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Summary 

This thesis describes the use of machine learning (ML) techniques applied to 

data gathered from GPS receivers attached to pasture-based dairy cows for the purpose 

of automatic behaviour identification. Automatically identifying the behaviour of cattle 

will allow livestock practitioners to make more informed decisions on their 

management. Furthermore, daily behaviour data can be utilised for earlier disease 

diagnosis. For example, if the feeding duration of a cow is below its expected target 

then managers can intervene. Individual animal data were previously unattainable, with 

cattle usually managed on a herd basis. This thesis begins with an introduction that 

summarises the ongoing research in the field of precision livestock farming (PLF) and 

how farmers are implementing some PLF systems for the management of livestock. 

The main PLF systems discussed are those that incorporate on-animal sensors for the 

detection and classification of key behaviours associated with production and health. 

The main body of the thesis is divided into three experimental chapters. Chapter 1 

(published in the Journal of Dairy Science) describes the development of a behavioural 

model of pasture-based Holstein dairy cows using data collected from GPS receivers 

and processed using ML techniques. Chapter 2 (published in Computers and 

Electronics in Agriculture) discusses a further modification to the behavioural model 

which improves its ability to categorise behaviours. Finally, Chapter 3 describes the use 

of a data partitioning technique often used for timeseries analysis as an alternative 

method for the development of behaviour prediction models of dairy cows. Chapter 3 

was published in the journal Biosystems Engineering. The thesis concludes with a 

discussion of each chapter in light of the wider research and highlights some necessary 

areas for further work.     
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1. Precision livestock farming  

1.1 A developing livestock industry 

Livestock production systems now incorporate a huge level of diverse expertise 

at all levels of the supply chain. Such has been the rapid development in data capture 

technology, the livestock industry is developing and augmenting systems that can make 

efficient use of data for enhanced productivity from fewer resources (Kamilaris et al., 

2017). For example, pig producers will soon be able to automatically estimate the 

weight of their animals frequently during the growing phase using image analysis, 

reducing the need for handling and therefore reducing stress (Kashiha et al., 2014). 

Great progress has been made in many aspects of livestock production by bringing 

together a number of professional roles including animal practitioners, data analysts, 

software and hardware engineers, experts in animal behaviour, disease transmission and 

experts in climate modelling to name a few. Collectively, these roles underpin the 

concept of precision livestock farming (PLF) which encapsulates the ever-increasing 

use of data in the livestock industry to assist in managing the health, welfare and 

performance of animals.  

There has been a rapid increase in the number of scientific publications in PLF. 

A broad literature search using the Web of Science (Thomson Reuters, 2019) database 

with keywords “precision livestock farming” found 234 publications produced since 

2000; 170 of which (73%) were published from 2013 ( 
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Figure 1). The uptake of PLF on farms is gradual however and tends to vary 

between systems (Wathes et al., 2008; Werkheiser, 2018). Farmers are likely to be 

motivated by a number of factors when considering a PLF system such as the cost of 

any intervention (Russell and Bewley, 2013), the longevity of the technology (Van De 

Gucht et al., 2018), ease of use (Sharma and Kaushik, 2019) and the financial benefits 

(Rutten et al., 2013). The effect of farmer age on the uptake of PLF technologies on 

cattle farms tends to vary depending on the technology (Corner-Thomas et al., 2015; 

Lima et al., 2018; Abeni et al., 2019). However, farms with higher cow-to-staff ratios 

seem to adopt more technologies than farms with fewer cows per staff member (Abeni 

et al., 2019).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Trend of published research in PLF between 2000-2018 using keywords 

“precision livestock farming.” Chart shows a total search-find of 234 publications 

produced since 2000 as indexed by Web of Science (Thomson Reuters, 2019). 

 

Contact time between operators and their animals is likely to be highly 

influenced by system type and species farmed. For example, a dairy operator will 

directly realise the economic consequences of a case of clinical mastitis where milk 
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must be discarded to avoid processor penalties. The subsequent use of intramammary 

and possibly systemic antibiotics, veterinary assistance and labour further increases the 

cost of production and the losses quickly become tangible. A dairy operator may be 

more inclined therefore to invest in a tool that can automatically monitor milk-variables 

associated with mastitis such as milk electrical conductivity for earlier mastitis 

detection (Borchers and Bewley, 2015). Conversely, the consequences of an outbreak 

of contagious ovine digital dermatitis on the productivity of ewes may be less obvious. 

Suboptimal fertility may only manifest itself months later during pregnancy scanning 

where overall foetal numbers are lower than the desired target (Clements, 2015). 

Investing in a system to monitor the grazing duration and frequencies of sheep for 

earlier disease recognition may be less attractive without prior knowledge of the 

consequences. 

1.2 Utility of precision livestock farming systems 

A number of PLF systems for monitoring the performance and health of 

livestock are commercially available, many of which have been developed for use in 

the dairy industry to support daily management. The majority of systems are on-animal 

sensors which focus on retrieving information on variables that are both meaningful to 

farmers and well supported in the literature to be associated with animal health and 

performance. For example, rumination is a necessary biological component of cattle 

behaviour and farmers can identify potentially sick animals by their rumination patterns 

(Calamari et al., 2014). Collars capable of detecting rumination events are useful for 

benchmarking individual animals against their own rumination profiles and also for 

herd benchmarking (Marchesini et al., 2018). Commercially available rumination 

sensors include the SCR VocalTag (Soriani et al., 2013), Moomonitor+ sensor 
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(Dairymaster Bromsgrove, Worcestershire, United Kingdom) and the Nedap Smarttag 

sensor (Van Erp-Van der Kooij et al., 2016).    

It is paramount that the data retrieved from PLF systems are easily interpretable 

and generate useful action points for consideration by farmers. Unfortunately, the utility 

of such data is somewhat unrealised in production systems and where necessary, more 

training is needed for farmers, their employees and their advisors in fully utilising this 

information (Morgan-Davies et al., 2018; Van Hertem et al., 2017). Data use and utility 

can often be complicated by the fact that many PLF systems work independently of one 

another. For example, milk yield and activity data are most often provided by two 

separate systems and so the ability of farmers to identify relationships between datasets 

is difficult. This is further complicated by the fact that current research is only just 

beginning to identify the complex associations between animal behaviour and 

performance. These relationships will be important for creating robust and trustworthy 

models for PLF systems that can alert farmers when necessary. Moving forward, care 

will be needed in the management of data to ensure that processed data in itself can be 

accessed at some level by users if required. An age has been entered where dependency 

on algorithms for decision making is greater than ever before and is likely to continue 

to aid decision making. In these so-called ‘black box’ support systems where data are 

collected and classified output is provided, care will need to be taken to ensure that any 

hidden biases are accounted for in the decision process and that interpretable logic is 

provided to aid the decision if at all possible (Pedreschi et al., 2018).         

1.3 Sensors and information processing 

A PLF system can be structured such that farm operators receive frequent 

feedback from animal or infrastructure-based sensors. This information can be used to 

make long-term or more frequent management decisions which are implemented 
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manually or autonomously. Measuring the activity of dairy cattle using pedometers for 

the purpose of oestrus detection is an example of the partial automation of a subset of a 

dairy cow system. This has led to greater conception rates and improved farm 

efficiency (Ferguson and Skidmore, 2013).  

Other sectors are benefitting too. Some producers in the poultry sector are 

making use of precision feeding systems where feed allocation can be tailored to meet 

the growth targets of individual birds (Zuidhof et al., 2017). In future, there may be 

possibilities to add further dimensionality to these systems. Data acquired from other 

sensors or the internet can add context and enrich the management process with real-

time information on the behaviour of conspecifics, microclimate, parasite burden, 

disease transmission as well as market information, all of which will allow operators to 

respond instantly (Neethirajan, 2017). In fact, a range of tools and techniques are now 

under development for most species and for a variety of purposes. These include tools 

for measuring automatically the total feed and water intake of animals (Maselyne et al., 

2015), condition score (Spoliansky et al., 2016), conspecific interactions (Handcock et 

al., 2009), disease (Carpentier et al., 2018), parturition (Menzies et al., 2018), posture 

(Thompson et al., 2016), temperature (Voss et al., 2016) and vocal sounds (Meen et al., 

2015). Sections 2.1-2.3 will discuss some of the key areas where PLF techniques could 

be used to improve the welfare and performance of livestock.      

To capture behavioural information, a bespoke set of sensors and technologies 

are required for specific tasks, the selection of which will depend on a number of 

variables. For example, the species in question, the desired metric for measurement and 

quantification (e.g. animal posture and frequency of postures), the housing system 

(indoors, free ranging), herd or flock size, farm layout, internet connectivity, staff 

training opportunities and desired outcomes. Sensors must be environmentally robust, 
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dependable and integrated with powerful and easy to use support systems that provide 

reliable and user-friendly information to aid decision making (Borchers and Bewley, 

2015; Lima et al., 2018). PLF systems should ideally be flexible enough to be 

multifunctional (e.g. a 3-axis accelerometer fitted to the necks of cattle can be 

programmed to record rumination, feeding and posture) but some systems will be 

specific to a particular purpose. For example, an image-based automatic posture 

classification system will be specifically designed to discriminate between lame and 

non-lame cattle. While Chapters 1-3 focus on the use of global positioning systems 

(GPS) for cattle behaviour classification, for comparison, the use and functionality of 

other PLF tools will be discussed in Section 3.  

1.4 Drivers for change towards precision livestock farming 

The utility of any PLF system is fundamental to the level of adoption amongst 

farmers and practitioners. Other influential factors may include government incentives 

or pressures for the accurate collection of herd or flock data (Lima et al., 2018). There 

may be desires to increase herd or flock size for reasons of profitability or efficiency, or 

managers may foresee a reduction in available labour and skilled operators. Data 

collected on sheep farms in England and Wales found that knowledge of IT, the use of 

smartphones, the time farmers spent managing their sheep and the need to intensify 

production were all significantly associated with the likelihood of uptake of an 

electronic identification system (Lima et al., 2018). 

Farmers may also want to improve performance in a given area, to partially or 

fully automate a division of the system for greater efficiency or to provide more time to 

focus on another aspect of the system. Van De Gucht et al. (2017) undertook a survey 

of 135 dairy farmers in Belgium. They found that the decision to invest in an automatic 

lameness detection system significantly depended on the importance a farmer attached 
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to lameness (more importance = greater perceived utility of system), the interval 

between calving and first insemination on their farm (increased interval = increased 

perceived utility of system) and whether farmers had already adopted an oestrus 

detection system (already adopted = increased perceived utility of system). 

Interestingly, once the cost of lameness had been communicated to the farmers in this 

study, the perceived utility of a lameness detection device significantly increased but 

this was only true for those farmers that were already using an oestrus detection device 

(Van De Gucht et al., 2017). Clearly, more needs to be done to inform farmers of the 

economic impact of some production disorders, in particular those problems where 

there is seemingly no direct financial consequence. 

As the pressures increase on producers to improve efficiency, reduce the use of 

antimicrobials and provide assurances for animal welfare, there are clear opportunities 

for the development and adoption of PLF technologies by farmers for management 

support. A clear advantage of using PLF technologies is the labour-saving potential. 

Indeed, labour reduction is probably one of the most important reasons that farmers 

may want to invest in a sensor system (Lima et al., 2018; Morgan-Davies et al., 2018). 

One of the most common uses of PLF in the dairy industry is in oestrus detection. 

Without automated oestrus detection, farmers are recommended to observe cows for at 

least 20 minutes, three times per day for heat events (Firk et al., 2002). An automatic 

system would likely reduce time and labour costs. Furthermore, PLF technologies are 

objective and when supported by robust prediction algorithms may be able to identify 

animals that are in need of attention sooner compared to human observers (King et al., 

2017). In some cases however, more work is needed in system development as 

diagnostic power has been shown to be less effective than professional opinion 

(Bicalho et al., 2007).     
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Whatever the driver for adopting or integrating PLF techniques, it is at least in 

the near-future unlikely that human operators will be fully removed from the various 

processes that govern livestock production systems. It is equally unlikely that PLF will 

replace poor management (Wathes et al., 2008). Instead, the future of livestock 

production systems looks highly likely to be supported by decision support tools that 

will enhance the quality of livestock products and provide opportunities for systems to 

be more productive and sustainable (Scholten et al., 2013). The remainder of the 

discussion will focus on future demands on the dairy industry and how precision 

technologies can help support dairy farmers.    

2. Future demands on dairy production systems 

There has been significant growth and intensification of global dairy production 

systems in the past 50 years, and the demand for dairy products is likely to continue to 

increase in the foreseeable future (Fuller et al., 2006; Britt et al., 2018). Globally, dairy 

consumption is expected to rise on average by 27% from 87kg to 119kg per person by 

2067 driven largely by population growth and urbanisation (Britt et al., 2018).  

For the dairy industry, this growth in production will be largely met through 

improvements in feed intake and the efficiency of nutrient utilisation driven by genetic 

selection (Britt et al., 2018; Cole and VanRaden, 2018). For many systems, this has led 

to intensification, driven by economic pressures and consumer expectations and for the 

major milk-producing regions, intensively managed systems dominate (Powell et al., 

2013). Additional pressures will ensue with these systems which include ensuring 

sustainability, ethical acceptance and that systems are environmentally benign 

(Augustin et al., 2013). For example, intensively managed dairy systems usually mean 

that cows are confined to housing for the majority of their milk-producing lives, usually 

resulting in greater production potential but also greater consumer awareness for the 
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welfare of cows and safety of milk products (Drake, 2007). On the other hand, pasture-

based systems are usually recognised as being more natural by consumers and welfare 

considerations may be overlooked (Arnott et al., 2017). For pasture-based systems, 

value can also be added to milk products by highlighting some of the milk quality-

associated attributes such as fatty-acid profile (Dewhurst et al., 2006). However, these 

systems face their own challenges such as managing cows in adverse weather 

conditions, and the potential for greater difficulty in monitoring physiological 

indicators of health due to reduced contact time with staff (Arnott et al., 21017).  

With these challenges come opportunities and the dairy industry is rapidly 

evolving and making use of the technologies available for supporting daily 

management (Rutten et al., 2013). From a production perspective, efforts are now 

focusing on developing sensors that can support the daily management of individual 

animals. Most studies have previously focused on fertility management (Mottram, 

2016) and locomotion problems (Van Nuffel et al., 2015) but increasingly, more 

attention is being paid to sensors that can measure individual feed intake (Leiber et al., 

2016) and detect disease (Steensels et al., 2017).  

2.1 Dairy cattle performance and welfare 

 Largely driven by economic pressures, the number of UK dairy herds is 

decreasing rapidly and as of January 2019 a total of 9,170 producers were recorded in 

England and Wales; 33 fewer than the previous month and 177 fewer than January 

2018 (AHDB Dairy, 2019a). With this, the number of cows per herd is increasing. The 

current average UK herd size (data for 2018) is estimated to be 148 cows which is an 

increase of two cows per herd on the previous year (2017) and 32 more than in 2008 

(AHDB Dairy, 2019b). Average UK milk yield per cow for 2018 was estimated at 7,825 

litres (AHDB Dairy, 2019c). In 2008, this figure was 6,974 litres. Despite increased 
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production often being associated with the decreased health of dairy cows (Barkema et 

al., 2015), few studies are available on the impact of milk production as a risk factor for 

disease. One study suggested that higher production was associated with higher 

incidences of mastitis and lameness (Koeck et al., 2014) but others found no 

relationship between increased milk yield and diseases such as dystocia and metritis 

(Ingvartsen et al., 2003).  

To the candidate’s knowledge, the current number of staff available per animal 

on UK dairy farms is unknown but most evidence suggests that the best economically 

performing farms use less labour per cow, with the top 25% of UK farms allocating 35 

h/cow per year compared to 49 h/cow per year in the bottom 25% of herds (AHDB 

Dairy 2013; AHDB Dairy, 2015). Some evidence suggests that as the number of cows 

per labour unit increases, so too does the prompt identification of diseases such as 

lameness (Leach et al., 2010). Herd expansion may also be associated with higher 

somatic cell count (SCC) (Archer et al., 2013). However, the relationship between herd 

size and cow welfare is complex and some have found evidence of decreasing lameness 

risk in larger herds (Chapinal et al., 2014) but an increase in within-herd prevalence of 

other infectious diseases such as Johne’s disease and bovine tuberculosis (Doyle et al., 

2014; Wolf et al., 2014).  

PLF technologies offer opportunities to objectively measure daily variations in 

the behaviour of cows and alert farmers to the need for interventions when required. 

Feeding behaviour for example can provide a multidimensional outlook on the health 

and performance of cows. In a retrospective analysis of individual feeding data from 

computerised feeders, González et al. (2008) found that dairy cows subsequently 

diagnosed with ketosis exhibited significant reductions in daily feed intake (-10.4 kg 

fresh matter (FM)/d), daily feeding time (-45.5 min/d) and daily feeding rate (-25.2 g 
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FM/min per d), 3.6 days on average, before diagnosis. Cows diagnosed with locomotor 

problems had a decreased daily feed intake (-1.57 kg of FM/d), daily feeding time (-

19.1 min/d) and a daily increase in feeding rate (+21.6 g FM/min per d) (Figure 2). A 

number of publications have reported similar patterns for production disorders (Huzzey 

et al., 2007; Sepúlveda-Varas et al., 2016; Schirmann et al., 2016), and this is now a 

very strong area of research in the dairy sciences.      

 

 (González et al., 2008)   

Figure 2. Changes in the feed intake, feeding time and feeding rate before and after a 

cow was diagnosed (day 0) with foul of the foot. Adapted from González et al. (2008). 

 

2.2 Sensor systems to support dairy operations 

As dairy systems evolve, the opportunities for managerial support using sensor-

based technologies are many and farmers are already realising the benefits of certain 

tools. Indeed, it seems that as the number of cows per farm increases, so too does the 

level of adoption of precision technologies (Steeneveld and Hogeveen, 2015; Gargiulo 

et al., 2018). A Dutch survey (Steeneveld and Hogeveen, 2015) showed that 39% of 

farms surveyed (n = 512) used sensor systems and that sensors for mastitis and oestrus 

detection were the most common. Furthermore, farms with sensor systems had fewer 

labour hours per cow but productivity per cow measured as milk production per cow, 

number of cows per hectare and milk production per hectare did not differ between 
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farms with and without sensor systems. In an Australian study (n = 199 farms), farms 

with more than 500 cows (16.4%) adopted between two and five times more precision 

technologies compared to smaller farms (Gargiulo et al., 2018) such as electronic cow 

identification systems, automatic sorting gates and herd management software. Indeed, 

the adoption of precision technologies on farms with larger herds may be because herd 

expansion requires investment in improved and more efficient milking systems and 

often, these systems come integrated with automated cow management tools (Rutten et 

al., 2013). For example, Steenveld and Hogeveen (2015) found that farmers with 

automatic milking systems (AMS) made no conscious decision to invest in the 

accompanying sensor systems and that the sensor systems either came as standard or 

were bought at reduced cost.  

It is fundamentally important that farmers are made aware of the potential 

production responses resulting from the adoption of sensor systems before investments 

are made. The extent to which any benefits may be realised may vary greatly between 

milking systems. For example, Steeneveld et al. (2015a) found that herd average SCC 

increased (+12,000 cells/mL) on AMS farms in the years after investing in a sensor 

system for mastitis detection whereas average SCC decreased (-10,000 cells/mL) in the 

years after investment on farms with conventional milking systems (CMS). The authors 

concluded that such effects may be explained by farms undergoing other major changes 

to their systems such as investment in a new milking system. Speculatively, it could be 

that farmers with CMS make more conscious decisions to invest in sensor systems and 

are better able to evaluate the impact of a sensor system due to more time being spent 

with their animals. Care needs to be taken to ensure that informed choices are made 

before investing in sensor systems such that any improvements in efficiency are not lost 

in other aspects of the production system (Steeneveld et al., 2015b). Reducing labour 
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was one of the most important reasons for investing in sensor systems in that study. The 

overall economic benefit of investment may come as a result of a reduction in labour 

cost and not necessarily from improvements in health and performance.         

To date, the majority of sensor systems used on farms can be characterised as 

systems that are either purchased as part of a larger investment (e.g. milk conductivity 

meters within an AMS) or those that are purchased as part of a specific strategy to 

improve performance in a particular area (e.g. pedometers for oestrus detection). From 

a research perspective, a wide range of sensor systems are under development for use in 

both whole herd and individual cow management. In a review, Rutten et al. (2013) 

categorised 126 publications (2002-2012) describing research undertaken on sensor 

systems into four levels. More than half of all publications using sensors for capturing 

information on locomotion (n = 38) and metabolic issues (n = 16) in cattle were 

undertaken at level one, (something is measured about the cow e.g. rumen pH). The 

majority of studies concerned with mastitis (n = 31) and fertility (n = 41) were 

undertaken at level two (captured data is used to make further interpretations on the 

status of a cow e.g. decreased activity). No publications were found at levels three 

(sensor information is supplemented with advice from external resources e.g. 

economic) and four (farmer or sensor system makes a decision based on the 

information e.g. call a veterinarian). It is envisaged that in the next decade, sensors with 

the capability of monitoring a breadth of cow activity variables will be in use, allowing 

farmers’ access to information that was previously unattainable. More is needed to 

ensure that conceptual research is taken to further levels in this hierarchy. 

2.3 Conceptual sensor system research in the dairy industry 

 Reducing labour costs is not the only objective of sensor system development. 

Sensor systems have the potential to provide access to previously unattainable 
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information that can not only be leveraged for labour reduction but also allow farmers 

to make informed choices on the management of individual animals.  

A body of research is now developing in the use of various sensors for 

quantifying dairy cow behaviour for detecting diseases such as ketosis (Rodrigues-

Jimenez et al., 2018) and lameness (Barker et al., 2018) and also variables associated 

with the onset of calving such as temperature and rumination time (Rutten et al., 2017). 

Despite being in its infancy, the use of behaviour as a proxy for production and welfare 

management has great potential and is likely to feature highly in future sensor system 

applications. Currently, more is needed to quantify which behaviours carry the most 

importance when used as proxies for disease onset and how these behaviours might 

change over time. Furthermore, the impact of other variables on behaviour need to be 

fully assessed. For example, in a pasture-based system, the daily variation in pasture 

quality could impact the amount of time spent grazing by cows, potentially 

confounding any indicators of the onset of a particular disease. 

Selection of the most appropriate sensor for research is also vital. Sensor choice 

will depend heavily on the research objective (e.g. support fertility, reduce use of 

antibiotics), management system (e.g. housed cows vs. grazed), the behaviours to be 

identified (affected by research objective), data sampling interval, sensor data capacity 

and battery life and the location of the sensor on the animal. From a research 

perspective, the sensors used to monitor individual behaviours in most cases are 

designed and constructed for the task at hand and are not typically commercially 

available products. In cattle research, these sensor systems have, over the last 20 years 

evolved, both because of improvements in sensor technology and a realisation that the 

data gathered from sensors that are seemingly unidimensional (e.g. GPS for location) 

can be leveraged for a breadth of statistical analyses. However, few publications 
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currently discuss the performance of commercially available products. Those that do 

are usually based on research paradigms that are well developed and that have had a 

financial impact at farm level e.g. oestrus detection (Saint‐Dizier and Chastant‐

Maillard, 2012). 

One primary research objective over the last few years has been to identify 

individual behaviours from sensor data using a variety of classification techniques and 

many have been successful at this (Williams et al., 2016; Rahman et al., 2018). In these 

instances, the analyst benefits from directly interpretable behavioural information. 

However, more recently, attention is being paid to utilising raw sensor data directly. 

One example includes analysing the space-use patterns of housed dairy cows for 

behavioural analysis (Diosdado et al., 2018). Such techniques do not require complex 

pre-processing techniques and may be an effective means of gaining more information 

about livestock movement while maintaining the capability of monitoring long-term 

health.    

The realisation of the possibility of precision individual-animal management for 

a range of commercial and welfare-important parameters has to some extent erupted in 

the last 10 years. Before proceeding to a discussion on a series of animal-based sensors 

currently used in dairy research, it is pertinent to summarise the main evaluation 

metrics of models derived from sensor data used primarily in classification studies.      
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2.3.1 Model performance evaluation 

2.3.1.1 Introduction  

The method of evaluation of classification models derived from sensor data will 

be largely dictated by the study methodology. For example, if the objective is to 

identify the grazing behaviour of cattle then an analyst may consider a relatively simple 

threshold-based classification approach (Section 3.1.3) for data collected from head-

mounted accelerometers (Rayas-Amor et al., 2017; Arcidiacono et al., 2017). 

Regression analyses can then be undertaken to model the relationship between visually 

observed and predicted grazing events. A more computationally-intensive modelling 

procedure based on pattern-recognition and machine learning (ML) is also possible, and 

studies using these procedures usually follow common model evaluation methods 

(Caraviello et al., 2006; Martiskainen et al., 2009; Mansbridge et al., 2018). However, 

despite a breadth of such work appearing in the PLF literature over the last 10 years, 

there is no standard model evaluation procedure, but each has its own merits and 

drawbacks. Some evaluation techniques are also more suited to binary tasks (e.g. 

discriminating between two behaviours) compared to multiclass classification tasks 

(Sokolova and Lapalme, 2009). Model performance evaluation is a topic strongly 

discussed in the field of computer science and many evaluation measures are derived 

from medical and behavioural sciences (Klein et al., 1994; Cohen, 2013). As such, this 

section is not an attempt at defining the best evaluation methods but rather, a short 

discussion of those most commonly used.  
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2.3.1.2 Classification accuracy 

Classification accuracy (CA) is probably one of the most utilised evaluation 

metrics of model performance. It can be described as the total number of correct 

predictions of all predictions made using a classification model (Sokolova and 

Lapalme, 2009). CA requires knowledge of the number of true-positives (TP) predicted 

by the classifier, the number of true-negatives (TN), false-positives (FP) and false-

negatives (FN) and is expressed as ((TP + TN) / (TP + FN + FP + TN) (Sokolova and 

Lapalme, 2009). CA has been used previously in several studies of behaviour 

classification of livestock (Martiskainen et al., 2009; Dutta et al., 2015; Williams et al., 

2016; Giovanetti et al., 2017; Walton et al., 2018) and can be used in both binary and 

multiclass situations (Sokolova and Lapalme, 2009). However, class imbalances make 

the use of CA as an evaluation metric problematic because often, the class represented 

by the most instances can be selected for which can lead to inflation of CA and 

therefore poor class discrimination (Stąpor, 2018). Because of this, it is sometimes 

useful to include further evaluation metrics and some of the most common are 

discussed next.  

 

  



 19  

2.3.1.3 Sensitivity, Specificity, Precision and F-measure 

Analysts will often include measures such as sensitivity (TP / (TP + FN)) which 

is the proportion of target class labels that are correctly classified as the target class and 

specificity (TN / (FP + TN)), which is the number of non-target classes that are 

identified as such (Kourou et al., 2015; Weng et al., 2017). In addition, the precision 

(TP / (TP + FP)) of a classifier is often used and represents the number of correctly 

classified instances amongst all classified instances (Asri et al., 2016; Higaki et al., 

2019). Collectively, these measures can provide a better idea of the power of a 

classifier particularly when no confusion matrix is published to make these estimations. 

These three measures either in conjunction with CA or as stand-alone metrics are often 

reported in articles considering livestock behaviour classification.  

Some publications, however, do report further evaluation metrics and one of the 

most common is the F-measure (sometimes referred to as F1) which is an extension to 

precision and sensitivity expressed as (2TP / (2TP + FP + FN)). Mathematically, F-

measure is the harmonic mean of precision and sensitivity and the closer it is to 1, the 

better the performance of the classifier, whereas a score of 0 indicates very poor 

performance (Sokolova et al., 2006). Ultimately, the rationale is to express a single 

value that represents the trade-off between the precision and sensitivity of the classifier. 

For example, a classifier with high precision but low sensitivity will yield highly 

accurate results but will have misclassified a large proportion of relevant instances 

(Sokolova et al., 2006). Thus, the F-measure is useful in support of either sensitivity or 

precision alone, but some have also reported all three measures (Alvarez et al., 2018; 

Rodríguez Alvarez et al., 2019). However, the F-measure and its component metrics 

have been criticised for their failure to account for true-negative instances (Powers, 
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2011) which could be particularly costly in the field of disease diagnostics where 

training sets are likely to be imbalanced (Qin et al., 2010).  

2.3.1.4 Receiver operating characteristics  

Receiver operating characteristics (ROC) analysis is sometimes documented to 

demonstrate classifier performance (Ortiz-Pelaez and Pfeiffer, 2008; Williams et al., 

2016) particularly in the medical sciences (Ball et al., 2016). The measure uses both 

sensitivity and specificity and was traditionally used for binary classification tasks 

(Fawcett, 2006). A strong argument for its use in measuring classifier performance is 

because of its lower level of bias, particularly because it accounts for negatively 

classified instances and it provides a benchmark for chance-level classification 

(Powers, 2011).  

Graphically, ROC curves are used to demonstrate the power of a classifier 

where the TP rate (sensitivity) is plotted on the Y-axis and the FP rate (specificity) is 

plotted on the X-axis. Generally, better performance is indicated by curves that occupy 

the north-west area of the plot (Fawcett, 2006). A degree of caution is needed in this 

interpretation however because classifiers that produce data that proceeds directly along 

the Y-axis may be an indication of a model that classifies TPs well in the occurrence of 

very strong evidence only (Fawcett, 2006) and could therefore be at risk when the 

evidence for TP instances is weaker. Chance-level classification is indicated by the 

diagonal line y = x in ROC space and represents classifiers that are randomly assigning 

classes to instances in the dataset.  

The two-dimensional ROC curve can be reduced to a single value that 

represents the performance of a classifier and this is termed the area under the ROC 

curve (AUC). The AUC value will always lie between 0 and 1 and a value >0.5 

indicates a classifier that is performing better than chance (Bradley, 1997). Both ROC 
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and AUC analysis can be extended to multiclass classification tasks. One example of 

such an analysis is the reference class formulation (Fawcett, 2006) also known as the 

‘one versus all’ class strategy (Provost and Domingos, 2000). The issue with such a 

strategy is that it violates the main attraction of ROC over other classifier evaluation 

strategies in that it is robust to class imbalance. A method insensitive to class imbalance 

was put forward by Hand and Till (2001) and this strategy is implemented in the R (R 

Core Team, 2014) statistical software package ‘pROC’ (Robin et al., 2011).  

2.3.1.5 Other model evaluation measures (Youden’s index and Discriminant power) 

Despite there being several evaluation measures to select from when assessing 

model performance, it is argued that some of these measures do not fully meet the 

demands of classification tasks where each class shares equal importance and where 

several algorithms are to be compared (Powers, 2011). Youden’s index (sensitivity + (1 

− specificity)) has been proposed which evaluates the ability of a classifier to avoid 

failure (Youden, 1950; Khalaf et al., 2017). Youden’s index can be used in binary 

classification tasks and cases where there are more than two classes to discriminate 

between (Nakas et al., 2010). Discriminant power is another measure that utilises 

sensitivity and specificity and measures how well a classifier discriminates between 

positive and negative instances (Sokolova et al., 2006). Discriminant power is written 

as: (
√3

𝜋
 (log 𝑋 + log 𝑌)) where X = sensitivity / (1 − sensitivity) and Y = specificity / (1 

− specificity). Discriminant power been used previously for feature selection in the 

medical sciences (Mert et al., 2015). Few publications on livestock behaviour 

classification use these performance measures (Amrine et al., 2014; Zehner et al., 

2019).  
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2.3.1.6 Summary 

This is not an exhaustive list of metrics available to the analyst for classifier 

performance evaluation, in fact, many more exist. Other mathematical approaches also 

exist in the literature for livestock behaviour analysis from sensor data. Categorising 

behaviour based on thresholds in sensor data requires less computational power than 

techniques where complex pre-processing is needed first. The success rate of such 

methods can be measured (Arcidiacono et al., 2017) using similar methods to those 

described above. Some approaches have used raw movement data directly and these 

movements modelled with the objective of inferring differences in cattle health status 

(Diosdado et al., 2018). Models are then assessed using specific selection criteria such 

as the Aikaike Information Criterion (Sakamoto et al., 1986). 

In the context of ML, the decision on which set of measures to use may hinge 

on several elements including whether it is a dichotomous or multiclass classification 

task and the relative importance of each class to the research question. Furthermore, 

analysts may be confined to the in-built evaluation metrics provided by the software in 

use. For example, the Explorer interface of the WEKA (Waikato Environment for 

Knowledge Analysis) data mining software (Witten et al., 2016) is limited to the main 

evaluation parameters discussed previously (Sections 2.3.1.3 and 2.3.1.4), but there are 

options to extend these measures using the Experimenter interface (Section 5.5). 

Programming languages such as R can provide more flexibility in this regard and allow 

analysts to tailor their own evaluation measures. Further discussion on classifier 

evaluation metrics can be found in Sokolova et al. (2006) and Tharwat (2018). For a 

brief discussion on the statistical comparison of model performance measures, see 

Section 5.5.2.      
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3. Sensors in precision dairy research 

3.1 Accelerometers for behaviour classification 

3.1.1 Background   

Accelerometers measure g-force and tilt in three axes (X, Y and Z) at pre-

programmed intervals. These sensors have been used extensively to monitor human 

behaviour (Mathie et al., 2004; Lowe and ÓLaighin, 2014) and over the last decade, 

have been shown to be very valuable in behaviour classification studies of both free-

ranging (Sakamoto et al., 2009) and domestic species (Watanabe et al., 2008). For 

dairy animals, their utility for classifying behaviours associated with performance and 

welfare is very promising. For example, the objective of some of the earliest uses of 

accelerometers fitted to ruminants was to identify attributes of feeding behaviour 

(Chambers et al., 1981).  

The research of the last 10 years has focused heavily on the lying and standing 

behaviours of cattle (Ito et al., 2010) as well as for general behaviour classification 

(Borchers et al., 2016). By now, it is well recognised that these identifiable behaviours 

are closely associated with diseases such as lameness (Thorup et al., 2015) and mastitis 

(Stewart et al., 2017) as well as overall cow comfort (Ito et al., 2010). There is now a 

strong focus on using accelerometers to identify multiple cow behaviours that are both 

performance and welfare-associated, some of which are discussed next. Despite not 

being used in any of the experimental chapters herein, a discussion on the utility of 

accelerometers is useful as their use in livestock research has increased dramatically 

since 2009 and indeed, since the beginning of this candidature.  
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3.1.2 Lying and Standing    

Automatically identifying the lying and standing behaviours of dairy animals 

can be undertaken using a single, leg-mounted accelerometer usually positioned so that 

the X-axis is parallel to the ground (Ito et al., 2010). For behaviour analysis, the Y-axis 

values are used to confirm lying or standing events and the Z-axis confirms lying 

laterality (left or right). Identifying the number of lying and standing bouts and bout 

durations undertaken by cows has been used extensively to assess associations between 

lameness and leg injuries (Charlton et al., 2016; Westin et al., 2016) and this 

information can be useful for herd benchmarking and also to provide farmers with 

advice on system improvement. For example, Westin et al. (2016) found that lame 

cows lay down for 0.6 h/d longer than non-lame cows and that leg lesions were 

associated with shorter lying times. Lying and standing frequencies have also been used 

as indicators of calving in dairy cows (Jensen, 2012; Saint-Dizier et al., 2015). The 

optimal logging interval for these behaviours had previously been determined to be 

≤30s (Ledgerwood et al., 2010) provided that very short, possibly erroneous lying bouts 

were removed from the dataset. However, the majority of publications have used one-

minute sampling intervals with performance equating to research that has used more 

frequent sampling intervals (Ito et al., 2009). Most research utilise g-force values 

generated by accelerometers with the addition of constants to facilitate data handling 

(Ledgerwood et al., 2010).  

3.1.3 Classifying other biologically important behaviours using accelerometers       

In addition to lying and standing, some authors have been able to successfully 

identify the feeding and ruminating behaviours of cows using head-mounted (Rayas-

Amor et al., 2017) ear-mounted (Pereira et al., 2018) and neck-mounted accelerometers 

(Diosdado et al., 2015; Benaissa et al., 2019). Higher sampling frequencies are usually 
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required for feeding and ruminating behaviours. This is because of the frequent nature 

of these behaviours within a given time-interval, and the resolution required to 

effectively discriminate between behaviours that produce accelerometery signatures 

with variable frequencies and amplitudes. For example, Nielsen (2013) used a halter-

mounted accelerometer set at a sampling frequency of 5 s to collect data on grazing and 

non-grazing events from cattle. A linear discriminant procedure was then used to 

discriminate grazing from non-grazing and a sensitivity and specificity of 84% and 

80% was achieved respectively. Similarly, Watanabe et al. (2008) sampled 

accelerometer data at 1 s intervals and used a discriminant procedure to classify eating, 

ruminating and resting using features calculated from the raw accelerometery data 

(mean, variance and inverse coefficient of variation). The percentage of correct 

classifications was variable across axes and features used but the best performing 

combinations achieved >90% correct classification.  

Using neck (González et al., 2015; Arcidiacono et al., 2017) and head-mounted 

accelerometers (Rayas-Amor et al., 2017), threshold classifiers have been developed 

using acceleration values. This strategy is relatively simple to undertake compared to 

more computationally intensive procedures that require extensive data pre-processing, 

algorithm development and refinement. Using ground-truth observations of biologically 

relevant behaviours, manually annotated data are analysed for descriptive statistics such 

as values of central tendency (mainly mean and median) and also for measures of 

variation such as the standard deviation. Thresholds can then be assigned to the 

acceleration data that represent the boundaries between each behaviour and an analysis 

undertaken on the discriminatory power of these thresholds on new data. These 

methodologies have been shown to discriminate well between behaviours such as 

feeding and standing (Arcidiacono et al., 2017) and also grazing and ruminating 
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(Rayas-Amor et al., 2017). These techniques share commonalities with that already 

established for discriminating between lying and standing behaviours using leg-

mounted accelerometers (Ito et al., 2009; Ledgerwood et al., 2010). More is needed to 

test whether the classification success reported holds true for data collected over longer 

periods where pasture height and density and animal variation (e.g. posture and height) 

may affect success. This is essential to ensure that accurate estimations of feeding and 

ruminating times can be made with the possibility of using this information as reference 

for other important metrics of production and welfare such as energy expenditure 

(Green et al., 2009). Furthermore, since sampling interval varies in these studies (range 

= 4 Hz – 1 sample/30 s), a review of the literature would be valuable to measure the 

success of studies across the range of sampling intervals and techniques implemented.   

3.1.4 Accelerometer sampling frequency 

The sampling frequency of choice for acceleration data to a large extent 

depends on the behaviour(s) to be identified, the analysis to be undertaken post-hoc, the 

capacity of the instrument or the system to store data and perhaps, the effective battery 

life of the device. The benefit of maximising the sampling frequency is that the dataset 

can be subsampled to test algorithmic performance on a range of sampling intervals. 

Recently, sampling frequencies of up to 50 Hz (50 samples/s) have been reported 

(Diosdado et al., 2015) and studies often report sampling frequencies in the range of 1-

20 Hz (Martiskainen et al., 2009; Dutta et al., 2015; González et al., 2015; Benaissa et 

al., 2017; Rahman et al., 2018).  

The effect of sampling interval on classification performance is not clear 

because there is no standard sampling interval or analytical procedure for such data. 

The feature set used (Section 5.2), the algorithms or statistical procedures tested, and 

behaviours identified are some of the variables that differ greatly between studies. 
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Generally, however, the higher the sampling frequency, the better the classification 

performance for behaviours that occur often and for long periods of time (e.g. feeding). 

Furthermore, there is a risk that infrequent sampling intervals could lead to the loss of 

behavioural information and a misrepresentation of the frequency and duration of 

behaviours undertaken by the focal animal (González et al., 2015). Work is needed to 

collate the performance of various analytical strategies (e.g. features, algorithms and 

statistical analyses used) on the range of sampling intervals reported in the literature to 

determine the best procedures for classifying dairy cow behaviours using 

accelerometers. Furthermore, the performance of accelerometers in relation to position 

on the animal is required as this may influence the quality of the data signatures 

gathered and also the practicality of application at farm level. 

3.2 GPS for location and behaviour classification 

3.2.1 Background 

 GPS has been used extensively in animal research for many years (Turner et al., 

2000; Agouridis et al., 2004; Woodroffe et al., 2016). The primary use of GPS has been 

to evaluate spatial location and the movement of animals in studies of species 

distribution and interaction (Turner et al., 2000; Barasona et al., 2014; Handcock et al., 

2009). Some notable areas of interest include studying the effects of climate and 

disease on movement (Allred et al., 2013; Miguel et al., 2017). The use of animal-

borne satellite receivers began to grow in the 1990s (Harris et al., 1990; Rodgers, 1996) 

evolving from their use as stand-alone sensors to the present day where GPS is often 

coupled with other sensors such as accelerometers, magnetometers and gyroscopes for 

multidimensional analysis of animal movement (Guo et al., 2009; Dutta et al., 2015).    



 28  

3.2.2 GPS configuration for studies of animal behaviour  

As with other sensor systems, GPS can be configured to collect time-stamped 

data at a predetermined rate. The data sample rate is usually determined by the 

objective of the study, which historically, was usually centred on knowing where the 

animal was, what it was interacting with and for how long. Coupled with a geographic 

information system, GPS data can be enhanced to provide further dimensionality to 

allow analysts further access into the behaviours of focal animals. Spatial location, 

speed of movement and altitude are examples of commonly collected variables that can 

be set to register at fixed intervals ranging from >1 Hz (Swain et al., 2008) to once 

hourly (Perotto-Baldivieso et al., 2012). GPS can also be configured to collect data at 

triggered intervals (Jurdak et al., 2013), for example, when movement exceeds a certain 

predetermined threshold. This latter method can lead to significant savings in battery 

power and therefore a longer duration of observation. Variable fixes in GPS data can 

also occur when focal animals move in and out of satellite range and has been an 

important topic of discussion in the movement ecology literature as gappy data can 

present an additional challenge in animal behaviour inference (Jonsen et al., 2007; 

Gurarie et al., 2009). For terrestrial animals at least, the use of triggered 

(predetermined) sampling intervals in particular necessitates that GPS receivers are 

tested for their level of positional fix error (although this is also necessary with a 

regular sample rate). This is essential to maximise the chances of correctly classifying 

an instance of movement from an instance of non-movement from focal animals.  

3.2.3 Errors in GPS fixes 

While modern, domestic GPS receivers are able to provide accurate absolute 

positional fixes, several issues exist that can lead to inconsistencies and sometimes 

large variation in the absolute positional fix of each receiver at each nth sample when 
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measured against a surveyed mark. These issues have been described in detail by 

several authors in preparation for animal movement studies (DeCesare et al., 2005; 

Ganskopp and Johnson, 2007; Hurford, 2009) and must be accounted for if meaningful 

information is to be gathered. 

Some of the main issues that can cause erroneous and highly variable positional 

fixes include satellite and receiver errors, atmospheric effects and multipath errors 

caused by large objects such as buildings. Screening methods have been used 

previously to remove erroneous GPS fixes using various strategies (Ganskopp and 

Johnson, 2007; Bjørneraas et al., 2010). Failing to account for these issues can lead to 

erroneous estimations of distances travelled by focal animals and the accurate 

identification of the patch in which they occupy at each timepoint (Hulbert and French, 

2001). The data sampling rate can also affect these estimations and the selection of 

which will depend on the species under observation and the resolution required for 

monitoring. For example, it was found that GPS fixes taken every hour meant that the 

location of cattle within a 10,000 m2 (1 ha) area could only be predicted with 30% 

accuracy. On the other hand, a sample rate of 10 s in a 100 m2 patch led to an estimated 

location prediction error of 1% (Swain et al., 2008). If distance travelled is a study 

objective, then a more frequent sampling rate will also provide more accurate 

estimations of travel distance. This is because straight-line trajectories between longer 

samples will lead to greater uncertainty about animal activity (Pepin et al., 2004).  

GPS receivers are usually supported with documentation on their expected 

levels of performance, the most notable performance measures in the context of animal 

movement studies being absolute horizontal and vertical accuracy, although others exist 

(e.g. hot, warm and cold start) (Low et al., 2015). GPS receivers used for research 

purposes should be tested for homogeneity. The following section discusses the tests 
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that were undertaken to ensure homogeneity between the study receivers used in 

Chapters 1-3.     

3.2.4 Measuring uncertainty in GPS fixes 

3.2.4.1 Background to error tests undertaken on study GPS receivers  

 A number of error metrics exist that can be used to determine the accuracy of a 

GPS receiver and the standards of the test procedures are detailed by the Institute of 

Navigation (ION, 1997). The six main error metrics are detailed in Table 1 (Section 

3.2.4.3) and have been used previously to measure positional fix accuracy and receiver 

errors prior to animal research (Agouridis et al., 2004). As the work undertaken in 

Chapters 1-3 used GPS receivers to model dairy cow behaviour, it was important to 

ensure that all receivers were tested as rigorously as possible to ensure homogeneity. 

Although it is possible to measure both the horizontal and vertical accuracies of GPS 

receivers, only horizontal accuracy was considered here. This is because it was 

hypothesised that the vertical accuracy of the receivers would be outside of that 

required for discriminating between the lying and standing behaviours of cows, and that 

grazing altitude would also be a factor to consider in this discrimination process. 

Nevertheless, there may be scope for exploring this variable in future.  

 The tests undertaken with the GlobalSat DG-100 GPS receivers in this work 

(GlobalSat® Technology Corp., Taiwan) were designed to test static accuracy in both 

open field (OF) and conditions that represented situations where signal obscurity due to 

common land features could be an issue. In this instance, the grazing platform at the 

research farm was largely unobstructed but hedgerows were present across the entire 

site. Therefore, a hedgerow (HR) static test was also undertaken. As well as providing 

information on the horizontal accuracy of each GPS receiver, the ultimate objective of 

the static tests was to determine if any GPS receivers were providing positional fixes 
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that were significantly different to the distribution of fixes provided by the whole 

sample. The null hypothesis was that all GPS receivers would provide a distribution of 

positional fixes that were not significantly different from one another. If any GPS 

receivers were found to violate this assumption, those receivers would be discarded 

from any animal experimentation.  

3.2.4.2 GPS static accuracy tests 

Thirty-six GPS receivers were available for static accuracy tests and data were 

collected between March 3 and March 20, 2014. Tests were undertaken to meet the 

requirements of the Institute of Navigation (ION, 1997) and the experimental 

methodology was adapted from Agouridis et al. (2004). OF tests were undertaken at 

Aberystwyth University dairy farm, Trawsgoed, Ceredigion in the centre of a 6-ha 

paddock that had no physical obstructions that could affect satellite signal such as farm 

buildings. The HR tests were undertaken along a 40 m portion of hedgerow running 

approximately east to west on the edge of the same paddock (Figure 3). The hedgerow 

(approximate dimensions: H = 2.2 m; W = 2 m) was predominantly hawthorn. For the 

OF tests, 35 wooden posts (length = 1,700 mm; width = 100 mm) were arranged in a 6 

x 6 square grid pattern, 1 m apart (Figure 3: OF) and driven into the ground such that 

all were completely level with the post at the highest point of the arrangement. For the 

HR tests, each post was located 1 m apart along the hedgerow and levelled using the 

same method as that used for the OF arrangement (Figure 3: HR).  
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Figure 3. Image of 6-ha paddock where open field (OF) and hedgerow (HR) static GPS 

tests were undertaken. PSM = previously surveyed mark. Real-time kinematic-GPS 

base station was located at PSM and rover used to survey precise locations of all GPS-

mounting posts (indicated by blue markers) in OF (36 posts) and HR (36 posts) tests. 
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A Trimble real-time kinematic GPS (RTK-GPS) system was used to accurately 

measure (reported accuracy ± 2cm) the location of each post in the study. The base 

station of the RTK-GPS system was located at a previously surveyed mark (Figure 3: 

PSM) and the rover was used to measure the location of each post at 1 s intervals for 1 

min. The dataset was then averaged to gain the precise location of each post. This was 

done so that the location of the testing post could be subtracted from the coordinates 

provided by the experimental GPS receivers to calculate horizontal accuracy. This was 

done using equations 1 and 2: 

∆long = λGPS receiver – λpost  (1) 

∆lat = φGPS receiver – φpost  (2) 

where ∆long is the difference in longitude between the surveyed post and experimental 

GPS receiver and ∆lat is the difference in latitude between the surveyed post and 

experimental GPS receiver. In equations 1 and 2 λ is longitude and φ is latitude. The 

horizontal distance ∆H of each set of GPS coordinates to the reference point was then 

calculated using equation 3: 

                   ∆H = √∆𝑙𝑜𝑛𝑔2 + ∆𝑙𝑎𝑡2  (3) 

This information was used to: 

(1) Calculate a range of error metrics that indicate the horizontal distance (m) from 

each GPS receiver that contain the specified percentage of GPS data points for 

each sampling interval (30 s, 10 s, and 5 s) for treatments OF and HR, 

(2) Determine if statistical differences existed between the horizontal accuracies of 

GPS receivers within each tested sampling interval within treatment and remove 

receivers prior to animal work if necessary, and  
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(3) Determine if treatment and sampling interval had a significant impact on the 

GPS error distributions.  

   For both OF and HR experiments, the three sampling intervals tested were 30 s, 

10 s and 5 s, undertaken in 3 separate trials lasting 26 hrs each. Tests were conducted 

over this length of time to minimise any biases in satellite location and movement that 

may occur if tests were conducted over shorter periods. Sampling intervals were chosen 

to reflect the potential resolution required for monitoring cattle behaviour at pasture 

(Section 3.2.3) and to test whether positional fixes differed significantly between each. 

For each test, GPS receivers were randomly selected and placed in waterproof bags 

before securing to the top of each wooden post using cable ties. Raw data were 

downloaded in spreadsheet format. Each row of data contained the date and timestamp, 

latitude, longitude, speed (mph) and altitude (m). Of the 26 hrs of data collected for 

each receiver, statistical analysis was undertaken on 24 hrs only. The first hour of data 

were discarded for each receiver to reduce the risk of erroneous GPS fixes due to cold 

start (Duncan et al., 2009) and the final hour was discarded to allow for GPS removal.  

3.2.4.3 Statistical analysis 

Part 1 of the analysis used the formulae provided in Table 1 to compute the 

error metrics for each GPS receiver. These error metrics have been used as a standard 

for GPS error measurement in other studies (Agouridis et al., 2004) but some can be 

expressed differently on occasion, for example R95 (Table 1) can sometimes be defined 

as the circular error probability at the 95% level (CEP-R95) (Meunier et al., 2018).      

For part 2 of the analysis, the horizontal accuracies of the 36 GPS receivers were tested 

for normality within sampling interval for each treatment using the Shapiro-Wilk test. 

Depending on the result of this test, an appropriate one-way parametric or non-

parametric test was chosen to check for differences between receivers. This was 
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followed by post-hoc testing if P < 0.05 and the process repeated for all sampling 

intervals and treatments. If any receivers were deemed to be erroneous in at least one 

test, they would be discarded from the sample before part 3 was undertaken. For part 3, 

the new dataset was retested for normality using the above procedure, and an 

appropriate one-way statistical test was chosen to check for significance between 

sampling intervals within treatment and also for differences in the mean error values 

between treatments. All statistical analyses were undertaken in R.     

Table 1. Horizontal accuracy metrics used to measure GPS performance as defined by 

the Institute of Navigation (1997) 

Measure Formula Probability Definition 

CEP (Circular error 

probability) 

0.62𝜎𝑦 + 0.56𝜎𝑥 50% Radius of a circle centred at 

the true position containing 

50% of the data points. 

1 Sigma 
√𝜎𝑥

2 + 𝜎𝑦
2 

68% Square root of the average of 

the squared horizontal position 

errors. 

R95 R(0.62𝜎𝑦 + 

0.56𝜎𝑥) 

 

95% Radius of a circle centred at 

the true position containing 

95% of the data points. R = 

2.08. 

2 Sigma 
2√𝜎𝑥

2 + 𝜎𝑦
2 

98% Twice the value of 1 Sigma. 
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3.2.4.4 Results and discussion  

The mean horizontal accuracies (m) for all 36 GPS receivers are shown in Table 

2 for all sampling intervals within treatment. Some receivers recorded horizontal 

distances from the known location that were much greater than the distances recorded 

by the majority of receivers in each sampling interval (full set of horizontal accuracies 

available in Appendix 1). This is shown to an extent by high standard deviations in 

Table 2. Furthermore, Shapiro-Wilk tests for normality showed (P < 0.001) that 

receiver horizontal accuracies within sampling intervals were not normally distributed. 

A Kruskal-Wallis one-way ANOVA was undertaken (P < 0.001) followed by a 

pairwise Wilcoxon rank sum test that showed that a total of 11 receivers (1, 7, 9, 14, 15, 

18, 25, 31, 33, 35, 36) produced error distributions that were significantly different (P < 

0.001) from the others in at least one sampling interval. It was also found that these 11 

receivers were consistently erroneous across treatments (OF and HR). This is an 

important observation as this meant that the initial sample of GPS receivers could no 

longer be considered replicates of each other and that removal of erroneous units was 

essential.  
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Table 2. Mean horizontal accuracies (m) of 36 GPS receivers across sampling intervals 

within treatment 

Test Horizontal error measures 

Open field Min 

(0%) 

CEP 

(50%) 

1 Sigma 

(68%) 

R95 

(95%) 

2 Sigma 

(98%) 

Max 

(100%) 

30 s       

Mean 0.24 1.58 1.93 3.29 3.86 16.48 

SE 0.02 0.15 0.18 0.30 0.35 5.63 

SD 0.14 0.87 1.05 1.82 2.11 33.76 

       

10 s 

Mean 0.13 1.86 2.43 3.87 4.85 34.05 

SE 0.01 0.30 0.43 0.62 0.86 15.07 

SD 0.08 1.79 2.59 3.73 5.19 90.39 

       

5 s 

Mean 0.18 2.00 2.66 4.17 5.32 130.31 

SE 0.02 0.52 0.84 1.09 1.67 110.05 

SD 0.14 3.15 5.02 6.55 10.05 660.33 

       

Hedgerow 

 

      

30 s        

Mean  0.10 1.81 2.29 3.76 4.59 19.95 

SE 0.01 0.12 0.16 0.24 0.31 2.13 

SD 0.06 0.70 0.94 1.47 1.88 12.76 

       

10 s       

Mean  0.10 15.08 18.70 31.37 37.41 330.01 

SE 0.01 13.30 16.47 27.65 32.94 306.69 

SD 0.08 79.77 98.82 165.92 197.65 1840.17 

       

5 s       

Mean  0.08 1.90 2.38 3.96 4.76 25.48 

SE 0.01 0.09 0.12 0.19 0.23 5.08 

SD 0.04 0.54 0.70 1.11 1.40 30.49 
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Subsequently, the data for each receiver deemed to be faulty were removed and 

the data from the remaining units (n = 25) were retested and normality was confirmed 

for all horizontal accuracy measures. The standardised datasets (without erroneous GPS 

receivers) for OF and HR can be seen in Appendix 2, but Table 3 shows the mean 

values for each sampling interval and treatment. Notably, the mean values for each 

sampling interval were more consistent, with a reduction in the variability of the data 

across both treatments. One-way ANOVA were undertaken to test for differences in the 

errors between sampling intervals within treatment, but none were found (P > 0.05). 

The mean (± SD) error at the R95 level for the OF test was 2.73 m (± 0.11 m) and in 

the HR test, this was 3.41 m (± 0.46 m). Despite absolute accuracy not having a direct 

impact on the methodologies employed in Chapters 1-3, this knowledge is useful as it 

highlights the capabilities and limitations of the receivers in use. It also meant that 

industry-standard values were available for comparing receivers and that if necessary, 

in future work, they could be used to identify the location of animals to within a given 

level of precision which could be important in studies of grazing ecology for example. 

Given that absolute positional fix accuracy can also change due to the movement of 

terrestrial animals, future studies should consider the effect of movement on GPS 

output and whether fine-scale behaviours are masked by any uncertainties in GPS 

measurements (Laube and Purves, 2011). This should be repeated using a range of 

sampling intervals to at least include those intervals tested here.     
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Table 3. Mean horizontal accuracies (m) of reduced set of 25 GPS receivers across 

sampling intervals within treatment 

 

Finally, using the standardised group of receivers, one-way ANOVA were 

undertaken to test whether the observed pairwise differences between the data gathered 

in both OF and HR treatments were significantly different from each other. For this 

analysis, the horizontal accuracy values across sampling intervals were grouped given 

that sampling interval was found to have no impact on the error distribution of the 

Test Horizontal error measures 

Open field 

 

Min 

(0%) 

CEP 

(50%) 

1 Sigma 

(68%) 

R95 

(95%) 

2 Sigma 

(98%) 

Max 

(100%) 

30 s       

Mean 0.24 1.31 1.60 2.73 3.21 7.23 

SE 0.03 0.01 0.01 0.02 0.02 0.09 

SD 0.15 0.04 0.05 0.08 0.10 0.47 

       

10 s 

Mean 0.13 1.31 1.61 2.73 3.21 7.52 

SE 0.02 0.01 0.01 0.02 0.03 0.10 

SD 0.08 0.05 0.07 0.11 0.13 0.50 

       

5 s 

Mean 0.19 1.32 1.62 2.74 3.23 9.74 

SE 0.02 0.01 0.02 0.03 0.04 0.33 

SD 0.12 0.07 0.09 0.15 0.18 1.66 

       

Hedgerow 

 

      

30 s        

Mean  0.11 1.62 2.04 3.36 4.08 16.58 

SE 0.01 0.05 0.07 0.10 0.13 1.78 

SD 0.07 0.23 0.34 0.48 0.67 8.88 

       

10 s       

Mean  0.09 1.58 1.96 3.28 3.92 14.70 

SE 0.02 0.03 0.03 0.06 0.07 1.55 

SD 0.08 0.13 0.17 0.28 0.35 7.76 

       

5 s       

Mean  0.08 1.73 2.15 3.59 4.30 15.93 

SE 0.01 0.06 0.08 0.12 0.16 2.14 

SD 0.04 0.29 0.40 0.61 0.79 10.68 
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standardised dataset. Except at the minimum error level (P = 0.06), the observed 

differences in static accuracy between OF and HR receivers were highly significant (P 

< 0.001), likely because GPS signals were being reflected from the hedgerow leading to 

the phenomenon known as multipath error (de Weerd et al., 2015). At the R95 level, 

the HR data were on average 0.68 m further from the measured reference point 

compared to the OF data (Figure 4). The maximum values recorded for the HR 

receivers were also more variable than the maximum values recorded for the OF 

receivers (Table 3 and Figure 4). 

 

Figure 4. Pairwise comparisons of error measures of 25 standardised GPS receivers 

between open field and hedgerow treatments. Data are grand means across three 

sampling intervals (30 s, 10 s, 5 s). Bars are SE. 

 

 This meant that for any animal experimentation, only the sample of 25 

standardised GPS receivers would be used. Consistency is important in the data 

gathered for modelling because any erroneous data appearing in training sets are likely 

to lead to unstable classification models (Lange et al., 2003). Given the significant 

impact of the hedgerow on the GPS error distributions, it was decided that all animals 
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used for subsequent data collection would be managed to avoid any objects that could 

affect positional fix accuracy. This is an obvious limitation to the methodology and 

account for such structures would be needed in future work. As such, all animal work 

described in Chapter 1 was undertaken in a 1-ha paddock located in the middle of the 

field used for the OF calibration experiment (Figure 3). More detail can be found in 

Chapter 1: Grazing management and GPS.    

3.2.4.5 Summary of GPS static accuracy tests 

 The results indicate the importance of testing receiver static accuracy. This is 

evidently needed not only to standardise the GPS receivers used but also to test the 

impact of sampling interval and also physical structures on the data. It was concerning 

to find that some receivers produced significantly different error values to others. The 

documentation for the GlobalSat DG-100 GPS (https://www.gpscentral.ca/manuals/gs-

dg100.pdf) states that the receiver has a horizontal 2DRMS accuracy of 10 m. This 

measure is equivalent to 2 Sigma (Agouridis et al., 2003) and it can be seen (Table 3) 

that the mean errors for the standardised sample of receivers was within this quoted 

distance (mean OF = 3.22 m; mean HR = 4.1 m). In addition, a dynamic test could have 

been undertaken to consider the impact of animal movement on error distribution and 

should perhaps be considered for future work (Schipperijn et al., 2014). Given that 

sampling interval was found not to affect receiver accuracy, it was decided that an 

interval of 5 s would be used for animal work as this would provide the greatest 

resolution for the battery power available. It was found that at this sampling interval (5 

s); two AA batteries would provide enough power to gather data for 26 hrs.  

To minimise the influence of noise or error in GPS samples, preprocessing 

methods can be implemented prior to further data manipulation. The application of 

moving-average windows or median filters that smooth data to remove outlying 

https://www.gpscentral.ca/manuals/gs-dg100.pdf
https://www.gpscentral.ca/manuals/gs-dg100.pdf
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instances are often used (Clapham et al., 2011; Studd et al., 2019). Fixed windows are 

passed over the data to generate a new dataset that represents the average (or median) 

of the original data from each fixed window. The size of the window is determined by 

the analyst and many window sizes can be tested. These methods have been shown to 

improve classification models and improve changepoint detection in both the PLF 

(Behmann et al., 2016; Lush et al., 2018) and the movement ecology literature 

(Meckley et al., 2014; Gurarie et al., 2016). Median filtering usually requires that 

thresholds are set where instances that are above (or below) these thresholds are 

replaced with the median of the window. Although not used in the chapters herein, data 

filtering techniques could be effective in removing erroneous GPS instances that could 

arise due to some of the challenges described in Section 3.2.         
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3.3 Other sensors and tools for behaviour classification  

3.3.1 Muzzle pressure sensors 

3.3.1.1 IGER recorder 

While accelerometers and GPS occupy the majority of current PLF research in 

cattle behaviour classification (especially the former), other sensors have been in use 

for a number of years and are likely to feature more in future research. Pressure sensors 

are one such example. One of the first for use in ruminants (sheep) was developed by 

Penning (1983) that recorded jaw movements from the stretching and contraction of a 

noseband. They were able to classify grazing, ruminating and idling every minute but 

success on shorter bouts of behaviour was low. An updated version of this sensor 

(IGER recorder) was developed by Rutter et al. (1997) using a microcomputer 

recording system rather than a cassette recorder (Figure 5A). Post-processing of the 

data is then undertaken using bespoke software (Rutter, 2000). The overall level of 

agreement between manual observations and instances classified by the system was 

91% for feeding, ruminating and ‘other’ behaviours.  

3.3.1.2 Rumiwatch 

More recently, a low-profile halter-based noseband pressure sensor; Rumiwatch 

(Figure 5B), has been developed for measuring the attributes associated with feeding in 

dairy cows (e.g. eating chews and prehension bites). Again, this technology uses 

bespoke software for post-processing. The most recent publication to examine the 

performance of this system (Rombach et al., 2018) found that it predicted the number 

of rumination boluses, rumination chews and total eating chews very well (prediction 

error < 0.10). However, the prediction errors for prehension bites and time spent in 

prehension and eating was higher (prediction error > 0.10). As previously discussed, 

(Section 2.3), one of the variables found to affect the performance of this system in this 
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most recent publication was the feed delivery method. Producing robust models and 

software that can deal with this type of variability will likely be a significant area of 

focus for researchers moving forward. 

3.3.2 Acoustic sensors 

Another well-established method for behaviour classification (particularly 

feeding) is acoustic monitoring. Ungar and Rutter (2006) found that when compared to 

the IGER recorder, a microphone placed on the head of cows was able to produce 

comparable classification results. Milone et al. (2009) used a wireless microphone 

attached to the heads of sheep (Figure 5C) and a hidden Markov model to automatically 

segment and classify chewing events produced from the consumption of two different 

forages. Overall, chewing events were correctly identified 82% of the time. More 

recently, Vanrell et al. (2018) used a head-mounted microphone and recording device 

(Figure 5D) and a two-stage segmentation and classification approach of foraging 

behaviours. The regularity of events was detected by the autocorrelation of the sound 

signature which was used to define the time boundaries of the events. Feeding attributes 

were then classified using features that are unique to each type of behaviour such as the 

number of pauses (higher during rumination compared to grazing). F-measures of 0.89 

and 0.93 were achieved for rumination and grazing respectively.      
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Figure 5. Examples of pressure and sound recording sensors used for ruminant 

behaviour classification. A = IGER recorder (pressure); B = Rumiwatch (pressure); C = 

head-mounted microphone; D = head-mounted microphone and recording device (b and 

a respectively). Images adapted from Rutter et al. (1997), Rombach et al. (2018), 

Milone et al. (2009) and Vanrell et al. (2018) respectively. 

 

3.3.3 Local positioning sensor systems  

 A novel technique for measuring the location of cows in housed environments is 

gaining interest because of the insight that it can provide on the spatio-temporal 

behaviours of cows. Local positioning sensors (LPS) are in principle very similar to 

GPS in that they can provide information on the absolute position of cows, and given 

frequent sampling can be used to determine the movement of cows throughout a barn. 

The system comprises two main components; static receivers that are located within the 

barn and mobile sensors that can be fitted to cows that relay their positions at 

predetermined intervals to the static reveivers. The location of cows within the barn is 

calculated by triangulation with each static receiver, providing positioning in coordinate 

format (x, y). The location accuracy of the mobile sensor can be measured using 

methods similar to those reported in Table 1 and these analyses were undertaken by 



 46  

Barker et al. (2018). They found that the location accuracy of the LPS system differed 

depending on whether cows were standing or lying, and this could not be improved 

upon using post-processing methods on the raw data. To mitigate some of the issues 

that could have arisen given inaccuracies in the measured location data, a moving 

average window was applied to the raw data to remove outliers.  

These systems can be combined with other precision sensors to identify key 

behaviours throughout the housed environment. In conjunction with the LPS system, 

Barker et al. (2018) used a decision tree algorithm to classify the behaviour of housed 

dairy cows that were fitted with neck-mounted accelerometers. The LPS system was 

used to supplement the classification procedure to monitor the feeding behaviour of 

lame and non-lame cows. Diosdado et al. (2018) also used a similar system to monitor 

the space-use patterns of housed dairy cows. LPS is likely to be a very valuable tool to 

monitor cattle in housed environments as it can provide behavioural information that 

was previously inaccessible using other precision sensors such as GPS.             
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4. Animal movement modelling and path segmentation  

4.1 An overview of methods in movement ecology 

The development of GPS has permitted the collection of large amounts of data 

from a variety of species and as such, a variety of movement models have been applied 

and developed over recent years. At its simplest level, animal movement can be 

modelled using uncorrelated random walks with its fundamental application to the 

motion of pollen particles almost two centuries ago (Brown, 1828). In these models, the 

directionality of movement is completely independent of the previous direction moved 

and the location moved to depends only on the previous location (Codling et al., 2008). 

Given the directional persistency that animals tend to demonstrate during movement, 

correlated random walks are often used to provide a more realistic representation of 

movement (Codling and Hill, 2005). Animals may also demonstrate a particular bias to 

certain targets during movement and these biases (either fixed throughout the whole 

movement path, or space and time dependent) can also be accounted for using biased 

random walks (Benhamou, 2006). Sampling interval will also affect the prediction of 

movement using random walk models and longer intervals will lead to the appearance 

of a more random pattern of behaviour (Codling and Hill, 2005). Step length (distance 

between successive relocations) is also an important feature of animal movement and 

generally, the step lengths of animals modelled using random walks have a finite 

variance although other methods (e.g. Lévy walks) have been proposed as models for 

animal movement where step lengths have an infinite variance (Viswanathan et al., 

2000). In these models, focal animals are assumed to switch between two or more walk 

patterns and can be useful when considering behaviour which may involve movement 

within a restricted area (Benhamou, 1992).  
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Composite correlated random walk is another random search model where area-

restricted searches feature as one of the modelled behaviours (Benhamou, 2007). These 

two-behaviour models are typically used to account for ‘intensive’ and ‘extensive’ 

phases of behaviour, typically foraging events and the location of food patches (Dragon 

et al., 2012). Resources may be abundant but not spatially uniform and so it would be 

expected that animals would focus their attention to those patches of resources and thus 

exhibit what is known as an area-restricted search (Kareiva and Odell, 1986). These 

may be characterised by increased turning rates and slower speeds in GPS data 

(Fauchald and Tveraa, 2003). In reality, an animal may be responding to a number of 

environmental stimuli and thus, may demonstrate a number of different walks with 

different turning rates and speeds. To quantify differences in behaviours along a path, 

the first-passage time approach is an intuitive method which describes the time taken by 

animals to pass through a circle of a given radius (Johnson et al., 1992). An example of 

its application could include the time taken by a predator to locate its prey within a 

given area. First-passage time has been used extensively to model multi-species 

behaviours (Fauchald and Tveraa, 2003; Frair et al., 2005) and is being increasingly 

used for studying the movements of migratory and endangered species (Suryan et al., 

2006) with further work examining its applicability to situations where the scale of 

area-restricted searches varies within the same movement path (Pinaud, 2008).  

State-space models have also become a prominent methodology for predicting 

animal behaviour based on observations (e.g. location and speed) coupled with a 

process model which predicts the future state of the animal (e.g. behaviour) based on 

the observations (usually recorded by GPS or other sensors) (Jonsen et al., 2006; Breed 

et al., 2006). In mathematics, this assumption is known as the Markov condition and its 

principles are considered in Chapter 2 as a method for predicting cow behaviours. A 
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benefit of state-space models is that they combine three major phases of analysis, 

including error correction (e.g. correction of GPS movement paths based on 

assumptions of animal movement), calculation of movement metrics and pattern 

identification (statistical analysis). Furthermore, environmental information can be 

incorporated into these models leading to more realistic behavioural inferences (Jonsen 

et al., 2003). Indeed, understanding more about animal movement often requires path-

level segmentation of movement trajectories to dissect paths into a number of discrete 

states that are assumed to represent different underlying behaviours (Edelhoff et al., 

2016).                      

In many studies of animal movement, data segmentation is a necessary step for 

partitioning high frequency sensor data. Two main strategies exist in the PLF literature 

for the segmentation of sensor data, these are fixed-time segmentation (FTS) and 

variable-time segmentation (VS) with the former being used in the majority of PLF 

studies (Section 4.1.1). VS, on the other hand, despite having its roots in process 

control and fault detection has been very well developed over the last few decades for 

path segmentation of animal movement data where the behaviour of the focal species is 

not very well characterized largely due to observational difficulties. The selection of the 

appropriate segmentation strategy depends on a number of variables including the data 

collection methodology and the subsequent use of any derived movement model. The 

basic aim in each case is to characterize the behaviour in each segment from datasets 

that are ultimately samples of the underlying behavioural processes represented across 

time or both space and time (Calenge et al., 2009). From the perspective of animal 

movement ecology, path segmentation has been an important area of animal science for 

decades and the rapid increase in the technologies available for monitoring animal 

movement has led to the further development and use of sophisticated mathematical 
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solutions for path segmentation (Nathan et al., 2008). This has allowed scientists to 

learn more about the biological and environmental processes behind the behaviours that 

are driving the observed movement patterns (Killeen et al., 2014). To make behavioural 

inferences, path segments can be analysed for summary statistics that convey relevant 

information about individual movements and a large number of measures can be used 

to describe these segments (e.g. velocity, turning angle and step-length). It is important 

to note however that some segmentation methods do not provide segment summary 

statistics as they have been developed mainly for process control and do not require 

ecological context. It follows then that some methods require further post-processing to 

derive meaningful information from the resultant segments (Section 4.1.2.2.2 and 

Section 4.1.2.2.3). Regardless of the method employed for VS, three broad categories 

of analytical approaches exist, namely topology-based approaches (describe movement 

patterns quantitatively), timeseries (detect points in time where behaviour shift occurs) 

and state-space-based modelling approaches (identify hidden states), more of which are 

discussed in Section 4.1.2.2.       

The following sections begin with a discussion on the use of FTS largely in the 

context of PLF data. VS is then discussed, providing background on the various 

techniques available and some examples of the use of VS both in the literature and on 

simulated data.     
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4.1.1 Fixed-time segmentation  

4.1.1.1 Background  

Many studies using ML techniques for automated livestock behaviour 

prediction have developed their classification models from sensor data partitioned using 

FTS (Martiskainen et al., 2009; Dutta et al., 2015; Rahman et al., 2018; Benaissa et al., 

2019) including Chapter 1 herein (Williams et al., 2016). The classification models are 

usually derived from supervised datasets where the focal animal has been observed as 

ground-truth to the electronic data that were gathered. This data may have been 

collected from a single sensor or a combination of sensors placed on the animal. For 

modelling, FTS requires that data streams based on single behaviours (e.g. grazing) are 

taken and broken down into segments of a predetermined (fixed) size for the derivation 

of summary statistics or feature vectors; a set of explanatory variables extracted from 

each segment (Section 5.2). From the perspective of a movement ecologist interested in 

the underlying processes (hidden states) of a migratory species, there may be several 

considerations for choosing the appropriate segmentation strategy (Section 4.1.2) or 

indeed the general classification methodology, but for those interested in monitoring 

the behaviour of livestock (e.g. cattle) an FTS strategy is usually appropriate for ML. 

This is because the most important behaviours exhibited by cattle (from a farmer’s 

perspective) are few and usually include feeding, ruminating, standing, lying, drinking 

and walking and possibly combinations of these. It is also well established that these 

behaviours correlate highly with animal performance and health (Liboreiro et al., 2015; 

Stangaferro et al., 2016; Kaufman et al., 2016) and that they tend to take place over 

long periods of time (minutes) (Thorup et al., 2016). Grooming, for example may not 

be as important and it may not be practically possible to identify from GPS or 

accelerometer data due to its intermittent nature and difficulty in obtaining enough 
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ground-truth observations as training data (González et al., 2015; Ungar et al., 2018). 

There may be other, species-specific behaviours that are useful to identify such as 

nursing (Yang et al., 2018) and aggression (Lee et al., 2016), which are important in 

pig-rearing systems and such behaviours may require the use of alternative sensors and 

video capture technologies. The relative ease of annotating sensor data gathered from 

domesticated animals means that comprehensive information can be collected on how 

the movement of the animal is reflected in each data signature. Conversely, an analyst 

interested in deciphering the behaviour of elusive animals can only speculate as to the 

behaviours that are taking place in each dataset. As such, several tools have been 

developed and refined to partition unsupervised datasets so that movement ecologists 

can gain a better insight into the behaviours of various species (Section 4.1.2).  

4.1.1.2 Classifying data streams using fixed-time segmentation 

When using a model developed using FTS, it must usually be deployed in a 

moving window of derivative size. Using useful and identifiable behaviours (e.g. 

grazing, lying, and standing) means that for the majority of the time, a moving window 

of fixed size is appropriate for cattle because the majority of behaviours are not 

sporadic in nature. Supervised classification with a robust and optimised classifier is 

therefore likely to yield good classification performance when deployed in real-time. 

However, a moving window will not always meet the exact behaviour transition points 

in a timeseries, and this can lead to misclassifications (Figure 6). 
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Figure 6. Fixed-time data segmentation and classification of cow behaviours. An 

analysis window (learned classification algorithm) moves along the timeseries, 

segmenting the dataset and extracting data features for behaviour classification. On 

some occasions, the analysis window will not segment at the exact behaviour transition 

boundaries and this will likely lead to behaviour misclassifications. Behaviours grazing, 

resting and walking indicate the ground-truth observations. 

 

Deriving the optimal fixed window size is a function of the behaviours to be 

identified which in turn depends on the sensor used, the species of animal, its 

environment, amongst many other variables. Another important consideration is the 

temporal frequency of data capture. Frequent data capture (e.g. seconds) will allow for 

the definition of finer-scale behaviours but can be more prone to error due to spatial 

inaccuracies (GPS) and high sensitivity to movement (e.g. accelerometers) (de Weerd 

et al., 2015; Benaissa et al., 2019). However, lower sampling frequencies can reduce 

the variety of behaviours that can be identified (Benaissa et al., 2019). Sampling 

frequency is an important area of discussion in the movement ecology literature as in 

reality, animal movement (especially non-domestic species) often involves finite 

distances moved in finite times (Plank and Codling, 2009). In movement ecology, the 

discrete data points gatherd from continuous movements can be modelled but this 

discretisation can bias the movement path which can lead to issues such as over or 

underestimations in distances travelled (Nams, 2013). One of the key factors in 
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determining distances travelled is the tortuosity of the movement path which is usually 

species dependent and much work has been undertaken recently to try and make 

improved estimations of animal movement paths using various sampling frequencies 

and modelling strategies (Marcus Rowcliffe et al., 2012; Steenweg et al., 2018). For the 

study of livestock movement paths, these principles will be important to consider in 

future research, both where aggregation and FTS are required but also for modelling 

movement paths using techniques that are already well established in the movement 

ecology literature.            

In PLF studies, the breadth of behaviours identified has increased over the last 

decade largely due to improved sensor capabilities and lower cost. Furthermore, 

analysts were mainly confined to sensors that only recorded spatial and temporal data at 

low frequencies mainly due to battery power and data capacity. As such, selecting an 

appropriate window size for FTS requires careful optimisation. However, analysts must 

recognise that performance can often be degraded when classifiers are deployed on 

continuous data streams because of window misalignment at transition points (and also 

due to segments not previously seen in the training set) (Bom et al., 2014). 

Unfortunately, this is often overlooked in livestock behaviour-classification studies. 

The majority of studies only undertake model training and testing (e.g. using cross-

validation) on independent data segments and do not consider the classification of 

continuous data sequences (Rutten et al., 2013). Some are recognising this issue and 

have attempted to classify transition points automatically (Diosdado et al., 2015).  

Chapter 2 discusses a method for correcting segments that are erroneously 

classified using FTS. This method was adapted from Feldman and Balch (2004) where 

the authors used the output of a kernel regression classifier as input to a hidden Markov 

model (HMM) to classify the movements of honeybees. The HMM was used to 
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statistically correct unlikely classifications from the classifier based on the known 

movements of honeybees. This led to an overall improvement in CA. Data from GPS 

receivers attached to cattle can be considered emissions of the true behaviours (hidden 

states) that are not visible (behaviour predictions are made from the data). Each hidden 

state therefore has a probability over all emissions. Probabilities can also be estimated 

for the transitions between states, for example, the probability of moving from a state of 

grazing to a walking state. HMMs use this information for estimating the likely state 

sequences. HMMs have been used extensively for speech recognition (Rabiner, 1989) 

and for behaviour prediction in animal research (Pedersen et al., 2011). In Chapter 2, an 

HMM was used to correct the state sequences produced from the model developed in 

Chapter 1 over several datasets. For an overview of HMMs and optimum state selection 

methods, see Pohle et al. (2017).        

4.1.2 Variable segmentation  

4.1.2.1 Background    

 Variable segmentation (VS) as a strategy for detecting significant changepoints 

in timeseries data has its origin in fault detection for industrial processes (Lai, 1995) but 

also has uses in monitoring medical conditions (Bosc et al., 2003), detecting climate 

change (Reeves et al., 2007) and in speech recognition (Chowdhury et al., 2012) 

amongst others. In some applications of movement ecology and for the majority of 

publications to date that have modelled livestock behaviour from discrete sensors, FTS 

is used to iteratively segment the timeseries using a predetermined segment size 

(Section 4.1.1). The objective of VS is to partition the timeseries based on significant 

changes in one or more properties of the dataset (Kawahara and Sugiyama, 2012) either 

retrospectively or in near real-time. For the majority of studies of animal movement 

ecology, retrospective methods (often known as ‘offline’ analyses; see Section 10.4 for 
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further discussion) are used on data recovered from animals to detect significant 

changepoints. Once the timeseries has been partitioned, expert opinion can be used to 

label the behaviours occurring between each partition point, but states can also be 

applied using statistical techniques such as clustering (Zhang et al., 2015). Given the 

background of VS as a technique for modelling multispecies behaviours from sensor 

data, Chapter 3 evaluates the use of VS for modelling dairy cow behaviour from a 

supervised dataset. Before discussing a small sample of VS methods, the next section 

provides some background on animal movement modelling and the range of methods 

discussed in the movement ecology literature.       

4.1.2.2 Variable segmentation methods 

The field of movement ecology is well known for its development and use of 

changepoint detection methodologies for quantifying animal movement. These methods 

are fundamental in determining the behaviour of individuals and groups of animals and 

for studying the impact of ecosystem changes, infectious diseases and other 

perturbations on animal movement (Nathan et al., 2008). Fundamental to these analyses 

is the development of sensors that are able to effectively store and relay information 

about the focal animal at a timescale that best represents the overall movement of that 

animal. Movement paths can then be analysed for distinct elemental phases that can 

provide information on the internal states of animals as well as their motivations for 

movement. Methods that describe these movement patterns quantitatively are known as 

topology-based methods. These methods describe geometric properties of the data and 

group segments based on similarities in these properties. Typical methods that fall 

under this category of path analysis are thresholding or clustering methods (Van 

Moorter et al., 2010; Dzialak et al., 2015). Time-series analysis can be used to detect 

significant changes in a time-ordered set of observations and are widely used in ecology 
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and related disciplines (Gurarie et al., 2009; Madon et al., 2014). Some of these 

methods rely on user-modified parameters such as specifying the maximum number of 

changepoints in a sequence or the minimum length of the detected segments (Chapter 

3). Some methods can also account for temporal correlation in sequential signal data 

(Gurarie et al., 2009). Finally, and as mentioned previously, state-space models provide 

an opportunity to identify hidden behavioural states based on the observed movement 

data (Chapter 2). In this method, a probabistic approach is used to predict the future 

state (behaviour) of the animal based on its current state which is derived from the 

emitted signals gathered from the on-animal sensor in many cases. Movement paths are 

then segmented based on state membership. Several VS methodologies have been 

developed and used to reveal insights into the spatial and temporal movement of 

animals but only a sample are discussed here, focussing on some of the most prominent 

segmentation methods in the movement ecology literature. Further VS methods are 

discussed in Section 10.4 and Chapter 2 describes the use of HMMs for modelling cow 

movement which share very similar properties with state-space models.     

4.1.2.2.1 Behavioural changepoint analysis  

The behavioural changepoint analysis (BCPA) is one example of a VS 

technique (Figure 7) that iteratively ‘sweeps’ an analysis window over a computed 

metric of the timeseries dataset (persistence velocity; Vp) derived from velocity, turning 

angle (angle between GPS fixes) and step length (distance between GPS fixes) (Gurarie 

et al., 2009). Changepoints are identified when a significant change is detected between 

the current analysis window and the previous using maximum likelihood methods. A 

change may be represented by a shift in a single or a combination of three properties of 

the data (mean, variance and autocorrelation) represented by seven different models. 

For example, a significant change in the mean of Vp may occur between two windows 
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but variance and autocorrelation stay the same. If no change is detected, then the null 

model is selected. BCPA has been used to identify the behaviours of Pacific black duck 

(Anas superciliosa) (McEvoy et al., 2015) and also to assess the interactions between 

greater sage-grouse (Centrocercus urophasianus) (Prochazka et al., 2017). The BCPA 

package is available in R (Gurarie, 2015). BCPA is widely used in the field of 

movement ecology and to the candidate’s knowledge, it has not been used on livestock 

movement data to date.  
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Adapted from Gurarie et al. (2016) 

Figure 7. Simulated tracks (a-c) each consisting of 300 equally spaced observations 

with changes in mean speed (a), tortuosity (b) and home-ranging behaviour (c). Bottom 

panels show the behavioural changepoint analysis (BCPA) applied to each track. 

Vertical bars (purple) indicate significant changepoints in the simulated tracks. 

     

4.1.2.2.2 Changepoint model 

The changepoint model (cpm) can be used to detect changes in the mean or 

variance of both parametric and non-parametric timeseries using retrospective 

changepoint detection (batch detection) or detection in almost real-time (sequential 

detection) (Ross, 2015). Examples of the single changepoint detection methods are 

shown in Figure 8. A number of test statistics are available for use in identifying 

significant changepoints depending on the distribution of the data (e.g. Student-t 

(Figure 8A) and Mann-Whitney (Figure 8B) tests). The cpm package (Ross, 2015), 

implemented in R has been used previously to segment accelerometer data from free-

ranging crab plovers (Dromas ardeola) (Bom et al., 2014) and a golden eagle (Aquila 

chrysaetos) (Sur et al., 2017) prior to supervised ML of the variable segments. Bom et 

al. (2014) achieved significantly better classification performance for some behaviours 



 60  

with VS compared to FTS, although for the majority of behaviours, the results were not 

significantly improved when VS was used. 

Figure 8. Simulated Gaussian (A) and binomial (B) timeseries of 1000 observations 

showing true and estimated changepoints as determined by parametric (Student-t) and 

non-parametric (Mann-Whitney) tests respectively. A single, true changepoint (change 

in mean) is located at observation 500 in each timeseries. Tests were undertaken using 

the changepoint model (cpm) package (Ross, 2015) in R. 

  

4.1.2.2.3 Changepoint 

A final example of VS that can be applied to animal movement data is 

implemented in the R package ‘changepoint’ (Killick and Eckley, 2014); a likelihood-

based approach to changepoint detection. Changepoint provides a selection of 

algorithms for detecting multiple changes in the mean and/or variance of a timeseries as 

well as a selection of test statistics. Three multiple changepoint detection algorithms are 

available, namely, binary segmentation, segment neighborhood and pruned exact linear 

time (PELT). Binary segmentation is less computationally expensive than segment 
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neighborhood but a trade-off for higher speed is that binary segmentation is less exact 

in its estimations. PELT on the other hand is reported to share the exactness in its 

changepoint estimations as that of the segment neighborhood algorithm (Killick et al., 

2012) but is computationally more efficient and has been the algorithm of choice for 

some (Madon and Hingrat, 2014; Ramasco et al., 2014; Shahriar et al., 2016).  

Changepoint was used in Chapter 3, for VS of the transformed speed variable 

gathered from GPS receivers applied to dairy cows (Williams et al., 2019). The binary 

segmentation algorithm was used to search for changepoints in the variance of the 

timeseries primarily because in preliminary tests, this algorithm made fewer FP 

predictions than PELT and was computationally quicker than the segment 

neighborhood algorithm. Using the segmented data, feature-vectors were created for 

ML. Compared to FTS (Chapter 1; Williams et al., 2016), VS showed very promising 

results for classifying grazing, resting and walking which is in agreement with Bom et 

al. (2014).  

4.2 Summary of segmentation methods 

For PLF applications where high temporal resolutions are required for 

modelling infrequent, fine scale behaviours, VS techniques show great promise. More 

work is needed in PLF research to test this assumption using sensors such as 

accelerometers. Currently, the candidate is only aware of one other study that has used 

VS for identifying dairy cow behaviour (Shahriar et al., 2016) but there is potential for 

the use of such techniques in measuring variables associated with disease progression 

(e.g. temperature) and also for the prediction of calving (e.g. lying bout duration). For 

current research, most VS methods are based on offline analyses. Moving forward and 

with enhanced ability to relay sensor data in real-time, it may become possible to 

monitor animals in near real-time (online analysis) to detect behavioural changes 
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almost as they occur. Further unsupervised chagepoint detection methods are discussed 

in Section 10.4 but for a comprehensive review of many changepoint detection methods 

for timeseries data, please see Aminikhanghahi and Cook (2017).     

5. Machine learning in dairy research       

5.1 Background of machine learning 

The availability of large and often complex datasets on farms is now providing 

the potential for the application of ML techniques in the dairy industry. The opportunity 

to exploit such data for information that may have been previously unattainable is very 

likely to lead to the development of new decision support tools at farm level (Kamilaris 

et al., 2017). This data has largely stemmed from improvements in data capture 

technology. However, already established databases can be exploited by such 

techniques to reveal new insights, for example into disease phenotypes (Tsairidou et al., 

2018).  

The dairy industry is not the only branch of livestock agriculture to benefit from 

these methods. Work has been undertaken to automatically identify the behaviours of 

sheep using accelerometers and ensemble algorithms (Mansbridge et al., 2018), classify 

beef quality attributes using mass spectrometry data and support vector machine 

algorithms (Gredell et al., 2019) and identify porcine disease using environmental 

sensor data and neural network algorithms (Cowton et al., 2018). The power to exploit 

large datasets is continually improving and the emergence of big data technologies and 

powerful computing platforms is allowing for high throughput data analysis (Kamilaris 

et al., 2017; Wolfert et al., 2017).  

Computerised management and decision support systems on dairy farms have 

been discussed for a number of years (Udomprasert et al., 1990; Pietersma et al., 1998). 

In a research context, ML for decision support has increased over the last 10 years for a 
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variety of dairy-related topics. A broad literature search using the keywords ‘machine 

learning’ and ‘dairy’ using the Web of Science (Thomson Reuters, 2019) database 

found 100 articles published since 1995. Thirty-nine articles were categorised into 

Agriculture and Dairy of which 29 (74%) were published since 2013. It is evident that 

the exploration of ML in the context of dairy management has become a very important 

field of research in the last 10 years and this trend is very likely to continue. Currently, 

the two most important research topics are automatic behaviour classification and the 

use of ML for predicting the optimal insemination time and likely outcomes in cattle.    

5.2 Feature sets for machine learning  

ML processes usually involve training a model on a feature set developed from 

a sampled raw dataset. Features are extracted to increase the dimensionality of the 

dataset and can take many forms (e.g. binary or numeric). The feature set is used as a 

collection of input parameters that an ML algorithm can learn from. In studies using 

accelerometers to classify the behaviours of focal animals, there are some well-

established features that can be extracted that are common amongst research. For a 

given window of data (Section 4) and acceleration axis, the mean, skewness, kurtosis, 

standard deviation, maximum and minimum values are frequently computed for studies 

on livestock (Martiskainen et al., 2009; Dutta et al., 2015; Smith et al., 2016; Guo et 

al., 2018; Rahman et al., 2018) and other species (Yoda et al., 2001; Nathan et al., 

2012; Bom et al., 2014; Williams et al., 2015; Sur et al., 2017). Other features that are 

also computed frequently include vectorial and overall dynamic body acceleration 

(VeDBA and ODBA respectively) (Diosdado et al., 2015; McClune et al., 2015; 

Benaissa et al., 2017; Lush et al., 2018). These are often used to isolate the movements 

of the animal and to calculate energy expenditure (Gleiss et al., 2011) and they are 
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particularly useful in distinguishing between behaviours with low and high movement 

(Diosdado et al., 2015).  

To calculate ODBA and VeDBA the static component (ST) of acceleration and 

overall movement of the animal (dynamic body acceleration; DBA) are needed. To 

calculate ST, a running mean of fixed window size (e.g. 5 s) is used to smooth each 

acceleration axis (X, Y and Z). Next, DBA is calculated by subtracting ST from the raw 

acceleration data. From this, ODBA and VeDBA are calculated as: 

ODBA = DBAX + DBAY + DBAZ   (4) 

VeDBA = √DBAX
   2 + DBAY

   2 +  DBAZ
   2 (5) 

Other features are sometimes reported for acceleration data and a compilation of 

research and their selected acceleration features can be seen in the publication by Pires 

et al. (2017). Once models are evaluated on the training set, they are then applied to a 

test set of previously unseen data. The test set may indicate the performance of the 

model in future classification or prediction tasks, but performance can be degraded if 

the test set contains instances that have not been previously seen in training (Valletta et 

al., 2017).   

The rationale behind ML is that models can be improved over time as more data 

representative of the problem space is accrued. Models can then be measured on their 

performance using a variety of measures (Section 2.3.1). In part, the performance of 

any model may be influenced by the means that the raw data was sampled (e.g. 

automatic, manual), its overall quality (e.g. sampling frequency, precision of 

instrument) and the diversity of the extracted feature set (Valletta et al., 2017). When 

sensors such as GPS are used for raw data collection, feature diversity is usually 

greater, in part because feature-sets for acceleration data are well developed and tested 
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and also because GPS data signatures are fundamentally different to that of acceleration 

data. Examples of feature sets extracted from GPS data are documented by Godsk and 

Kjærgaard (2011) and Williams et al. (2016). The speed between consecutive GPS 

fixes for example can be exploited to extract some of the basic features analogous to 

that extracted from acceleration data such as mean, maximum and minimum speed. A 

further set of features unique to GPS can be extracted from positional coordinates such 

as the angularity of movement and the directional heading of the focal animal.  

This is not to say that a diverse range of features cannot be extracted from 

acceleration data. Indeed, there is quite a variation in the number of features reported in 

some publications, and some have used 20 or more (Martiskainen et al., 2009; Resheff 

et al., 2014). The goal, however, should be to minimise the complexity of the resultant 

model to reduce the computational time required to process raw data in future. This can 

be achieved by reducing the size of the feature set so that the learning algorithm only 

considers features that carry the most important statistical properties for classification 

or prediction. This process is known as feature selection or dimensionality reduction 

and has been reviewed by Sorzano et al. (2014).  

5.3 Supervised and unsupervised machine learning 

ML tasks can be classified as either supervised or unsupervised. Supervised 

learning require that ML algorithms are provided with a set of training instances 

labelled with the corresponding outcome variable or class label. The algorithm then 

maps the dependence of each class label onto the feature set (explanatory variables) and 

models are learnt in such a way as to minimise the error over the entire dataset (Liakos 

et al., 2018). Trained classifiers are then deployed on a set of test instances to predict 

the corresponding class labels before evaluating the performance of the model.  
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In unsupervised learning tasks, the data provided to the ML algorithm is 

unlabelled and as such, the goal is to search for commonalities in the data and group 

each new instance based on whether a particular commonality is present or not (Valletta 

et al., 2017). Unsupervised learning can lead to the discovery of hidden patterns and 

there are two primary techniques, namely clustering and association; the latter used to 

search for rules that explain large portions of the dataset. One example is the use of 

association rule mining in linking cattle disease phenotypes to the symptoms for 

enhanced disease identification (Bhavsar and Arolkar, 2014). Clustering on the other 

hand has been used previously to identify distinct cattle behaviours (Fuzzy-C-means; a 

commonly used clustering algorithm in pattern recognition originally developed by 

Dunn (1973) and reviewed by Nayak et al. (2015)) on a feature set derived from neck-

mounted accelerometers (Dutta et al., 2015). Using the distinct behaviour groupings 

from the unsupervised learning stage, the authors then proceeded to try and classify 

these groupings using a supervised ML technique, thus leveraging the unsupervised 

cluster analysis to reduce the number of redundant behaviour categories.  

Kumar et al. (2018) used a deep convolutional neural network (a class of neural 

network algorithms) to extract and learn a set of discriminatory features from the 

muzzle images of cattle. This feature set was then used to classify individual cattle and 

the objective of such a system is to reduce the risk of cattle misidentification.  

The experimental work herein used only supervised ML techniques. Despite, 

the limited use of unsupervised methods in the dairy sciences, particularly for cattle 

behaviour identification, some examples are emerging. Recent examples include the 

use of a clustering algorithm; k-means (Hartigan and Wang, 1979) to group segmented 

acceleration data (neck-mounted accelerometers) for the classification of heat events 

(Shahriar et al., 2016) and behaviour of housed dairy cows (Diosdado et al., 2015). The 
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next section will discuss a sample of ML algorithms, most of which are used in 

supervised classification tasks.      
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5.4 Machine learning algorithms     

 ML algorithms can be grouped by their learning style and two examples have 

already been discussed, namely supervised and unsupervised (Section 5.3). Other 

learning styles include semi-supervised learning where the input data contains a 

mixture of labelled and unlabelled data (Zhu and Goldberg, 2009) and reinforcement 

learning where an ML algorithm makes decisions based on feedback from the 

environment such as to maximise the reward in a particular situation (Sutton and Barto, 

1998). Algorithms can also be grouped by their functional method and the discussion 

herein will relate to each algorithm in this manner. Data mining software packages such 

as WEKA (Section 5.5) primarily group algorithms according to their functional 

attributes but it is worth noting that some algorithms could in fact fall into more than 

one group depending on definition. The majority of the algorithms described in the 

following sections were used in Chapters 1 and 3 and despite small descriptions of each 

being present in those chapters, further mechanistic detail is provided here. What will 

not be discussed in the following sections are algorithms that are engineered for 

purpose by analysts. For example, simple decision tree algorithms can be created using 

user input. This can be done using biological intuition or by animal experimentation to 

find optimal thresholds in sensor data that may distinguish between the behaviours of 

interest. In essence, an algorithm for behavioural classification could be engineered as a 

next step following the work by Rayas-Amor et al. (2017) where grazing and 

ruminating were distinguished using specific acceleration thresholds. An example of 

this process was undertaken by Diosdado et al. (2015) who configured optimal 

thresholds for a decision tree classifier based on the optimal true-positive and false-

positive values for specific behaviours across a range of acceleration values. Although 
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time-consuming, these methods are relatively simple and perhaps less prone to the 

complexities that can be introduced by some ML procedures.             

Finally, it is worth noting that a diverse range of supervised ML algorithms 

exist, and a single section cannot provide an extensive and comprehensive insight into 

all. Where appropriate, algorithms are discussed in the context of their use in dairy 

science research.       
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5.4.1 Trees 

 Decision tree algorithms classify instances in a dataset by sorting them based on 

attribute (feature) values. A decision tree consists of nodes (root node and internal 

nodes), branches (connecting nodes) and leaves (leaf node). Nodes represent the 

attributes of the dataset and usually contain a test that compares a particular feature 

value with a constant, for example Height
 >1.8m

 ≤1.8m
  where Height is the attribute 

representing a node and the two categories of choice represent the branches. Decision 

trees may contain multiple nodes that branch either to a subsequent node or to a leaf 

containing the class value. The classification of new instances involves movement 

down through the tree, beginning at the root node and selecting the appropriate pathway 

at each node until the instance reaches a leaf. The instance is then classified according 

to the label associated with that leaf (Figure 9).  

 

  

 

 

 

 

 

 

 

Adapted from Benaissa et al. (2019) 

Figure 9. Decision tree utilising only the feature overall dynamic body acceleration 

(ODBA) and two thresholds to distinguish between feeding, ruminating and other 

activities of cattle. ODBA = root node, ovals = internal nodes, behaviours (classes) = 

leaves. Internal nodes and leaves are connected by branches.     
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5.4.1.1 C4.5 (J48) 

One of the most popular algorithms used to build decision trees is the C4.5 

algorithm (Quinlan, 2014). J48 is the WEKA implementation of the C4.5 algorithm. 

When building a decision tree, the algorithm recursively partitions the data into subsets 

and measures the information gain resulting from choosing that particular attribute and 

thus measuring its importance in the dataset. The attribute with the highest information 

gain is used in each step before the partitioning process stops if resulting nodes contain 

single classes or if no further information gain is possible from the remaining attributes. 

Viazzi et al. (2013) used C4.5 to construct a decision tree classifier from video images 

of dairy cattle movement. Cows were categorised into three classes (not lame, lame and 

severely lame) and the decision tree had an overall CA of 76%. A similar decision tree 

was developed by Steensels et al. (2016) to classify dairy cattle as either sick or healthy 

using production parameters (e.g. milk yield and slope of lactation curve) and 

behaviour (e.g. activity and rumination). Their classifier achieved a CA of 78%.  

5.4.1.2 Naïve Bayes tree 

Naïve Bayes tree (NBTree) is a hybrid algorithm that combines decision trees 

and naïve Bayes classifiers (Section 5.4.3). The decision tree element of the algorithm 

segments the dataset and a naïve Bayes classifier is then deployed onto each segment 

(represented by leaves). The decision tree algorithm of NBTree is very similar to that of 

J48 (Kohavi, 1996).  

5.4.1.3 Logistic model tree  

Logistic model tree combines tree induction methods for classification with 

logistic regression. Logistic regression models are produced at every node in the tree 

using the LogitBoost algorithm (Friedman et al., 2000). Nodes are then split using the 

C4.5 algorithm. Cross-validation (Chapter 1: Classifier Validation Strategy) is used to 
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find the optimal number of LogitBoost iterations that do not overfit the training data 

before the tree is pruned (Landwehr et al., 2005).   

5.4.2 Rules 

 Rule-based algorithms share a commonality with decision trees in that the 

resulting classifiers are logical in their interpretation. A set of rules can in fact be 

generated from a decision tree by following a particular path from the root node to a 

leaf in the tree. For example, taking the decision tree in Figure 9 (Benaissa et al., 2019) 

a set of rules can be generated to make the classifications:  

IF mean ODBA ≤ Threshold 1 THEN Behaviour = Feeding; ELSE 

IF mean ODBA < Threshold 2 THEN Behaviour = Ruminating; ELSE 

Behaviour = Other activity 

Rule-based algorithms however generate rules directly. As with nodes in a 

decision tree, rule sets may contain a series of tests (antecedents) based on different 

attributes of the dataset. These tests lead to a conclusion which is usually the class that 

is covered by any particular instance. Antecedents within rules can also be connected 

with AND (e.g. IF a>3 AND b<4 THEN x), and all tests within a particular rule must 

be met if the rule is to work for any particular instance. The aim is to construct the 

smallest set of rules that explain the assumptions behind the training data.  

5.4.2.1 RIPPER (JRip) 

One example of a rule-based algorithm implemented in WEKA is JRip which 

implements repeated incremental pruning to produce error reduction (RIPPER; 

Fürnkranz and Widmer, 1994); a method that produces rules quickly and efficiently. 

JRip learns propositional rules which it repeatedly grows and prunes. Rules are grown 

by adding conditions until the rule is perfect. Every possible value of each attribute is 
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assessed before selecting the condition with the greatest information gain. The 

conditions are pruned in the next phase according to a pruning metric. Finally, the 

ruleset is optimized where rules performing poorly on randomized data are deleted 

(Cohen, 1995). JRip was used in Chapter 1 (Williams et al., 2016) for modelling dairy 

cow behaviour. Nine rules were generated from the feature set (extracted from GPS 

data) and the rule set had an overall CA of 85% and F-measure of 76% for the 

behaviours grazing, resting and walking.  

5.4.2.2 PART 

 PART (partial decision tree algorithm) uses the separate and conquer strategy of 

the JRip algorithm to generate a set of rules. Instances are then removed recursively 

from the training set that are covered by each rule, proceeding until no instances 

remain. Rules are generated using the decision tree approach of J48 (C4.5), using the 

leaf with the greatest amount of coverage as the new rule before the tree is discarded 

(Frank and Witten, 1998).  

5.4.2.3 OneR 

 OneR (One rule) generates classification rules from a set of instances using a 

one-level decision tree, testing one particular attribute. Each value of every attribute 

generates a different set of rules. The algorithm works on the principle that it classes 

each branch with the class that occurs most frequently in the training data. The rule set 

for each attribute is then evaluated for its error rate by counting the number of instances 

that do not have the majority class (Holte, 1993).  

Both PART and OneR were evaluated in Chapter 3 (Williams et al., 2019) as 

base learners for the classification of dairy cow behaviour from GPS data. However, to 

the candidate’s knowledge, very few examples of the use of rule-based algorithms for 

classification tasks exist in the agricultural literature.   
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5.4.3 Bayes 

Generally, Bayesian algorithms estimate the conditional probability distribution 

of attributes in a training set before assigning instances in the test set to the class with 

the highest posterior probability using Bayes’ theorem. The naïve Bayes algorithm is 

the most commonly used algorithm that sits within this grouping and it assumes that all 

attributes are unrelated to each other and that no hidden attributes influence the 

prediction process (John and Langley, 1995). Another example is the Bayesian network 

algorithm (Bayes net). This algorithm classifies instances by computing the conditional 

probabilities of attributes (nodes) given values assigned to other nodes (Sebastiani et 

al., 2005). A Bayes net classifier can be described as a directed acyclic graph with 

nodes connected by arcs that represent the probabilistic dependencies between the 

nodes (Friedman et al., 1997). 

Both naïve Bayes and Bayes net were used in a comprehensive evaluation 

alongside a number of algorithms in classifying the health outcomes of intensively 

grown calves after clinical diagnosis with bovine respiratory disease (Amrine et al., 

2014). Over one-million animals were included in the dataset and over 100 variables 

were created for the feature set with multiple datasets created for evaluation. A 

discussion of the results relative to both classifiers is outside the scope of this section 

but those interested are referred to Amrine et al. (2014). Naïve Bayes was also used by 

Dutta et al. (2015) to classify dairy cow behaviour from neck-mounted accelerometer 

data, achieving very good results on average across five behaviour categories (CA = 

90%; F-measure = 73%). Bayes net was evaluated for its use in predicting conception 

success in dairy cows with quite poor performance (AUC = 0.56) and was only 

marginally outperformed by a logistic regression model (AUC = 0.57) (Shahinfar et al., 

2014).  
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5.4.4 Support vector machine 

 Support vector machine (SVM) can be applied to both classification and 

regression tasks (Vapnik, 1999). The aim is to partition the data into discrete classes 

(Figure 10A) using a hyperplane that maximises the margin between the data points and 

minimises the number of misclassifications on the training data (Vapnik, 1999). For 

non-linear tasks (Figure 10B), the input data can be transformed into a high 

dimensional feature space using a kernel function. This is used to solve inseparability 

problems associated with linear decision boundaries. A number of kernels can be used 

with SVM and examples include the polynomial kernel and radial basis function (RBF) 

kernel.  

 

 

Adapted from Wang (2005) 

 

Figure 10. Examples of linear (A) and non-linear support vector machine (SVM) (B) 

on binary classes. In A, the two classes are separated by a linear boundary (dashed) 

located midway between the two areas (black bars) that maximise the margin between 

the two classes. Support vectors (indicated by the instances surrounded by boxes) have 

a direct bearing on the location of the separation boundary. In B, a linear boundary 

(dashed) does not separate the classes without error. Two instances from Class 1 and 

three instances from Class 2 are misclassified. The classes are however separated with a 

quadratic curve. Generally, instead of a non-linear curve, an SVM will create a higher-

dimensional feature space from the input data and attempt to solve the classification 

problem using a linear solution. 
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An SVM was used by Martiskainen et al. (2009) to classify a number of dairy 

cow behaviours which included standing, lying and feeding using data collected from 

neck-mounted accelerometers. Using a fixed window length of 10 s, 28 features were 

extracted from the acceleration data, including mean, standard deviation, skewness and 

kurtosis. The CA across all recorded behaviours using the SVM was >80%. Benaissa et 

al. (2019) evaluated the performance of an SVM in classifying feeding and ruminating 

behaviours from data gathered from a collar-mounted accelerometer and also from the 

halter-based RumiWatch system (Figure 5B). The data sampled at 10 Hz were 

partitioned into 1-min segments for the extraction of eight features. Compared to the 

RumiWatch system (CA = 91%), the SVM applied to the collar-mounted accelerometer 

output achieved an overall CA of 93%.      
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5.4.5 Artificial neural networks 

 Artificial neural networks (ANNs) are a group of algorithms that are loosely 

modelled on the human brain and are capable of ML as well as pattern recognition 

(Krogh, 2008). Architecturally an ANN is composed of three layers; an input and 

output layer of interconnecting nodes with one or more hidden layers (Figure 11). 

ANNs are used increasingly in the literature for complex tasks such as image and 

character recognition, and in the dairy sector in particular ANNs are being used for the 

automatic recognition of individual cows from images (Kumar et al., 2018; Zhao et al., 

2019). Models are highly tuneable and can therefore become highly complex with 

many hidden layers and interconnecting pathways between hidden neurons.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. A feed-forward neural network architecture with an input layer, hidden 

layer and output layer. The hidden neurons process and capture non-linearity in the 

input variables passed to them from the input nodes. This information is then 

transferred to the output layer containing the modelled dependent variable(s). The 

hidden layer(s) of neurons in this architecture is required for dealing with non-linearly 

separable classes and thus is characteristic of the multilayer perceptron algorithm. 
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Although an extremely powerful ML process, complex ANNs can lead to data 

overfitting (Kim et al., 2005). One such ANN algorithm is the perceptron (Rosenblatt, 

1958) but a number of algorithms are available. Multilayer perceptron (MP) (Figure 11 

and Chapter 3) uses a self-correcting back propagation method for training which 

calculates the total error of the output nodes before adjusting the weights of the network 

to reduce the error in the output layer (Bishop, 1995). MP can be used for both linearly 

and non-linearly separable classes (differs to the simple perceptron which can only be 

used for linearly separable classes; Rosenblatt, 1958) using additional layers of neurons 

between the input and output layers (Basheer and Hajmeer, 2000). Despite taking the 

longest to train, MP performed very well at classifying dairy cow behaviour (Chapter 3) 

compared to other classifiers.  

A further representation of ANNs are deep ANNs, often referred to as deep 

neural networks (DNNs). DNNs are very similar to ANNs and differ only in that they 

are composed of multiple hidden layers between the input and output layers of the 

network (Goodfellow et al., 2016). The convolutional neural network (CNN) is a DNN 

model that is being used more frequently in particular for image classification in the 

dairy sciences (e.g. Alvarez et al., 2018) owing to its ability to extract features from the 

dataset (image in this case) and map these back to the classes of interest (Hijazi et al., 

2015). In contrast to ANNs, CNNs can learn complex problems quickly and if datasets 

are large enough, can result in improvements in CA (Schmidhuber, 2015). It is likely 

that CNNs will be used more frequently in future to assist with complex image 

processing tasks in agriculture and livestock science. An excellent review on the use of 

CNNs in agriculture is provided by Kamilaris and Prenafeta-Boldú (2018).  
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5.4.6 Ensembles 

 The use of ensembles of classifiers is becoming more popular in the agricultural 

sciences as in principle, the methodology can lead to improvements in prediction power 

over individual classifiers (Dietterich, 2000). In an ensemble, the individual decisions 

of all classifiers are combined in some way to classify new examples (Figure 12). 

Combining classifiers in this way is an attempt at reducing the probability of 

misclassifications that might occur from any one single model thus increasing the area 

of expertise in the system (Kuncheva and Whitaker, 2003). The more diverse 

(classifiers that make errors on different instances in the dataset) and accurate 

(classifier error rate is lower than if the classes were randomly assigned) the classifiers 

are in an ensemble, typically, the better the performance of the ensemble (Kuncheva 

and Whitaker, 2003). Several ensemble methods exist but the most commonly used are 

bagging (bootstrap aggregation), boosting and stacking (stacked generalisation).  

 

 

 

 

 

 

 

 

 

 

 

Figure 12. An ensemble classification framework where the collective decisions of 

individual classifiers learned from a training dataset are forwarded to a meta-level 

learner for modelling. The meta-classifier then makes the final class predictions.    
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5.4.6.1 Bagging 

A bagging classifier fits base classifiers on randomly drawn subsets (instances) 

of the original data before aggregating their individual predictions to form a final 

prediction by either voting or averaging (Quinlan, 1996). Each base classifier is trained 

on a training set that is randomly drawn from the original training dataset before being 

replaced into the dataset (bootstrap replicates). The act of replacement means that some 

instances may be re-drawn and omitted from the training data. Each bootstrap replicate 

contains on average 63% of the original training set (Dietterich, 2000). Every run 

though the dataset results in a single classifier and the final classification of instances is 

derived by a majority vote (results are aggregated) of all of the predictions of the 

previously learned classifiers (Breiman, 1996). The predictability of bagging is 

improved by exploiting the instability of the learners used and so using stable learners 

such as naïve Bayes will not result in improvements in predictability over unstable 

learning methods such as tree learners (Breiman, 1996). Bagging with a tree learner 

was used by Dutta et al. (2015) and the classifier achieved an average CA of 96% in the 

classification of several dairy cow behaviours extracted from GPS and accelerometer 

data. In predicting insemination outcomes in Holstein cattle, bagging with tree learner 

was outperformed (AUC = 0.68) by a random forest classifier (AUC = 0.76) (Shahinfar 

et al., 2014). Random forest is in fact a type of bagging ensemble algorithm in itself 

(Breiman, 2001).  

5.4.6.2 Boosting 

Boosting is the act of iteratively learning weak classifiers that generally have 

performances that are only slightly better than random (Schapire, 2003). The addition 

of a weak learner to the ensemble leads to the re-weighting of instances in the dataset. 

More weight is added to instances that are misclassified so that new learners focus on 
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these erroneous instances (Schapire, 2003). This is repeated until the required number 

of iterations is complete or until the total weight of the misclassified instances exceeds 

more than 0.5 (Schapire, 1999). The final prediction is made by taking a vote based on 

the predictions of each classifier weighted for individual performance on each training 

set (Dietterich, 2000). Despite suiting a wide range of ML algorithms, boosting is 

particularly suited to decision trees. Few examples of the use of boosting algorithms 

exist in dairy research, but Dutta et al. (2015) used two variants (linear discriminant 

and tree learner) of the AdaBoost algorithm to classify cow behaviour that had 

marginally poorer performance compared to the other ensembles used in that study. 

They hypothesised that because boosting algorithms are prone to overfitting due to their 

training regimes (more emphasis on misclassified instances), they are susceptible to 

misclassifications on new instances.       

5.4.6.3 Stacking 

 Stacking is the procedure of integrating a set of independently computed base 

classifiers into a higher-level meta-classifier with the aim of improving learning 

efficiency with collective decisions (Wolpert, 1992). The meta-classifier uses the 

predictions of the base classifiers as a set of attributes for predicting the class values 

(Van der Laan et al., 2007). Logistic regression and random forest algorithms often 

feature as meta-level learners (Healey et al., 2018; Arsov et al., 2019) and logistic 

regression in particular does not tend to overfit the data (Ting and Witten, 1999). 

Theoretically, the ensemble should perform at least as well as the best performing 

classifier nested within the group of base learners (Van der Laan et al., 2007). 

Choosing the most suitable combination of base learners for an ensemble is a 

particular area of interest in the literature (Caruana et al., 2004; Tsoumakas et al., 

2008). One of the most basic techniques is forward stepwise selection. Base learners are 
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sequentially added to an empty ensemble to maximise the performance of the ensemble 

based on an error metric such as the root mean squared error (RMSE). Other 

computational methods exist too and packages such as ‘SuperLearner’ (Polley et al., 

2018) available for R can allow the user to fit multiple models at a time for 

performance assessment and fast optimisation of the ensemble using cross-validated 

risk (based on mean squared error). Options also exist for model customisation using 

various hyperparameters.  

Given the recent widespread use of base classifiers in livestock behaviour 

classification, it was decided (Chapter 3) that a stacking ensemble should be tested to 

see whether improvements in performance could be achieved given the additional 

computational power required and also given the theory of their function. Other than 

Williams et al. (2019) (Chapter 3), the candidate is not aware of other literature that has 

assessed the performance of stacking ensembles in the dairy sciences, although Dutta et 

al. (2015) tested a number of other ensemble classifiers. Given the interest to date in the 

use of other ensemble methods, it is envisaged that stacking ensembles will feature in 

future behavioural classification and disease identification tasks. This will only hold as 

long as classifiers are computationally efficient and provide additional predictive power 

over standard base classifiers (Chapter 3).  
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5.5 Waikato Environment for Knowledge Analysis (WEKA) for machine learning 

5.5.1 Background 

The WEKA data mining workbench provides a range of ML tools and 

techniques across several graphical user interfaces (GUI). The majority of ML tasks can 

be undertaken using the Explorer interface. Feature sets can be visualised and analysed 

for summary statistics, and regression, classification and clustering tasks undertaken 

using a range of ML algorithms (e.g. Section 5.4). Furthermore, analysts can apply both 

supervised and unsupervised filters to datasets for selecting attributes, balancing classes 

and resampling datasets amongst many other features.  

For classification tasks, multiple ML algorithms can be tested at once across a 

number of datasets using the Experimenter interface, and the results evaluated across 

several measures of performance, some of which were discussed in Section 2.3.1. The 

advanced option of the Experimenter interface allows users to configure its 

functionality for output such as per class statistics or test algorithms across multiple 

parameter values in succession. In both the Explorer and Experimenter, users can 

model data using either k-fold cross-validation or choose to split data into training and 

test sets (e.g. 66% training; 34% testing). In Chapters 1 and 3, cross-validation was 

used to learn the classifiers and the procedure is described in Chapter 1: Classifier 

Validation Strategy.  

5.5.2 Classifier evaluation 

The classification results from both the simple and advanced Experimenter 

interfaces can be statistically analysed using variations of the t-test for several 

evaluation metrics (e.g. comparing the CA of classifiers). However, the most 

appropriate test for comparing the results of multiple classifiers is a strongly discussed 

topic in the ML literature because of the risk of not meeting the assumptions of the t-



 84  

test and the risk of Type-1 errors in multiple comparisons (Demšar, 2006; Garcia and 

Herrera, 2008; García et al., 2010). As a result, some analysts turn to other statistical 

programs for analysing Experimenter results for tests that do not violate these 

assumptions. For these reasons, the performance of multiple classifiers in Chapters 1-3 

was undertaken using statistical tests other than those provided by the Experimenter 

interface where necessary. 

5.5.3 Waikato Environment for Knowledge Analysis (WEKA) for processing big data  

Although not used for the work undertaken herein, two other notable functions 

of WEKA include the Knowledge Flow interface (KFI) and the Command Line 

interface (CLI). The KFI allows analysts to visualise the ML process by selecting a 

series of components from a tool bar and connecting them into a directed graph. It can 

also be used for multiple data processing streams that cannot be undertaken in the 

Explorer. The CLI allows users to execute all WEKA functions directly using 

commands, reducing the time taken for analyses. Furthermore, the size of the dataset 

that can be processed through the CLI (and KFI) is arbitrary whereas the Explorer is 

limited to the amount of computer memory available. This is particularly important 

when processing data that may fall within the domain of ‘big data’ (Section 5.1). Also, 

for ML tasks that demand the processing of very large datasets, wrappers for cluster-

computing frameworks such as Apache Spark (a form of distributed computing) can be 

used. The package DistributedWekaSpark provides a platform for using Spark through 

WEKA’s GUI which is particularly beneficial if the analyst is accustomed to using the 

WEKA software package. For a comprehensive discussion on the use of this integrated 

framework, see Koliopoulos et al. (2015). For a general discussion on the use of several 

platforms for big data processing, see Wu et al. (2014) and for a discussion on the use 



 85  

of software for processing large, evolving data streams (Massive Online Analysis 

(MOA)) that can be implemented through WEKA, see Bifet et al. (2010).  

  



 86  

6. Summary  

6.1 Overview of PLF 

 

The availability of large quantities of data from current conceptual sensor 

systems will undoubtedly impact the way in which livestock are managed in the future. 

At a relatively simple level, this is already occurring and much of it in the dairy 

industry. Currently, the majority of data driven tasks are occurring in areas that have 

had significant research attention over the last few decades and two of the major areas 

are fertility and mastitis management. These two areas also have a significant economic 

importance on farm. Increasingly however, more attention is being paid to lameness as 

more is understood about the complex and costly nature of lameness-causing diseases 

from the perspectives of production and welfare (Sadiq et al., 2017).  

Other future data-driven aspects that can be expected to be common on dairy 

farms in the next 5-10 years will include sensor systems for individual feed, comfort 

and metabolic status management. This is because these variables can be measured 

using either existing hardware (addition of new algorithms) that farmers have already 

adopted or by retrofitting additional sensors to existing components. Based on the 

evidence, farmers that have already adopted certain technologies are likely to be more 

open to the adoption of additional technologies and so this leap will be relatively short 

for some. Predicting which sectors and systems make these adoptions however is 

difficult as farm economics, farmer age and the desire to automate are just some of the 

variables that will contribute to these decisions. What is clear is that investment in some 

sensor systems makes important economic sense to some producers and one of the best 

examples in the dairy sector is the use of animal-based sensors for automatic heat 

detection. Gauging the main drivers for adoption of PLF sensor systems in the UK 

dairy industry is needed, but some inference can probably be made from recent work 
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such as Lima et al. (2018) and Caja et al. (2016). Furthermore, the definition of, and 

what exactly constitutes PLF can sometimes be unclear in the literature, and this could 

be important when it comes to exploring some of the key drivers for adoption and 

studying farm resource use and efficiency in future. As found however, the adoption of 

any technology hinges on its ease of use and reliability.  

6.2 Two main categories of PLF tools 

 

 PLF is a broad term, and as the literature suggests, covers a wide variety of 

applications. Wathes et al. (2008) define PLF as ‘the management of livestock 

production using the principles and technology of process engineering’ and continue by 

saying that ‘it is the principal means by which ‘smart’ sensors will be used in livestock 

farming.’ Smart sensors are of course integrated into a range of technologies. For 

example, AMS use sensors to locate teats prior to cluster attachment and to clean teats 

post-milking and are precise in that sense. There are other good reasons why AMS fall 

within the PLF paradigm. These systems often come integrated with sensors that 

measure milk variables or the weight of cows for ongoing precision management. 

Moving forward, it will be important to clearly define what is meant by PLF and the 

benefits of PLF will need to be communicated to farmers clearly for particular 

applications. It seems that some of the technologies that fall within the definition of 

PLF are first and foremost labour-saving technologies and this is how farmers probably 

perceive them. As documented by Steeneveld and Hogeveen (2015), farmers with an 

AMS made no conscious decisions to invest in the accompanying sensor system, which 

probably indicates that the main objective was to automate the milking process. PLF 

does encompass two main categories of sensor system however, and these can be 

categorised as on and off-animal sensor systems (Caja et al., 2016). The off-animal 

PLF technologies tend to be those that do something that could otherwise be done by 
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human means (e.g. AMS). On-animal sensors usually record something about the focal 

animal that probably could not have been recorded otherwise (e.g. rumination). 

However, it is easy to see how some of these sensor systems could fall under both 

categories. Table 4 gives examples of some of the sensor systems that sit within these 

two categories and are currently used in the dairy industry. 

 

Table 4. Examples of off-animal and on-animal sensor systems currently in use in the 

dairy industry 

Off-animal sensor system On-animal sensor system 

Automatic milking system Oestrus sensor (pedometer / accelerometer) 

Sorting gates Rumination sensor (accelerometer / sound) 

Gait analysis (video or image 

analysis) 

Lameness detection (accelerometer) 

Weighing scales (crush or race-fitted) Temperature (bolus) 

Milk electrical conductivity Feeding sensor (noseband pressure sensor / 

accelerometer) 

Feed dispensing system (forage and 

concentrate) 

Calving sensor (accelerometer) 

Forage pushing system Rumen pH sensor (bolus) 

Body condition score analyser  

 

 

6.3 Future PLF  

 

 GPS receivers fitted to pasture-based dairy cattle in future are in the majority of 

cases likely to be coupled with other discrete sensors that can add dimensionality to the 

data and decision processes. GPS in particular will likely be used in pasture-based 

systems given their limitations for use indoors although others have evaluated satellite-

based devices that can to some extent be used indoors (Huhtala et al., 2007). As well as 

this, it is clear from the literature that other discrete sensors such as accelerometers are 

more sensitive to small perturbations in the position (e.g. head up vs. head down) of 

focal animals which can be highly valuable for determining the behaviour taking place. 

In addition to some of these other movement sensors that were not explored in Chapters 
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1-3, a new generation of biosensors are likely to feature in research activities and on 

farms in future (Neethirajan et al., 2017). Biosensors will allow animal practitioners to 

measure physiological and immunological variables of livestock as well as measure 

how these parameters impact the behaviour of livestock. This will provide richer 

information, especially to veterinarians who often rely on subjective means of 

diagnostics and low-level herd data. But these sensors will provide benefits for farmers 

too, as long as sensors are integrated with management support and can provide 

straightforward answers to straightforward questions (Caja et al., 2016). 

The following chapters will discuss the use of GPS as a tool for monitoring the 

behaviour of dairy cows at pasture. Despite the literature having developed rapidly over 

the duration of this candidature, covering a breadth of sensor types for various 

applications, the principles and techniques employed in the following chapters are 

applicable to many of these developments.  

6.4 Aims and objectives of this thesis 

The aims and objectives of the following series of experiments were to model 

the behaviour of dairy cows at pasture to gain a better understanding of how some of 

the most notable behaviours are represented in high-frequency GPS data. Given the 

extensive use of GPS in the movement ecology literature it was necessary to test this 

technology with livestock. It was envisaged that novel insights would be gained as to 

the behavioural ecology of cattle and whether such behaviour models were likely to 

yield useful information for future long-term studies of welfare and performance. Given 

the establishment of such study principles (Godsk and Kjærgaard, 2011), and the 

importance of grazing livestock in the context of Welsh agriculture, this thesis was an 

attempt at providing a detailed methodology for the classification of pasture-based 
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cattle and to begin to learn more about specific attributes of cow behaviour that had not 

been previously published.  

Herein, Chapter 1 discusses the development of a behavioural model of pasture-

based dairy cows developed in an experimental grazing system designed to replicate a 

well-managed strip-grazing regime. The data used for modelling cow behaviours were 

gathered using high frequency GPS data and subsequently partitioned into fixed-time 

segments for classification by a series of ML algorithms. Chapter 2 then considers the 

application of an error-correcting technique for the predicted classes of the model 

developed in Chapter 1. This was undertaken using a hidden Markov model. Finally, 

Chapter 3 evaluates the use of a variable segmentation technique as an alternative to 

data segmentation at fixed intervals. In this chapter, ensemble classifiers were used as 

opposed to classifiers built using conventional ML algorithms. Ensembles were chosen 

due to limited exploration of these algorithms in the classification of dairy cow 

behaviour. 

  



 91  

Chapter 1 

The following chapter was accepted for publication in the Journal of Dairy Science and 

is therefore formatted to the requirements of the journal. The reference for the 

publication is: 

Williams, M.L., Mac Parthaláin, N., Brewer, P., James, W.P.J. and Rose, M.T., 2016. A 

novel behavioral model of the pasture-based dairy cow from GPS data using data 

mining and machine learning techniques. Journal of Dairy Science, 99 (3), pp. 2063-

2075. 

Summary 

 Recording the minute-by-minute behaviour of dairy cows automatically will 

likely be a common feature of future dairy management. The benefits of automatic 

record keeping of cow behaviour are already being realised on some farms and has 

shown to be a crucial component of certain tasks such as fertility management. Sensors 

are being continually researched for their efficacy in predicting behaviours that are both 

economically important to farmers and that could be important for monitoring the 

welfare of dairy cows. For example, a discrete accelerometer sensor attached to cows 

can be used to automatically identify lying and standing behaviours. These records can 

then be used to monitor cow comfort on a continual basis. To try and contribute to this 

area of research in pasture-based systems, GPS data were gathered from a cohort of 

dairy cows at Trawsgoed dairy farm, Aberystwyth University for computational 

analysis. Machine learning is becoming an increasingly important branch of data 

analysis in many fields such as security for facial recognition tasks and in agriculture 

for automatic crop recognition. Machine learning techniques were applied to the GPS 

data for the automatic classification of the three most prevalent behaviours of cows; 

grazing resting and walking. The results showed that machine learning could be used 
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with good success for automatic behaviour identification from GPS data. Since this 

publication, others have shown how a combination of sensors applied to dairy cows can 

be used to gain more insight into daily behaviour. Far more is being learnt about the 

nature of cow behaviour using these techniques. It is very likely that many dairy 

farmers in future will be monitoring daily health and performance of cows using 

sensors and applications developed using similar methods.        
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Interpretive Summary 

Williams 

Identifying changes in the behavior of dairy cows indicative of disease is subjective and 

often difficult. Data from small, low-cost global positioning system (GPS) receivers 

mounted on cow-collars were used to predict the behaviors of pasture-based dairy 

cows. Here, we demonstrate the application of machine learning techniques and 

evaluation methods to rigorously test the performance of the predictive classification 

models derived from the raw GPS data. The most suitable model performed very well 

on independent test data (average classification accuracy = 0.85) for the behaviors 

grazing, resting and walking. This model will be used to study behavioral responses to 

disease in dairy cows to aid earlier disease identification.    
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ABSTRACT 

 A better understanding of the behavior of individual grazing dairy cattle will 

assist in improving productivity and welfare. Global positioning systems (GPS) applied 

to cows could provide a means of monitoring grazing herds while overcoming the 

substantial efforts required for manual observation. Any model of behavioral prediction 

using GPS needs to be accurate and robust by accounting for inter-cow variation as 

well as atmospheric effects. We evaluated the performance using a series of machine 

learning algorithms on GPS data collected from 40 pasture-based dairy cows over 4 

mo. A feature extraction step was performed on the collected raw GPS data, which 

mailto:mir@aber.ac.uk
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resulted in 43 different attributes. The evaluated behaviors were grazing, resting and 

walking. Classifier learners were built using 10 times 10-fold cross validation and 

tested on an independent test set. Results were evaluated using a variety of statistical 

significance tests across all parameters. We found that final model selection depended 

upon level of performance and model complexity. The classifier learner deemed most 

suitable for this particular problem was JRip, a rule-based learner (classification 

accuracy = 0.85; false positive rate = 0.10; F-measure = 0.76; area under the receiver 

operating curve = 0.87). This model will be used in further studies to assess the 

behavior and welfare of pasture-based dairy cows.  

Key words: GPS, grazing, behavior model, data mining  
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INTRODUCTION 

 It is well documented that the behavior of dairy cattle coincides with changes in 

health status. For example, Huzzey et al. (2007) used electronic feed bins to record 

feeding behavior in housed dairy cows. They found that feed intake and time spent 

feeding began to decrease 2 wk prior to clinical diagnosis of severe metritis. González 

et al. (2008) found that daily feeding time, number of visits to the feed bin, and feeding 

rate began to decrease as early as 30 d before lameness diagnosis in housed cows fed a 

silage ration. With larger herds and limited time, disease diagnosis becomes more 

difficult. Mobility scoring is one example of a subjective technique used by herdsmen 

to identify lameness and locomotor problems in dairy cows. Although cheap to 

disseminate, mobility scoring is time consuming and must be done regularly (Pluk et 

al., 2012; Van Nuffel et al., 2015). Another criticism of the technique is that it may fail 

to identify the early (sub-clinical) stages of lameness (Manske et al., 2002; Dyer et al., 

2007). Reader et al. (2011) in their study reported that the milk yield of cows decreased 

by an average of 0.7 kg/day for approximately 7 wk before cows became visually lame. 

Furthermore, after recovery, the milk yield of lame cows remained lower for 4 wk. 

Identifying production disease as early as possible is therefore imperative to minimize 

welfare implications and production loss. Technology designed to identify lame cows 

using pressure plates to measure weight distribution for example has already been 

assessed (Bicalho et al., 2007). Although they concluded that more work was needed to 

refine the sensitivity of these devices, weight shifting by the cow may be visible by gait 

assessment and therefore these tools are likely to be effective in reducing the labour 

cost of mobility scoring. An approach to identify sub-clinical disease possibly by using 

behavioral changes before gait abnormalities are present may be more constructive. 
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 Technology available for domestic and other commercial applications can be 

utilized to improve dairy cattle welfare and performance. For example, pedometers are 

effective in detecting increased activity during estrus, thus aiding dairy cattle fertility 

management (Roelofs et al., 2005). However, there is little scope for cattle behavioral 

classification using pedometer data. Accelerometers on the other hand have provided 

the ability to identify lying and standing behavior in grazed dairy cattle (Munksgaard et 

al., 2006; Nielsen et al., 2010). Nielsen (2013), using a 3-dimensional head-mounted 

activity logger to identify grazing behavior achieved a true positive classification rate 

of 84%. Dutta et al. (2015) achieved an average classification accuracy of 93% for 

grazing, searching, ruminating, resting and scratching when using a collar-mounted unit 

comprising of a global positioning system (GPS) receiver and 3-axis accelerometer. A 

behavioral recording system needs to be robust to the cow’s environment and as 

accurate as possible. Pedometers attached to legs are open to damage and head-

mounted accelerometers could be laborious to apply to cows. Furthermore, a system 

needs to be able to identify the main behaviors of the pasture-based dairy cow, 

preferably as a single, discrete and lightweight unit that is cheap to deploy in a 

commercial environment. As such, the scope for utilizing GPS collars alone to collect 

frequent temporal and positional data seems attractive.  

 The application of data mining and machine learning techniques in livestock 

behavioral studies to search for patterns in data that are unobservable by the human eye 

has been limited until recently. This has largely been because collecting a vast amount 

of behavioral data has been difficult. Such techniques have already been used to mine 

cattle disease databases to identify herd disease risk, for example (Ortiz-Pelaez and 

Pfeiffer, 2008), and to make breeding decisions based on the likelihood of conception 

from previous insemination data and disease history (Shahinfar et al., 2014). Applying 
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these techniques to behavioral data could present opportunities to learn more about the 

subtle changes that may occur over time during the onset of disease. The use of small, 

high data acquisition GPS receivers that are cheap and easy to apply to cattle may be a 

good incentive for pasture-based dairy practitioners provided the data are accurate and 

reliable. Furthermore, positional data could be extended to supply information on 

energy expenditure and pasture preference for grazing management as well as 

monitoring health status over time.  

 As far as we are aware, no published model of the main behaviors of pasture-

based dairy cows from GPS data currently exists. The objective of this study was 2-

fold. The first was to assess the ability of machine learning techniques in identifying the 

main behaviors grazing, resting and walking from GPS data. The second objective was 

to gain information about how these behaviors are represented within GPS data and to 

fully document this behavioral information as a novel model for the further study of 

welfare and production in the pasture-based dairy cow. 

MATERIALS AND METHODS 

Study Area 

 Data were collected at Aberystwyth University dairy farm, Trawsgoed, 

Ceredigion, United Kingdom, between March and August of 2014. The farm composed 

of approximately 200 Holstein and 150 Jersey-Friesian crossbred cows managed in a 

semi-intensive all-year-round calving system. Cows on the farm were rotated and strip-

grazed on leafy swards of perennial ryegrass (Lolium perenne) between March and 

October on a grazing platform of approximately 100 ha with an altitude of between 70 

and 250 m above sea level. Cows were allocated approximately 2,500 kg DM/ha of 

grass per area grazed leaving a grazing aftermath of approximately 1,500 kg of DM/ha. 

Cows in early lactation (0-120 DIM) were also buffer fed a TMR of grass [25 kg of 
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total fresh weight (FW)], maize silage (10 kg of FW), rolled wheat (3 kg of FW), 

barley straw (0.3 kg of FW) with the remainder comprising a rumen-protected fat 

supplement, dairy mineral blend and molasses during the evening. Early-lactation cows 

also received 3.60 kg of FW (± 0.81 kg) of concentrates per day. Cows were milked 

twice daily at 0500 and 1600 h.  

Grazing Management and GPS 

            According to recent work (Kilgour, 2012) cows can exhibit up to 40 individual 

behaviors, though many of these are expressed in low abundance and for very short 

periods of time. Three main behaviors were identified and used in this work; grazing, 

resting and walking. Hancock (1954) reported that the main behaviors of pasture-based 

dairy cattle were grazing and resting. Due to the reported difficulty in distinguishing 

between lying and standing by others using GPS data (Homburger et al., 2014), we 

decided that collating these 2 behaviors in equal proportion and representing them as 

resting would lead to less complex decision rules during the machine learning phase. 

We also decided to include walking as this is also frequently reported in behavioral 

studies (Robert et al., 2009; Silper et al., 2015). Grazing was identified when the cow’s 

head was lowered and tearing at the pasture whether walking or standing still. 

Browsing (walking with her head close to the pasture) was also included within 

grazing. Resting was identified when the cow was lying or when she stood still with her 

head raised. Walking was identified when the cow was walking or running with her 

head raised. A total of 40 early-lactation (50-120 DIM) Holstein cows were used. 

Average parity and milk yield (305 d) of cows were 2.8 ± 1.5 lactations (mean ± SD) 

and 7,414 ± 756 kg per cow respectively. Cows selected had normal gait (Whay et al., 

2003) and showed no other obvious signs of ill health. Cows were otherwise randomly 

selected for behavioral observation over the period of study and observed between the 
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hours of 0800 and 1400 h. This time period was chosen simply because it allowed for 

the longest period of observation between milking. 

            Four cows were observed on each day of observation from a distance of 

approximately 40 m by 2 observers from within a vehicle. This allowed clear visibility 

of the behavior exhibited by the observed cows and minimized the impact that human 

presence may have had on their behavior. Observation days varied depending on 

observer availability and weather conditions. For example, cows were not observed on 

days where adverse weather conditions were forecast such as heavy rain. This meant 

that the number of days of observation and observation days themselves varied from 

week to week. On average, approximately 3 d were between sampling days. Both 

observers had previously spent 2 unrecorded observational days refining observational 

techniques to maximize agreement in behavioral and transitional definition. This was to 

ensure that high-quality time-stamped behaviors were recorded at and between each 

behavioral transition. Interobserver Kappa coefficients for grazing, resting and walking 

were 0.96, 0.99 and 1.00, respectively, for the unrecorded behavioral days. During each 

observation period, cows were equipped with low-cost GlobalSat DG-100 Data Logger 

GPS receivers (GlobalSat Technology Corp., Taiwan). Receivers were mounted on 

collars around the neck and cows were strip-grazed in a separate paddock at the same 

stocking density of the remainder of the herd (average stocking density approximately: 

16 cows/ha). Choosing to graze the observation cows in a separate field to the rest of 

the herd was to ensure that cows could be fully observed at all times, reducing the risk 

of losing sight of the observation cows amongst others in the herd. The pasture of the 

observation paddock was also Lollium perenne. The sward was measured during the 

entire data collection period so that each strip provided 2,500 kg of DM/ha of grass. 

Cows were managed so that the grazing residue was approximately 1,500 kg of DM/ha. 
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This management regimen was the same for the entire farm and meant that pasture 

quality changed very little during the experimental period. The aim was to replicate a 

well-managed grazing system as closely as possible. This routine was enough for a total 

daily grazing and observational period of 6 h for each experimental period. Four new 

cows were introduced into a fresh strip of grass each day with the same pasture 

allowance. Each observer was allocated 2 cows for each period of observation. The 

GPS receivers were chosen randomly from a collection that was rigorously field tested 

under the specific guidelines of the Institute of Navigation (ION, 1997). From an initial 

36 receivers, 11 were discarded due to non-normal positional fixes leaving 25 for the 

study. The GPS receivers were programmed to sample the positional coordinates every 

5 s. From the calibration experiment (Section 3.2.4.2) this was considered the optimal 

logging interval for both data collection and power consumption. