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1. Summary
We have developed a robust, fully automated anti-parasitic drug-screening

method that selects compounds specifically targeting parasite enzymes and not

their host counterparts, thus allowing the early elimination of compounds with

potential side effects. Our yeast system permits multiple parasite targets to be

assayed in parallel owing to the strains’ expression of different fluorescent pro-

teins. A strain expressing the human target is included in the multiplexed

screen to exclude compounds that do not discriminate between host and parasite

enzymes. This form of assay has the advantages of using known targets and not

requiring the in vitro culture of parasites. We performed automated screens for

inhibitors of parasite dihydrofolate reductases, N-myristoyltransferases and

phosphoglycerate kinases, finding specific inhibitors of parasite targets. We

found that our ‘hits’ have significant structural similarities to compounds with

in vitro anti-parasitic activity, validating our screens and suggesting targets for

hits identified in parasite-based assays. Finally, we demonstrate a 60 per cent suc-

cess rate for our hit compounds in killing or severely inhibiting the growth of

Trypanosoma brucei, the causative agent of African sleeping sickness.
2. Introduction
Parasitic diseases such as malaria, schistosomiasis, leishmaniasis, sleeping sick-

ness and Chagas disease affect millions of people every year, leading to severe

morbidity and death. For example, malaria caused by parasites of the genus

Plasmodium kills over half a million people every year [1]. The disease is pri-

marily treated by chloroquine, artemisinin and antifolates (e.g. pyrimethamine).

However, Plasmodium spp. have become resistant to all of these drugs [2].

There is a pressing need for new treatments targeting these diseases, which

have often been neglected because they overwhelmingly or exclusively affect

the inhabitants of developing countries [3,4]. However, this is changing with
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the investment of funds from organizations such as the Gates

Foundation, Medicines for Malaria Venture, the Drugs for

Neglected Diseases initiative and the Institute for One

World Health [5,6], and companies such as Novartis [7],

GSK [8] and Pfizer. Various groups have developed

efficient high-throughput drug-screening methods based on

intact parasites [9–12]. These cell-based assays screen for

compounds that inhibit or kill pathogens cultured in vitro.

This provides assurance that the compound is active against

the pathogen, but provides no information about its mechan-

ism of action or general cytotoxicity. Moreover, for cell-based

assays, the pathogen must be culturable. This requirement is

particularly problematic when designing screens for anti-

parasitic compounds because it may be extremely difficult

or impossible to culture the parasite or one of its life cycle

stages outside of an animal host. For instance, Plasmodium
vivax (the major cause of malaria in South America and

southeast Asia) cannot be continuously maintained in vitro
[13], and techniques for cultivating liver stages of plasmodia

are still in their infancy, and do not generate sufficient

parasites for high-throughput automated screens [14].

Conversely, the biochemical strategy involves the selection

of a target protein whose activity is essential for the growth

or survival of the pathogen. This approach has the advantage

of selecting candidate compounds of known mechanism of

action; these can be rationally improved, particularly if the

target protein’s structure has been determined. The bio-

chemical strategy has the disadvantages that it provides

no information about drug uptake into cells, whether the

drug will kill the pathogen, or whether it will show general

cytotoxicity and thus be likely to injure the host [15].

To address these issues, we have designed an anti-

parasite assay based on genetically engineered yeast strains.

Our method enables automated, high-throughput, live-cell,

target-based screens to identify novel compounds that specifi-

cally inhibit the activity of proteins that have been suggested as

targets for anti-parasite drugs. This represents a complemen-

tary approach to parasite-based methods, and is able to

identify novel chemical scaffolds for further development as

anti-parasitic drugs.

