mees and Van Ranst, 2011; Ringrose et al., 2005; White
and Eckardt, 2006). Pan sediment is clay-rich and mixed with salts de-
rived from shallow near-surface water, as well as deeper brines domi-
nated by NaCl and Na2CO3 (Department of Environmental Affairs and
Centre for Applied Research, 2010; Gould, 1986). The proximity of shal-
low ground water and the �ne-grained sediment means that heavy or
prolonged precipitation frequently leads to �ooding. The pan surface
is also covered with a brittle crust, comprised of salt and cyanobacteria
(Lebogang et al., 2009) (Fig. 2).

Salinity is the dominant factor in determining vegetation cover. On
the pan where salinity is highest, there is no vascular plant cover. Exten-
sive saline grasslands surround the pans where wind-blown sand forms
a rooting zone for Odyssea paucinervis (Stapf) and Sporobolus species
(Department of Environmental Affairs and Centre for Applied
Research, 2010). With increasing sand depth and decreasing salinity,
the grassland becomes more species rich with mixed Acacia spp. and
Colophospermum mopane (Benth.) stands (Bekker and De Wit, 1991).
Elevated areas above the grasslands are commonly covered in
Mokolowane palm trees (Hyphaene petersiana).

2.2. Field sampling

Field experiments were undertaken on the salt pan, saline grassland
and palm woodland (Fig. 3) on Ntwetwe Pan (20° 29� 35� S; 25° 07� 08�
E) in the dry season in July 2010 and the wet season in April 2011. The
effect of �ooding on CO2 ef�ux from the pan sediments was assessed
during a 20 mm rainfall event which inundated the salt pan in April.
In both seasons, samples of soils and sediment were taken at regular
5 cm depth intervals in triplicate 1 m deep pits, and used to determine
geochemical depth pro�les and to estimate C storage. Samples were
analysed for their total-C, organic C, carbonate, total N, pH and bulk den-
sity. Total-C and -N contents were determined using a Leco TruSpec® CN
element analyser and organic C using the Walkley�Black titration meth-
od (Rowell, 1994). Carbonate-C was determined gravimetrically by di-
gestion with HCl (Loeppert and Suarez, 1996). H+ ion activity was
measured using a pH metre within a 1:5 soil�water concentration after
shaking for 1 h. Cation (Na+, K+, NH3

+, Mg+, Ca2+) and anion (Cl�,
SO4

�, NO3
�, NO2

�, Br�, PO4
3�) concentrations in the soils and sediment

were determined in distilled water extracts (also shaken for 1 h) using
a Dionex ion chromatograph after the solutions were centrifuged and
passed through a 0.2 �m �lter.

Samples were collected from the upper 7 mm of the surface in order
to obtain measurements of C and N in the surface crust. The chlorophyll
a content of the samples was determined after grinding, heating
to 60 °C in the dark in HPLC-grade 100% methanol for 20 min, and
pressure �ltering. Concentrations in the extract were determined with
an Ocean Optics HR4000 spectrometre from the absorbance values
at 652 nm, 665.2 nm and 750 nm using the equations of Porra
(1990).

In-situ soil and sediment moisture was determined using a Delta-T
ML2× theta probe (Delta-T Devices, Cambridge, UK).

2.3. CO2 ef�ux

Soil/sediment CO2 ef�ux was determined using static respiration
chambers (based on a design described in Hoon et al., 2009 with modi-
�cations outlined in Thomas, 2012). Chambers and the methodology
were designed to minimise the likelihood of errors in ef�ux estimation
associated with the use of closed chambers (Davidson et al., 2002;
Pumpanen et al., 2004), particularly changes in the surface environ-
ment, pressure, and the soil�gas diffusion gradient (further details can
be found in Thomas et al., 2011). Three replicate chambers were located
approximately 4 m apart on each surface and inserted to a depth of
c. 35 mm. Chamber volume was 510 ml, enclosing 106 cm2 of soil.
Chamber lids with a borosilicate glass window were used at all sites to
CO2 ef�ux and carbon storage in Ntwetwe Pan, Makgadikgadi Basin,
12.028
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Fig. 3. Location of study site and cross-section of palm woodland, grassland and salt pan sites.

4 A.D. Thomas et al. / Geoderma xxx (2014) xxx–xxx
allow sunlight to reach the surface (expect on subsoils where opaque
lids were used). Chamber air temperature and relative humidity were
recorded at 10 minute intervals using USB502 loggers (Adept Science,
UK).

CO2 ef�ux in all chambers was determined every 2 h between 07:00
and 18:00 (local time) over 5 days in the dry season of July 2010 and
then in the wet season of April 2011. Prior to sampling, air inside the
chamber was mixed by gently pumping with the syringe. Within each
Please cite this article as: Thomas, A.D., et al., Seasonal differences in soil
Botswana, Geoderma (2014), http://dx.doi.org/10.1016/j.geoderma.2013.
measurement cycle, two 10 ml air samples were extracted from the
chambers using a gas syringe at 15 minute intervals and injected into
6 ml pre-evacuated glass vials. Samples were thus stored in a slightly
over-pressurised state to minimise the risk of vial contamination before
CO2 concentrations were determined using an Agilent gas chromato-
graph (GC 3000).

On the salt pan, two different methods were used to determine the
proportion of CO2 ef�ux originating from the crust and subsurface
CO2 ef�ux and carbon storage in Ntwetwe Pan, Makgadikgadi Basin,
12.028
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Table 1 t1:1
t1:2Total and organic C stores (tons ha�1 to 1 m depth) on woodland, grassland and salt pan.

t1:3Tons ha�1 to 1 m Palm woodland Grassland Salt pan

t1:4Total C 675 ± 41 760 ± 94 274 ± 15
t1:5Organic C 54.4 ± 0.4 34.7 ± 7.7 27.3 ± 5.8

t1:6Means (with standard error) derived from pit samples taken in July 2010 and April 2011
t1:7(n = 42).

5A.D. Thomas et al. / Geoderma xxx (2014) xxx–xxx
sediment. To isolate crust CO2 ef�ux from the underlying sediment,
triplicate samples of intact crusts were carefully removed from the
pan surface and placed on sterilised subsurface sediment within
shallow trays. A fourth tray of sterilised sand without a crust acted as
a control. Trays were used to prevent mixing of CO2 originating from
the subsurface with that from the crusts. The trays were dug into the
pan with the lip of the tray level with the surface. Respiration chambers
were placed over the trays and CO2 ef�ux determined 4 times a
day. Crust CO2 ef�ux was calculated from the difference between the
trays with crusts and the one without. Subsurface CO2 ef�ux was quan-
ti�ed using three chambers located in the centre of a broad trench
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where the uppermost 10 cm had been removed. Crust CO2 ef�ux was
then determined by the difference between the subsurface and surface
values.
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2.4. Analysis of CO2 ef�ux data

Equations described in Kutzbach et al. (2007) were used to deter-
mine mass C �ux in mg m�2 h�1 from the diffusion corrected changes
in CO2 concentration in the chambers. To ensure that soil CO2 ef�ux was
representative of the full range of temperature conditions, data from
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each chamber were integrated over the measurement period, and the
resulting cumulative change in C �ux used to determine mean ef�ux
rates. A vant' Hoff/Arrhenius equation (Eq. (4)) was used to derive esti-
mates of the temperature sensitivity of respired CO2, where Rs is the
total soil CO2 ef�ux at temperature T and RS0 the ef�ux at 0 °C. To ensure
unbiased �tting of the data, T0 was set at 0 °C for all treatments and Q10
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and R0 changed to generate the best �t within the measured tempera-
ture range. This was determined by optimisation of the correlation coef-
�cient and root mean squared error (RMSE).

Rs Tð Þ ¼ Rs0Q T�T0ð Þ=10
10 : ð4Þ

Univariate analysis of variance was undertaken (ANOVA) using SPSS
(IBM, v. 20) to test the signi�cance of any differences in mean soil CO2

ef�ux in each season and on each land cover type.

3. Results

3.1. Soil and sediment chemistry

Total and organic C concentrations were 4�7% and 0.2�1.1% w/w re-
spectively in the woodland and grassland soils and were similar in the
wet and dry seasons (Fig. 4). On the salt pan, total C concentrations
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were similar to the woodland and grassland in the upper 0.4 m but de-
clined rapidly with depth to b0.5% w/w at 0.75 m. Organic C concentra-
tions were also highest at the surface and declined with depth on the
salt pan (Fig. 4). Total C stores were highest in the woodland and
grassland sites and lowest on the salt pan (Table 1). Organic C formed
between 4.6% and 10% of the total C store, ranging from 27.3 ± 5.8 to
54.4 ± 0.4 tons ha�1.

