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1. Introduction 41 

The last decade has witnessed a technological revolution in geomatics that is 42 
transforming digital elevation modelling and geomorphological terrain analysis.  43 
Spurred on by developments in traditional ground surveying, such as the advent of 44 
differential GPS (e.g., Brasington et al., 2000) and reflectorless, robotic total stations 45 
(e.g. Keim et al., 1999; Fuller et al., 2003), the acquisition of topographic data has 46 
been transformed most significantly by a new generation of remote sensing 47 
technologies.  Airborne and more recently terrestrial laser scanning (e.g., Lohani and 48 
Mason, 2001; Jones et al., 2007; Notebaert et al., 2009; Rosser et al., 2005; 49 
Heritage and Hetherington, 2007; Hodge et al., 2009) and soft-copy photogrammetry 50 
(e.g., Lane et al., 2000; Westaway et al., 2000; Brasington et al., 2003) in particular, 51 
have revolutionized the quality of DEMs, extending their spatial extent, resolution, 52 
and accuracy.   53 

Developments in airborne and terrestrial remote sensing have also been mirrored by 54 
advances in hydrographic surveying, in particular through single and multi-beam 55 
sonar (e.g., Parsons et al., 2005; Sacchetti et al., 2012).  These acoustic soundings, 56 
capable of centimetric data spacing and 3-D point quality herald the potential to 57 
construct truly continuous, high fidelity terrain models of mixed terrestrial, freshwater 58 
and marine environments.  Finally, and closing the technological loop, the acquisition 59 
of remotely sensed data from a range of cheap, lightweight platforms on which to 60 
deploy imaging sensors, such as unmanned aerial vehicles or UAVs (e.g., Lejot et al. 61 
2007; Niethammer et al., 2012) and tethered kites and blimps (e.g., Marzolff et al., 62 
2003; Boike and Yoshikawa, 2003; Smith et al., 2009; Vericat et al., 2009,) is 63 
gradually becoming more commonplace.   64 

While the pace of development in geospatial technologies has been rapid, the 65 
acquisition of high quality terrain data nonetheless remains challenging in remote, 66 
high alpine environments.  In these hostile landscapes, steep and unconsolidated 67 
slopes and poor satellite coverage hinders the application of ground surveys by GPS 68 
or total station.  Alternative ground-based methods such as terrestrial laser scanning 69 
(TLS) are complicated by the high capital investment cost and the portability of large 70 
instruments and their power requirements in remote areas.  Airborne surveys, 71 
including LiDAR and photography are also of restricted use due to the high three-72 
dimensionality of mountainous landscapes, which results in significant line of sight 73 
losses and image foreshortening.  Moreover, deploying survey platforms, including 74 
helicopters and smaller scale UAVs at altitude is highly dependent on favourable 75 
weather conditions and may often be hampered by high wind speed and cloud cover.  76 
Potential solutions may ultimately lie in the availability of high resolution satellite 77 
data, but at present the spatial resolution of the majority of existing active and 78 
passive sensors is typically too coarse to create digital elevation models (DEMs) at 79 
resolutions comparable to ground-based techniques and suitable for detailed 80 
geomorphological applications 81 
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space targets and also ensures a reliable, well-distributed network of targets across 163 
the area of interest, enabling an assessment of any non-linear structural errors in the 164 
SfM reconstruction.  It is also useful to incorporate a degree of redundancy in the 165 
GCP network to counter the possibility of sparse data in the region of the targets.    166 

 167 

1.4.  Goals of this Article 168 

The aim of this paper is to provide an introduction to SfM and a detailed explanation 169 
of the methods employed; illustrating the steps required to generate a fully rendered 170 
3-D model, starting from the initial acquisition of the photographic data.  The focus 171 
here is to outline a practical workflow that could be applied by environmental 172 
scientists and practitioners interested in deploying SfM for geomorphological 173 
research.  To achieve this, we describe a workflow that uses the freely available 174 
application bundle SFMToolkit3 (Astre, 2010) to process the photographs and 175 
produce the initial point cloud. This package contains a number of open-source 176 
applications including, in order of execution, SiftGPU (Lowe, 1999, 2004), Bundler 177 
(Snavely et al., 2008), CMVS and PMVS2 (Furukawa and Ponce, 2007; Furukawa et 178 
al., 2010), all of which may be run independently if desired.  179 