The yeast Saccharomyces cerevisiae has been successfully used

as a host for the expression of heterologous proteins for over

three decades. Yeast cells expressing parasite proteins can pro-

vide a well-characterized and exploitable platform for screens

attempting to identify novel anti-parasitics. For example, dihy-

drofolate reductase (DHFR) is an anti-parasitic drug target that

is present in organisms ranging from bacteria to humans. It is

the target of pyrimethamine treatment of malaria and human

tumours, because rapidly growing cells require folate to produce

thymidine [16]. In yeast, dfr1 mutations lead to loss of DHFR

activity, and Sibley and co-workers [17–19] have achieved the

complementation of such mutations by overexpression of

human and Plasmodium DHFRs. They have also demonstrated

the suitability of the mutant strains for drug screens in plate

assays. Phosphoglycerate kinase (PGK) is a central enzyme in

glycolysis and gluconeogenesis, and is essential for the blood

stages of many parasites. However, the human enzyme is not

expressed in erythrocytes, and so PGK has been proposed as a

target for anti-parasitic drugs [20,21]. N-myristoyltransferase

(NMT) is an enzyme responsible for the modification of proteins

to enable their targeting to membranes [22–24]. NMTs are essen-

tial enzymes conserved from kinetoplastid parasites to humans

and are successful drug targets [23,24].
We have engineered S. cerevisiae strains where genes

encoding enzymes that are essential for yeast growth

(DHFR, NMT or PGK) were deleted and their function com-

plemented by the heterologous expression of the orthologous

enzymes from either human or parasites. Yeast cultures,

which can be grown rapidly and at low cost, are ideal for

use in automated screens. Yeast cells are suitable hosts for

the expression of enzymes essential for different life stages

of parasites, some of which cannot be propagated in vitro,

thus providing a platform for in vivo drug screens. Yeast

cells can be refractory to drug treatments owing to a protec-

tive cell wall and the presence of multiple drug export

pumps. The most pleiotropic drug export pump in S. cerevi-
siae is Pdr5p; therefore, we engineered all of our strains to

lack this drug export protein and consequently sensitized

them to a large range of chemical entities.

Here, we report the construction of a series of strains that

are genetically identical apart from genes encoding different

heterologous drug targets, and fluorescent proteins that

allow the growth of multiple strains to be followed in a

single culture. By these means, the drug sensitivity observed

in a particular strain can be directly linked to the in vivo inhi-

bition of the heterologous target. This approach also allows

the early identification of compounds that exhibit general

cytotoxicity, and identifies compounds that inhibit the

activity of the target proteins from the parasites, but have

no effect on the equivalent human protein.

In this paper, the drug targets DHFR, PGK and NMT

from a range of human parasites are used as examples to

demonstrate the utility of our assay. We have identified com-

pounds that inhibit each of the target enzymes expressed in

yeasts, but fail to inhibit the corresponding human enzyme.

We performed Tanimoto chemical similarity searches between

our Plasmodium hits and compounds with demonstrated anti-

plasmodial activity in vitro [25–27], indirectly validating our

anti-plasmodial hit compounds and suggesting intracellular

targets for the compounds identified in parasite-based screens.

Moreover, we have screened a number of our ‘hit’ compounds

against Trypanosoma brucei grown in culture and shown that 60

per cent either kill or severely inhibit the growth of this parasite.
3. Material and methods
3.1. Strain and plasmid constructs
Plasmids expressing heterologous targets were constructed by

cloning the coding regions for human or parasite DHFRs,

NMTs or PGKs downstream of the TetO2 of pCM188 (between

the BamHI and PstI sites), thus permitting regulatable

expression of the target (addition of 2–20 mg l21 of doxy-

cycline to the growth medium results in a progressively

lower expression from the promoter). The strain expressing

the drug-resistant P. vivax DHFR (PvRdhfr) was constructed

by mutating the following sites of the target enzyme: S58R,

S117N and I173L. The plasmid was transformed into a S. cere-
visiae yeast strain with a dfr1D/DFR1 pdr5D/PDR5 BY4743

background. The strain was sporulated and MATa haploids

were selected for drug screens (for description of all other

strains, see the electronic supplementary material, tables S1

and S2; see also [28]). Fluorescent plasmids were constructed

by replacing the coding region of yEmRFP from yEpGAP-

Cherry [29] with Venus, CFP or Sapphire [30], and replacing

http://rsob.royalsocietypublishing.org/
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the URA3 marker with HIS3 or LEU2 (for plasmid sequences

and maps, see the electronic supplementary material). Yeast

transformation and plasmid recovery were performed using

standard methods.

3.2. Growth conditions
Standard growth conditions comprised either YPD (2% pep-

tone, 1% yeast extract and 2% glucose) or YNB-glucose

(0.68% yeast nitrogen base without amino acids, 2%

ammonium sulphate and 2% glucose) with the relevant sup-

plements for all assays. Drug screens were performed with

yeast strains growing in YNB-glucose supplemented with

lysine. Yeast strains expressing heterologous DHFRs were

grown in the presence of 5 mg l21 of doxycycline.