Total N concentrations were �0.12% w/w at all sites in both the wet
and dry seasons (Fig. 4). On the woodland and grassland soils, total N
was concentrated at the surface, re�ecting organic inputs from vascular
plants. On the salt pan, the distribution of total N with sediment depth
was more uniform, except for the higher concentrations at the surface
in April 2011, and a slight declining with depth.

The surface of the woodland soils was slightly acidic but became in-
creasingly alkaline with depth, reaching a pH of close to 10 at 1 m
(Fig. 5). The pH of the grassland soils was also increasingly alkaline
with depth, whereas the salt pan sediment was uniformly highly
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alkaline (pH N 10.0) up to a depth of 0.5 m in July and up to a depth of
1.0 m in April (Fig. 5). Soils were slightly less alkaline on the grassland
soils in the wet season than in the dry season.

The salinity of the soil surface is low in the woodland and grassland
but increased with depth (Fig. 5). Unsurprisingly, salinity on the pan
was very high (note change of scale on the horizontal axis in Fig. 5).
Salinity was highest in the salt crust then declined rapidly to a depth
of c. 0.1 m before increasing. The moisture pro�le of the woodland
and grassland soils was very similar in both seasons (Fig. 5). Moisture
increased with depth to approximately 30% v/v at 1 m. On the salt
pan moisture content was higher and rapidly increased with depth to
c. 40% v/v.

Ca+ and Mg+ concentrations were negligible in all soils and only
Na+, K+, Cl� and SO4

� were found in measurable concentrations
(Fig. 6). On both grassland and woodland soils, Na+ and Cl� ions in-
creased with depth and proximity to the water table. On the salt pan,
concentrations of all ions were greater than on the other soils and
were strongly concentrated at the surface (Fig. 6).

3.2. CO2 ef�ux

Mean hourly soil CO2 ef�ux ranged from nearly 50 mg C m�2 h�1 in
the wet season on the woodland soils to 0.5 mg C m�2 h�1 on the salt
pan in the dry season. Soil CO2 ef�ux was signi�cantly higher from the
woodland and grassland soils compared to the salt pan (p = b 0.01 in
both cases) (Table 2), re�ecting the relative size of the organic C store
(Table 1). Fluxes were signi�cantly higher at all sites in the wet season
compared to the dry season (p = b 0.01 on woodland and grassland
soil and p = 0.04 on the salt pan) (Table 2). CO2 ef�ux increased at all
sites immediately after the 20 mm rainfall event that led to widespread
�ooding of the pan surface, but the increase was short-lived and there
were no signi�cant differences between mean daily ef�ux before and
after the �ooding event (p N 0.05). CO2 ef�ux at all sites increased
with chamber air temperature (Fig. 7). The Q10 of CO2 ef�ux was 1.45
(r2 0.54, RMSE 13.5), 1.30 (r2 0.45, RMSE 9.14), and 1.15 (r2 0.34,
RMSE 7.3) on the palm woodland, grassland and salt pan respectively.
The temperature sensitivity of CO2 (Q10) ef�ux was linearly positively
correlated (r2 = 0.94) to the organic C content of the soil.

3.3. CO2 ef�ux, C, N and chlorophyll a in surface crusts

Estimates of CO2 ef�ux originating from the salt pan crust suggest
that in the dry season they were a small net C source (Table 2). Wet
season estimates vary according to the method used to isolate crust
�uxes. Direct measurement estimates of crust ef�ux in April were
U
N
C
O

Table 2
Soil CO2 ef�ux from palm woodland, grassland and salt pan surfaces. Salt pan ef�ux is partition

Palm woodland Grassland Sal

Pan

July 2010 19.8 ± 1.3ac 17.1 ± 0.8bd 0.5
Dry season n = 43 n = 42 n =
April 2011 49.4 ± 2.1ac 25.7 ± 3.9bd 2.1
Wet season n = 54 n = 51 n =
April 2011 59.4 ± 12.8 31.5 ± 4.3 4.1
Post �ood n = 9 n = 9 n =