Applications of SfM to a range of contrasting landscapes and landforms are 180 
described, including coastal cliffs, a moraine-dammed lake, and a smaller scale 181 
glacially-sculpted bedrock ridge.   Importantly, we also undertake a detailed 182 
assessment of the quality of a derived topographic model, in this case a c. 300 x 300 183 
m cliff section in Aberystwyth, Wales, through comparison with a high resolution 184 
terrain model derived from a precision terrestrial laser scan survey. 185 

 186 

2. Method 187 

 188 

2.1. Structure-from-Motion workflow 189 
 190 

2.1.1. Image acquisition and keypoint extraction 191 

The key problem that SfM addresses is the determination of the 3-D location of 192 
matching features in multiple photographs, taken from different angles.  The initial 193 
processing step in the solution of this problem is the identification of features in 194 
individual images which may be used for image correspondence. A popular solution 195 
to this, and used in the methods popularized by Snavely (2008) is the Scale Invariant 196 
Feature Transform (SIFT) object recognition system.  This is implemented in 197 
SFMToolkit3, through the incorporation of the SiftGPU algorithm (Lowe, 1999; 2004). 198 

 199 









resolutions required for the extraction of geometric data required as boundary 321 
condition data for hydrodynamic modelling. 322 

However, depending on the final application, data decimation may not be necessary 323 
and unwanted, although conventional GIS software is typically inappropriate to 324 
manage the visualization and storage of dense point data which may extend into 325 
tens or hundreds of millions of observations.  For the examples presented in this 326 
paper, decimation was applied in order to facilitate direct comparison of SfM and 327 
TLS data at resolutions sufficient to represent the first order topography at the scale 328 
of interest whilst enabling simple surface generation and visualisation on a desktop 329 
PC.  The final terrain products were derived by linearly resampling a TIN created by 330 
Delaunay triangulation in ArcGIS from decimated point cloud (following, Brasington 331 
et al., 2000).  This model may be visualized effectively by draping the orthophoto 332 
derived from the SfM processing over this surface.  The final result is a fully 333 
georeferenced, high-resolution, photo-realistic DEM. The complete workflow is 334 
shown in Fig. 3. 335 

 336 

3. Comparison with Terrestrial Laser Scanning 337 

 338 

3.1.  Data acquisition and processing 339 

An independent assessment of the accuracy of the SfM method was undertaken by 340 
direct comparison of raster DEMs of an exposed eroding cliff created using the SfM 341 
workflow described above and a comparable survey with TLS. The study site is 342 
Constitution Hill, a ~80 m high coastal cliff located immediately to the north of the 343 
town of Aberystwyth, Wales, UK (Fig. 4a). The lower section of the cliff is 344 
topographically complex, with land cover comprising grasses, shrubs, footpaths, 345 
near-vertical cliff faces and rockfall debris. The exposed bedrock comprises Silurian 346 
turbidites which were folded and faulted during the Caledonian orogeny. A cobble 347 
beach is located at its base. Labelled yellow targets, 1 x 1 m in size were deployed 348 
across the area of interest and used as GCPs. In total, 35 targets were distributed 349 
across the study site, in a quasi-uniform pattern allowing for topographic constraints  350 
(Fig. 4a).  351 

In addition, three tripod-mounted Leica Geosystems HDS targets were deployed to 352 
co-register the TLS data. Scans of the hillside were acquired from three positions 353 
using a Leica Geosystems ScanStation (blue triangles in Fig. 4a).  This was set to 354 
record data with a 2 cm spatial resolution at a distance of 15 m for the first scan and 355 
1 cm for the second and third.  Coincidently, a total of 889 photographs were taken 356 
of the hillside using a consumer-grade digital camera (Panasonic DMC-G10, 12 357 
megapixel resolution, with both automatic focusing and exposure enabled), from a 358 
range of locations and perspectives, for use as input to SfM processing.  Using three 359 
people, TLS and SfM data acquisition, including deployment of the SfM GCPs (and 360 









topography and effects of working at high altitude, whilst photograph acquisition was 481 
completed in a little over 4 hours.  482 

Feature matching and sparse bundle adjustment on three image batches (n = 457, 483 
560, and 609 images apiece) produced a total of 2.2 x 104 points, which, after dense 484 
reconstruction and manual editing was increased to 13.2 x 106. The SfM processing 485 
took approximately 22 hours per batch, though access to a number of identical 486 
machines allowed batches to be processed in tandem. The data were then geo-487 
registered and decimated gridded terrain products derived (producing a final grid of 488 
~3.5 x 105 cells). GPS errors and transformation residuals are shown in Table 2. The 489 
final, fully georeferenced DEM is displayed in Fig. 12a. 490 