3.3. Microscopy
Fluorescent cells were examined with an Olympus BX51

microscope using filters 41028 YGFP (Venus), 49001 ET CFP

(CFP), 31043 SAP/UV GFP (Sapphire) and 41043 HcRED1

(mCherry).

3.4. Competition experiments
Growth assays in YNB-glucose liquid media were performed

using a BMG Optima plate reader with the filters Venus (exci-

tation 500 nm/emission 540 nm), CFP (440 nm/490 nm),

Sapphire (405 nm/510 nm) and mCherry (580 nm/612 nm)

to allow a good discrimination between different fluoro-

phores. The initial gain was adjusted to 10 per cent and the

assays were run at 308C, with shaking, and measurements

taken every 15 min for a total of 30 h.

3.5. High-throughput screening, assay using laboratory
automation of mixed cultures

Pre-cultures were grown in selective medium (YNB-glucose

without leucine, histidine, uracil or methionine) to stationary

phase and 1 ml of each culture was inoculated into 100 ml of

the same medium. Pools of three strains, each labelled by the

expression of a different fluorescent protein, were incubated

at 308C, with shaking, for 4 h to ensure exponential growth.

Doxycycline (5 mg ml21) was then added to the culture to

reduce expression of the target enzyme. The culture was

attached to a Thermo Combi multidrop within the auto-

mation work cell. The culture was stirred throughout and

the room temperature maintained at 238C during assay

plate creation.

3.6. Automated assay plate creation
Fifty nanolitres of each chemical library compound (Maybridge

Hitfinder library of approximately 14 400 chemically diverse

compounds) were transferred to Matrix 384-well black clear-

bottom assay plates. Each well of the assay plates was then

inoculated with 50 ml of the pooled yeast culture (final com-

pound concentration of 10 mM). The assay plates then entered

a read-and-incubate cycle to determine the growth kinetics.

Fluorescence measurements were obtained using the high-

resolution BMG Polarstar plate reader, which allowed the

detection of fluorescence over a much larger dynamic range
than that detectable using BMG Optima, hence avoiding

problems owing to detector saturation. Full details of these

automated procedures will be published elsewhere [31].
3.7. High-throughput screening, quantification
of results

Fluorescence readings were stored in a relational database. To

allow comparison between the fluorescence readings taken

for different strains, we modelled the former as continuous

curves. In fitting a curve to the data, we followed a data-

oriented approach, whereby we approximate the curve

by cubic spline polynomials rather than assuming a particu-

lar curve function (e.g. exponential curve). From these growth

curves, biologically relevant parameters were extracted,

such as lagtime, mmax and maximum cell density (see the

electronic supplementary material; see also [32]).

Because yeast strains expressing parasite and human

targets bear different fluorophores, distinct growth curves

can be obtained for pooled strains within a microtitre well,

based on the fluorescence intensity at the given wavelength

versus time. As the heterologous yeast strains were labelled

with fluorescent proteins expressed from 2m plasmids

(which result in copy number variation between different

cells in the population), all assay plates contained a number

of control wells with the pool of yeast strains grown in the

absence of the test drugs, so that the fluorescence intensity

in each particular experiment could be internally controlled

for and normalized.

The strain minimum doubling time (inversely propor-

tional to the maximum growth rate) and biomass yield (net

change in fluorescence from the beginning to the end of the

assay) were calculated from each fitted growth curve. The

yield was divided by the minimum doubling time to give a

fitness score for the strain in the presence of the given drug.

Within each well, the fitness of the strains expressing either

parasite target (‘parasite’) was divided by the fitness score

of the strain expressing human target (‘human’) present in

the same well, to give a relative fitness indicating the speci-

ficity of the drug to the parasite target. Wells in which all

of the strains exhibited severely compromised growth were

removed from the analysis since they indicated either a tech-

nical problem with the well (e.g. autofluorescence of the

drug) or a drug toxic to yeast itself.

For each microtitre plate, average fitness scores were cal-

culated across the DMSO-only control wells. The s.d. of the

fitness scores of all of the non-control wells was calculated

for the plate. Where the ratio of the ‘parasite’-to-‘human’ fit-

ness scores was more than three plate standard deviations

smaller than the control-well value, the drug was deemed

to be a putative hit against the given parasite target. From

these candidates, if the ‘parasite’ fitness was less than 50

per cent of the ‘human’ fitness, the compound was added

to the list of hits.

Using these criteria, a list of hits was assembled for each of

the parasitic targets (see the electronic supplementary material,

spreadsheet S1). The statistical significance of the overlap

between the hit lists for different targets was calculated by

applying the normal approximation to the hypergeometric

distribution, given the number of hits for each parasite target,

and the total number of hits and compounds screened (see

the electronic supplementary material, spreadsheet S2).
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3.8. Trypanosoma brucei viability assay
We selected 36 Maybridge compounds classified as T. brucei
moderate/strong hits (growth of (strain expressing parasite

target)/(strain expressing the host target) � 0.4) for vali-

dation using intact bloodstream form (BSF) parasites (Lister

427). A total of 1 � 105 BSF parasites were seeded into

24-well polystyrene plates in 1 ml HMI-9 supplemented

with 10 per cent foetal bovine serum, 100 U ml21 penicillin,

100 U ml21 streptomycin and 10 mM of test compounds (or

10 mM blasticidin as a positive control). Cultures were

grown in 5 per cent CO2 at 378C for 48 h, when scoring

the effect of the hit compounds on parasite growth was

performed by counting parasite concentrations using a hae-

mocytometer. Titration assays were then performed on

compounds that killed all parasites at 10 mM, at the following

concentrations: 10 mM, 1 mM, 100 nM, 10 nM and 1 nM. Some

1 � 106 BSF parasites (Lister 427) were seeded into 10 ml HMI-

9 (supplemented as above) and 1 mM, 100 nM or 10 nM of com-

pound (as well as a no drug control) and were incubated in

25 cm2 non-adherent flasks with vented caps in 5 per cent

CO2 at 378C for 48 h. Proliferation was determined at 24 and

48 h by performing cell counts using a haemocytometer.

A similar assay was performed using T. brucei EATRO 1125

grown in HMI-9 supplemented with 10 per cent rabbit

serum, 100 U ml21 penicillin and 100 U ml21 streptomycin.

3.9. Validation of hits by structural similarity
Calls to Open Babel [33] calculated Tanimoto similarity

coefficients between pairs of SMILES strings, using the

‘Daylight-like’ hashed FP2 fingerprinting method, which were

then subtracted from 1 to give Tanimoto distance coefficients.

Pairwise comparison matrices of Tanimoto distance coefficients

were clustered hierarchically in R using the built-in ‘hclust’ func-

tion. Clustered pairwise comparison matrices were represented

as heatmaps using the ‘heatmap.plus’ function, which displays

colour-coded matrices alongside rows and columns.

Clustered pairwise comparison matrices were divided

into discrete clusters using R’s ‘cut’ function, which cuts den-

drograms at specific heights or into specified numbers of

clusters. For each cluster, the Small Molecule Subgraph

Detector Toolkit [34] passed the maximal common subgraph

(MCS) of each cluster to Open Babel, which wrote an .svg

image showing the structures of molecules in the cluster

with the MCS highlighted.

The three sets of Plasmodium falciparum whole-cell screen-

ing hits contained in the ChEMBL-NTD archive (https://

www.ebi.ac.uk/chemblntd, accessed 20/01/2012) were com-

bined, and duplicates deleted. Molecular structures, from

both the Maybridge Hitfinder library and the ChEMBL-NTD

archive, were retrieved and handled as SMILES (Simplified

molecular-input line-entry system) strings [35].
4. Results
4.1. The fluorescent-yeast competition assay
We have constructed a compound-screening system that can

be multiplexed. A number of yeast strains, each expressing a

target protein for a different human parasite, can be grown in

competition in a single well of a microtitre tray, together with
a strain expressing the equivalent human protein. This serves a

number of purposes. First, it increases the throughput of

the screen and allows compounds with the potential to treat

multiple diseases to be identified. Second, it enables the initial

selection of drug candidates to be made by identifying

compounds that significantly inhibit the growth of yeast cells

expressing the parasite target, without inhibiting the growth

of yeast expressing the equivalent human enzyme. Moreover,

any compound that exhibits general cytotoxicity is identified

by its inhibition of all the recombinant strains in the well,

irrespective of which target proteins they express. Finally, the

competition for nutrients between the different strains in

the well amplifies the growth rate differences between them.

Moreover, well-to-well variation in growth rate (an inherent

problem of microtitre-plate growth assays) is rendered

irrelevant because each well is internally controlled.

To these ends, we constructed a series of yeast multicopy

plasmids encoding a different fluorescent protein (mCherry,

CFP, Venus or Sapphire [29,30]) from the strong TDH3 pro-

moter and carrying different nutritional markers. Owing to

the high plasmid copy number and the TDH3 promoter,

expression of the fluorescent proteins was sufficient to

allow visualization of different colony colours by the naked

eye with or without UV illumination (figure 1a). The use of

plasmids to carry the genes for the fluorescent proteins

means that they can easily be swapped between strains

expressing the different target proteins in order to control

for any growth rate differences engendered by the expression

of the fluorescent proteins themselves. The data from internal

controls indicated that there were no problems with plasmid

stability or copy number. However, if such problems did

arise, integration of the genes for the fluorescent proteins

into a yeast chromosome would be an alternative.

In our pilot experiment, we engineered strains in which

the deletion of the essential yeast gene DFR1, which en-

codes DHFR, is complemented by the overexpression of

DHFR coding sequences (cds) from Homo sapiens (HsDHFR),

P. falciparum (PfDHFR), pyrimethamine-resistant P. falciparum
(PfRdhfr) and Schistosoma mansoni (SmDHFR) [28]. These cds

were each placed under the control of the TetO2 promoter

[36] such that they are downregulatable by the addition of

doxycycline to the culture medium. Each of these strains

was tagged with a different fluorescent protein (mCherry,

Sapphire, Venus and CFP, respectively) [29,30], enabling

them to be distinguished in a fluorescence assay for growth

(figure 1b). It should be noted that, in these pilot experiments,

fluorescence measurements were obtained using a BMG

Optima plate reader, which has a limited dynamic range.

For the high-throughput screens, we used a high-resolution

plate reader (BMG Polarstar); this has a much larger dynamic

range and avoids problems owing to detector saturation.

The sensitivity to the anti-malarial drug pyrimethamine of

strains expressing the wild-type P. falciparum DHFR and

Sapphire fluorescent protein was verified (figure 1c).

To evaluate the performance of the fluorescent-yeast com-

petition assay in a format suitable for high-throughput

screens, we tested the pyrimethamine sensitivity of pools of

three or four strains, each expressing a different fluorescent

protein. This demonstrated that effective discrimination

between the growth characteristics of the fluorescently labelled

strains growing in competition had been achieved (figure 2).

In addition, we determined whether the sensitivity of the

assay could be increased by reducing the expression of

http://www.ebi.ac.uk/chemblntd
http://rsob.royalsocietypublishing.org/
http://rsob.royalsocietypublishing.org/


UVBF

Venus

(a)

(b)

(c)

Sapphire

mCherry CFP

drug Bdrug Acontrol

PfRdhfr SmDHFR

PfDHFRHsDHFR

PfRdhfr SmDHFR

SmDHFR

PfDHFR

HsDHFR

drug C

no drug pyrimethamine

yHsDHFR + yEpmCherry

yPfDHFR + yEpSapphire

yPfRdhfr + yEpVenus

ySmDHFR + yEpCFP

SmDHFR

HfDHFR
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DHFR (SmDHFR), human DHFR (HsDHFR) or P. falciparum DHFR (PfDHFR) growing in the presence of candidate anti-parasitic drugs. (c) Pictures of fluorescently labelled yeast
strains (expressing the indicated heterologous DHFRs) grown in competition in the presence or absence of the anti-malarial pyrimethamine.
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the cds specifying the drug target by addition of 5 mg ml21 of

the TetO2 repressor, doxycycline. It was found that this treat-

ment increased the pyrimethamine sensitivity of the

yEpSapphire_ HIS/yPfDHFR strain by at least 50-fold (figure

2), which agrees with our previous results for plate assays [28].

4.2. High-throughput screening of a compound library
using laboratory automation

Using laboratory automation [37] we screened pools of three

strains (two expressing parasite targets and one expressing

the human orthologue) labelled with mCherry, Venus or

Sapphire. The screens were performed in the presence of

5 mg ml21 doxycycline and a library compound concentration

of 10 mM (chemically diverse Maybridge Hitfinder library).
Following data acquisition for each of the fluorophores,

growth curves were generated (examples of growth curves

derived from fluorescence measurements from three wells

of one representative screen can be seen in figure 3) and

smoothed, and growth scores (minimum doubling time and

yield) were ascribed to each of the strains. Comparisons of

the growth scores for each compound–strain combination

allowed us to identify auto-fluorescent compounds or com-

pounds that target the fluorescent marker proteins and not

the parasite target. Problem wells, as well as compounds

that exhibit general cytotoxicity, were also recognized.

Finally, compounds that were active against the parasite

target, but had no significant effect on yeast expressing the

equivalent human protein, were designated as ‘hits’ (see the

electronic supplementary material, spreadsheet S1).

http://rsob.royalsocietypublishing.org/
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For different screens against the same parasitic target,

the overlap between the hits defined in this way is highly

significant ( p� 10214), demonstrating the reproducibility of
our screening method. In addition, instances of significant

overlap between the hits for the same molecular target in

different parasites reflect the relatedness of the two species

http://rsob.royalsocietypublishing.org/
http://rsob.royalsocietypublishing.org/
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parasite target by the connecting compound).
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(see the electronic supplementary material, spreadsheet S2).

This reaffirms that our hit compounds are in fact specific for

some feature of the parasite target, conserved only between

closely related species. Plasmodium vivax and P. falciparum,

and Trypanosoma cruzi and T. brucei DHFRs share multiple

hits, as do WT and drug-resistant P. vivax and P. falciparum.
These latter compounds could represent promising leads in

addressing the drug-resistance problem.

4.3. Validation of confirmed hit compounds by
demonstrating their action against
Trypanosoma brucei in culture

We selected 36 hits against yeast strains encoding T. brucei,
T. cruzi or Leishmania major targets for validation using
intact T. brucei parasites. 18 of the tested compounds (50%)

were able to kill T. brucei Lister 427 bloodstream form para-

sites at 10 mM (after 48 h) and five additional compounds

were responsible for a severely reduced parasite yield

(figure 4 and table 1). The drugs capable of killing the

parasite at 10 mM were tested in titration experiments to

determine the minimum concentration necessary to kill

T. brucei Lister 427 parasites. All of the 10 mM hits were con-

firmed and seven of the compounds showed some effect at

1 mM, four were effective at 100 nM and two were effective

at 10 nM (table 1).

To better quantify our anti-trypanosomal compounds, we

followed the growth of T. brucei Lister 427 (a monomorphic

laboratory isolate) and EATRO 1125 (a pleomorphic isolate

with limited passage history) in the presence of 1 mM,

100 nM or 10 nM of 6 or 4 (respectively) different hit

http://rsob.royalsocietypublishing.org/
http://rsob.royalsocietypublishing.org/
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compounds. We observed that compounds ID_4584

(1-methyl-2-[3-(1-methyl-1,2-dihydroquinolin-2-yliden)prop-

1-enyl]quinolinium iodide) and ID_14129 (2,4-dichloro-1-(2-

nitrovinyl)benzene) could kill virtually all parasites after

48 h at concentrations as low as 10 nM (table 1).

4.4. Chemoinformatic validation of hit compounds
We compared drug hits against different parasite targets (ident-

ified by screening the Maybridge Hitfinder library using our

fluorescence assay) with each other to identify structural fea-

tures associated with activity against a particular target. First,

molecular structures were represented as ‘fingerprints’ [38], bit-

strings encoding the structural features present in a molecule

and then the dissimilarities between pairs of fingerprints were

quantified as Tanimoto distance coefficients (TDC). Possible

TDC values range continuously from 0 (indicating identical fin-

gerprints) to 1 (indicating completely dissimilar fingerprints).

We constructed a pairwise Tanimoto distance matrix for our

‘hits’ using the Open Babel FP2 fingerprint.

We performed hierarchical clustering on this matrix to gen-

erate a ‘heatmap’ of the pairwise similarities between our hits

(see the electronic supplementary material, figure S1), with

hits for all parasites and targets on each axis. This showed sev-

eral clusters of similar structures. Additionally, there appeared

to be a correlation between these clusters and activity against

particular targets. For example, five compounds contained in

a tight cluster all showed activity against PfRdhfr exclusively

(see the electronic supplementary material, figure S1).

The dataset dendrogram was then ‘cut’ at different levels,

and the ‘MCS’ [39], or largest structural feature shared by

all members of a subset, was calculated for each cluster.

The size and complexity of this feature, as well as the sizes

and number of constituent compounds, provide a qualitative

insight as to the quality of clustering, as well as the significant

structural features.

At a cut level of 0.65 we obtained clusters that showed

clear distinguishing MCSs, such as for a cluster of hits show-

ing specificity against the PfDHFR and PfRdhfr targets (see

the electronic supplementary material, figure S2). The MCS

may represent the defining feature of a cluster, but there is

more information that can be obtained. For example, the clus-

ter of compounds displaying specificity for PfRdhfr alone

(see the electronic supplementary material, figure S2) has

an oxime ester as its MCS. From inspection of the structures,

it is apparent that subdivisions of the cluster would have

more complex common features. These are therefore features

that might work to increase the activity or specificity of a

compound, in tandem with the MCS.

Encouraged by the correlation between the structural

similarities of the hit compounds and their specific activity

against the parasite targets, we performed a similar TDC

analysis on the Plasmodium hits (P. falciparum: DHFR and

drug-resistant DHFR; P. vivax: DHFR and drug-resistant

DHFR, NMT and PGK) against the library of anti-plasmodial

compounds identified by GlaxoSmithKline, Novartis and

St Jude Children’s Hospital (www.ebi.ac.uk/chemblntd)

using screens against cultures of P. falciparum. We found

that 54 per cent of the compounds that our screen identified

as differentially active against P. falciparum had distance coef-

ficients of 0.5 or lower to at least one of the anti-plasmodial

compounds; and 29 per cent of the Plasmodium hits had

distance coefficients of 0.4 or lower (see figure 5a and

http://www.ebi.ac.uk/chemblntd
http://rsob.royalsocietypublishing.org/
http://rsob.royalsocietypublishing.org/
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electronic supplementary material, spreadsheet S3). We then

arranged our anti-plasmodial hits based on their similarity

and plotted these compounds in a similarity heatmap against
the Chemblntd compounds that had a TDC of 0.4 or lower to

our hits. In this manner, we could identify structural groups

with demonstrated in vitro anti-plasmodial activity, as well as

http://www.ebi.ac.uk/chemblntd
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suggest the intracellular targets for a few of the Chemblntd

compounds (see figure 5b and electronic supplementary

material, figure S3).

Our screens identified some compounds that were pleio-

tropic in their anti-parasitic target effects. For instance,

ID_3259 (N2-[3-(trifluoromethyl)phenyl]-5-nitro-2-furamide)

was effective against NMT, PGK and DHFR targets from

different parasite species (see figures 4 and 5, and electronic

supplementary material, spreadsheet S1). It is possible that

such ubiquitous activity represents some experimental

artefact. However, this concern was mitigated by the identifi-

cation of a large number of Chemblntd compounds with

TDC scores less than 0.5 to ID_3259 (see electronic sup-

plementary material, figure S5 and spreadsheet S3). Our

study may thus have defined a novel chemical scaffold on

which to base broad-spectrum anti-parasitic drugs.
 0158
5. Discussion
We have developed a fully automated drug-screening

method based on engineering yeast to express parasite drug

targets or their human counterparts. The assay exploits the

fluorescent labelling of yeast cells to allow the growth of

three to four different strains in competition in the presence

of different library compounds. This approach provides

high sensitivity (owing to competition between strains), mini-

mizes plate-position effects and provides an internal control

for general cytoxicity. This approach is fast, cheap and

more flexible than drug screens against parasites in culture.

In this paper, we have reported the basis of our

fluorescent-yeast system and the results of a primary screen

carried out by using the Maybridge hitfinder library of

compounds. We chose to demonstrate the utility of using

the system to screen for drug candidates related to neglected

tropical diseases (NTDs) for two main reasons: their medical

and societal importance, and their tractability to drug discov-

ery. NTDs including schistosomiasis (caused by Schistosoma
spp.), leishmaniasis (Leishmania spp.), sleeping sickness

(T. brucei) and Chagas disease (T. cruzi) kill over half a million

people every year, a similar burden of disease to malaria

(Plasmodium spp.) [40]. These diseases affect the poorest

populations in Africa, Asia and Latin America. Conservative

estimates indicate an annual loss of 57 million disability-

adjusted life years owing to NTDs [40]. Collaborations between

not-for-profit organizations and for-profit companies are devel-

oping new drug-screening methods and identifying promising

new anti-parasitic compounds [41–44]. While these recent

advances are encouraging, the screens are generally limited to

a specific developmental stage of the target parasite.

A great strength of the system described in this work is that

it enables screens against targets from parasites at any of their

life-cycle stages, even if some or all of these are unculturable.

Thus, it combines most of the advantages of cell-based and

biochemical screens. Moreover, we have demonstrated its abil-

ity to identify compounds that can kill the target parasite by

testing a subset of our anti-kinetoplastid compounds in vitro
against T. brucei (which causes African sleeping sickness in

humans, and nagana in cattle) and observed that over 60 per

cent of our hits can successfully kill or severely inhibit

growth of the parasites (figure 4 and table 1). Having per-

formed T. brucei in vitro drug assays for 36 very diverse

compounds, with the aid of hierarchical clustering of our
hits (see the electronic supplementary material, figure S1),

we are now in a position to prioritize further compounds for

validation in parasites.

Some compounds that were highly active against T. cruzi
DHFR (e.g. ID_3951 (O1-[(5-nitro-2-furyl)carbonyl]-4-[2-nitro-

4-(trifluoromethyl)phenoxy]benzene-1-carbohydroximamide)

and ID_12803 (4-(tert-butyl)phenyl 5-nitrothiophene-2-car-

boxylate)) in the fluorescent-yeast system, but not selected

as ‘hits’ against T. brucei targets (probably due to our very

stringent selection threshold), nevertheless showed activity

against T. brucei in our in vitro assay (figure 4 and table 1).

This suggests that these compounds have the potential to

be used against multiple kinetoplastids. We also noticed

that compounds active against the Trypanosoma gPGK

(AAA32121.1) isoform screened in our system were poorly

validated in in vitro parasite-based assays, suggesting that

this enzyme might not be important for this particular parasite

life-cycle stage. However, this isozyme might still be essential

for a different stage of the parasite’s life cycle. Therefore, the

potential of our TbPGK hits as novel anti-parasitic agents

should not be dismissed before validation experiments using

alternative parasite life forms have been carried out.

Unlike the T. brucei PGK drug hits, the P. vivax PGK hits

had an excellent in silico validation rate, with all of the

PvPGK-only hits showing a TDC of 0.5 or less to compounds

validated in P. falciparum in vitro screens (see figure 5 and

electronic supplementary material, figure S3). This is not sur-

prising as Plasmodium genomes, like that of yeast, encode

only one PGK isoform. Hence, we provided good evidence

supporting Plasmodium PGK as a promising drug target,

and suggested a number of Chemblntd compounds for

target-based validation in the fluorescent-yeast system, as

well as in biochemical assays using recombinant P. falciparum
and P. vivax PGKs.

We have demonstrated the success of the fluorescent-

yeast method in identifying compounds that have high

specific activity against a range of drug targets from different

parasites (see the electronic supplementary material, spread-

sheet S1). In all cases, the system provided assurance that

the compound did not inhibit the biological activity of the

corresponding human enzyme. The compounds identified

as active against targets from parasites (in particular, against

those from P. vivax, for which we obtained the largest

number of hits) have great potential for use as scaffolds for

further chemical syntheses.

The approach described in this work is flexible enough to

be used in screens for drugs against many other parasites or

bacterial pathogens, or to screen for compounds specific to par-

ticular isoforms of human proteins [45]. We have demonstrated

that this approach can work synergistically with current para-

site-based high-throughput screening methods. It can identify

chemical scaffolds for further development by the pharma-

ceutical industry [42], and also suggest the mechanism of

action of compounds identified in pathogen-based screens.

We believe that such synthetic biology screens based on classic

model organisms could provide a powerful new weapon in the

armoury of drug discovery and development.
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