Statistically signi�cant differences:
Effects of land cover
aSoil CO2 ef�ux from the woodland was signi�cantly Npan in July (p = b0.01, f = 154, df = 1
bSoil CO2 ef�ux from the grassland was signi�cantly Npan in July (p = b0.01, f = 116, df = 1
Effects of season
cSoil CO2 ef�ux from the woodland soil was signi�cantly different in July and April (p = b 0.0
dSoil CO2 ef�ux from the grassland soil was signi�cantly different in July and April (p = 0.01,
eSoil CO2 ef�ux from the pan crust was signi�cantly different in July and April but on at the 95

1 CO2 ef�ux from surface crusts determined by direct measurement of crust only ef�ux.
2 CO2 ef�ux from surface crust determined by the difference between total and subsurface e
� The negative value implies a net uptake of CO2 to the crust.
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R0.4 ± 2.9 mg C m�2 h�1 whilst indirect measurement (derived from
the difference between total and sub-surface CO2 ef�ux) were �
4.8 mg C m�2 h�1 (Table 2). Irrespective of the measurement method
there were periods when net C uptake to the crust was occurring in the
wet season.

Chlorophyll a, total C and N in the upper 7 mm of the soils in the wet
and dry seasons are shown in Table 3. Wet season concentrations of all
parameters were higher on the salt pan than during the dry season
(Table 3). There were no seasonal differences in surface concentrations
of total N, total C and chlorophyll a on the grassland and woodland soils.

4. Discussion and conclusions

This study has provided the �rst indication of the considerable C
storage in soils and sediments on Ntwetwe Pan in the Makgadikgadi
Basin, Botswana. The mass of total and organic C contained in the
palm woodland, saline grasslands and salt pan sediments (Table 1) is
considerably more than the estimated 6�10 tons organic C ha�1 for
the surrounding Kalahari Sand soils and 39 tons C ha�1 for calcrete
pans (Thomas, 2012).

The major inputs, outputs and biogeochemical processes occurring
in the pan environment remain poorly understood. This study has not
assessed the temporal and spatial variabilities of C stores and �uxes,
ed into total, crust and subsurface ef�ux (mg C m�2 h�1). Means ± standard error.

t pan

Crust1 Crust2 Subsurface

9 ± 1.6ab 2.2 ± 1.7e 2.8 7.8 ± 0.5
41 n = 54 n = 54 n = 54

± 2.4ab 0.4 ± 2.9e �4.8� 6.0 ± 0.5
49 n = 54 n = 54 n = 54

± 6.3 No data No data No data
9

) and April (p = b0.01, f = 886, df = 1).
) and April (p = b0.01, f = 223, df = 1).

1, f = 79, df = 1).
f = 7.6, df = 1).
% con�dence level (p = 0.04, f = 4.3, df = 1).

f�ux.
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Table 3t3:1
t3:2 Mean (± std. error) of total N, total C and chlorophyll a content of surface soils and sedi-
t3:3 ments (upper 7 mm) in July 2010 and April 2011. n = 5.

t3:4 Total N (%) Total C (%) Chlorophyll a (�g g�1)

t3:5 July 2010
t3:6 Dry season
t3:7 Salt pan 0.02 ± 0.01 5.80 ± 0.07 0.22 ± 0.01
t3:8 Grassland 0.08 ± 0.01 5.66 ± 0.02 0.28 ± 0.01
t3:9 Palm woodland 0.10 ± 0.01 6.55 ± 0.07 0.55 ± 0.03
t3:10
t3:11 April 2011
t3:12 Wet season
t3:13 Salt pan 0.87 ± 0.01 17.64 ± 0.26 36.81 ± 11.03
t3:14 Grassland 0.07 ± 0.01 6.07 ± 0.18 1.40 ± 0.05
t3:15 Palm woodland 0.04 ± 0.01 5.74 ± 0.08 0.80 ± 0.08
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however these are likely to be high (see for example Chairi et al., 2010)
for this system. 90�95% of the C store is inorganic and in carbonate form,
but the extent to which this has been generated by organic C inputs
from cyanobacteria crusts, algal mats and aquatic detritus remains un-
known. Cyanobacteria are known to dominate the phytoplankton of in-
land salt waters of southern Africa, including the Makgadikgadi
(Seaman et al., 1991). It has been established that cyanobacteria active-
ly and passively in�uence carbonate cycling, facilitating the construc-
tion and breakdown of carbonates (see Schneider and le Campion-
Alsumard, 1999). Similarly, Ringrose et al. (1999) found evidence that
a diplococcus-type bacterium may have provided a focus for CaCO3

precipitation in sediments from the western Makgadikgadi.
Concentrations of total N, total C and chlorophyll a in the surface

sediment of the salt pan were greater in the wet season than in the
dry season (Table 3). This is likely to re�ect the seasonality of biological
productivity and C inputs. When �ooded, aquatic organisms �ourish
and will add a large pulse of organic C to the sediment upon desiccation.
The presence of water will also facilitate photosynthesis in surface algae
and cyanobacteria, continuing the input of C after �ood waters have
subsided.

The rapid decline in total C concentrations at 0.4 m on the salt pan
(Fig. 4) is unrelated to changes in pH and salinity (Fig. 5) but coincides
with reductions in the major anions and cations (Fig. 6). This may repre-
sent temporal change associated with an increase in the clastic compo-
nent of sediment. Chairi et al. (2010) also found that C concentrations
did not change with sediment depth in the Moknine sabkhas, eastern
Tunisia. There were, however, substantial differences in the composition
of the n-alkanes, re�ecting changes in the different types of C sources
(bacteria, cyanobacteria, algae and higher plants) and the extent of
bacterial degradation.

Similarities between the moisture and C content of the soils and sed-
iment in the wet and dry seasons (Figs. 4 and 5) suggest that differences
in CO2 ef�ux are due to temperature. The sensitivity of CO2 ef�ux to
temperature increases with the organic C content of the substrate.
Flooding of the pan in April 2011 led to a brief increase in CO2 ef�ux,
most likely due to displacement of CO2-enriched air in pore spaces.
The multiple biotic and abiotic processes that affect CO2 uptake and re-
lease make it challenging to interpret the ef�ux data. The physical sep-
aration of CO2 ef�ux measurement on the salt pan into total, subsurface
and crust ef�ux provides an indication of some of the complexity
(Table 2) but there are still discrepancies in the estimates of crust con-
tribution to ef�ux. In the dry season data suggest that crusts are a
small net contributor to total CO2 ef�ux from the pan but in the wet sea-
son there is evidence that they may be a net sink (Table 2). It is likely
that periods of net negative CO2 ef�ux are due to photosynthesis of
crust organisms (Fig. 7), exceeding CO2 generated from below the sur-
face. The very low CO2 ef�ux rates on the salt pan do not necessarily
imply a lack of microbial activity, because the CO2 generated by respira-
tion can be utilised in carbonate production and photosynthesis.
Please cite this article as: Thomas, A.D., et al., Seasonal differences in soil
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Interaction between inorganic and organic components of the C
cycle is likely to have a signi�cant effect on the C store of the salt pan en-
vironment. Respiration of C will generate high CO2 partial pressures in
the sediment pore spaces, which is likely to drive precipitation of car-
bonates when suitable cations are present (Eq. (1)). This process
would explain the negligible concentrations of Ca2+ and Mg2+ found
in the pan sediments, as plentiful CO2 will eventually exhaust cation
supply. Alkaline conditions also favour the production of carbonates
and inhibition of CO2 ef�ux, by consumption of H+ ions which will
drive the equilibrium of Eq. (1) towards the right (Bohn et al., 2001).

Whilst experiments were undertaken and samples collected from a
small area and only during relatively short periods in two seasons, our
�eld-based �ndings from a dry and a wet season provide important
new evidence demonstrating the potential importance of C sequestra-
tion in salt pan systems and alkaline soils in drylands. The study
shows the signi�cantly greater C storage in playa systems compared
to the neighbouring Kalahari sandveld soils. The future size and stability
of the C store on the Makgadikgadi will be dependent on numerous cli-
matological, hydrological, chemical and microbial factors and their sub-
tle interactions. The challenge for future research is to determine the
relative roles and signi�cance of the biochemical processes affecting
the C cycle, in order to identify the controls on CO2 ef�ux and C storage
in salt pan systems, and ultimately to establish whether the world's salt
pans are acting as a source or sink for CO2.
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