Although the focus of photograph-acquisition was the terminal moraine and breach, 491 
background photographic information was sufficient to reconstruct the entire lake 492 
basin, including the 2 km long northern lateral moraine. As in the previous example, 493 
significant topographic detail (sub-metre scale) has been resolved.  The entire 494 
breach was successfully reconstructed, and notable morphological features captured 495 
by the model include the narrow central section and expansive exit, as well as two 496 
abandoned spillways. Highest point densities are concentrated along the inner faces 497 
of the breach (where densities in excess of >8,700 points per m2 may be found, 498 
compared to a site-wide median of 7.35 per m2; see also Fig. 8c), the eastern limit of 499 
the distal face of the northern moraine, as well as the southern face of the relict 500 
medial moraine which dissects the terminal moraine complex (Fig. 12b). A number of 501 
interpolation artefacts are present across the scene, but are largely confined towards 502 
the south and correspond to an extensive area of snow cover. 503 

 504 

4.2. Glacially-sculpted bedrock ridge, Cwm Cau  505 

Cwm Cau is a west-east orientated glacial cirque, located immediately to the south 506 
of Cadair Idris (893 m) in Snowdonia National Park, Wales, UK (see Fig. 4a for 507 
location). It is carved out of folded Ordovician volcanic rocks. A plethora of glacial 508 
landforms are found inside the cirque and down-valley, including morainic 509 
hummocks and ridges and glacially sculpted bedrock ridges (Sahlin and Glasser, 510 
2008). The latter were deemed suitable for a small-scale appraisal of the SfM 511 
technique. The bedrock ridge chosen for reconstruction is oriented west-east, is 80 512 
m in length, 19 m across at its widest point, and approximately 6 m and 8 m high 513 
along its southern and northern flanks, respectively (Fig. 13a). Twenty-two orange 514 
targets measuring 0.1 m in diameter were used as GCPs. Given the scale of the 515 
feature, a relative decrease in target size was deemed appropriate. Using dGPS, 516 
horizontal, vertical, and combined positional accuracies of 0.002 m, 0.002 m, and 517 
0.003 m were achieved. A total of 800 photographs were taken and used for scene 518 
reconstruction. As in the previous example, SfM processing was performed on three 519 
individual batches, taking an average of 12 hours each. Transformation residuals 520 







co-ordinate system, particular time and attention should be taken in the 601 
establishment of a GCP network to facilitate transformation to an absolute co-602 
ordinate system and the extraction of metric data. Taking the hypothesised 603 
effectiveness of an aerial approach into account, the terrestrial data collection 604 
method presented herein nevertheless represents an effective, financially viable 605 
alternative to traditional manual topographic surveying and photogrammetric 606 
techniques, particularly for practical application in remote or inaccessible regions.  607 
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Fig. 1. Instead of a single stereo pair, the SfM technique requires multiple, overlapping photographs 
as input to feature extraction and 3D reconstruction algorithms. 





 

Fig. 3. From photograph to point-cloud: the Structure-from-Motion workflow. 



 

 

 

 

 

 

 

  

 

Fig. 4. Constitution Hill, Aberystwyth. (a) Aerial perspective of the site. Area reconstructed using SfM 
and TLS is highlighted in red, GCP positions are shown in yellow, and TLS position are shown in blue. 
Inset map shows relative location of Constitution Hill (CH), and Cwm Cau (CC). Imagery 
georeferenced to UTM Zone 30N coordinate system. (b) 1 m2 tarpaulin squares were used as GCPs 
on Constitution Hill. Centroid positions were recorded using dGPS. (c) A GCP target, as it appears in a 
photograph, and; (d) as represented in the dense point cloud. 
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Fig. 5. Perspective views of Constitution Hill. (a) Panorama of the survey area (with GCPs clearly 
visible), and; reconstructed (b) sparse and (c) dense point clouds. See text for description of A and B in 
(a). 
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Fig. 7. Final interpolated DEMs of Constitution Hill using (a) TLS and (b) SfM data; (c) aerial photograph of the site; (d) point density map. A 
and B refer to associated labels in Fig. 5a. VF and DV refer to, respectively, vegetation-free and densely vegetated sub-regions analysed in 
Fig. 10. Data georeferenced to UTM Zone 30N coordinate system. 
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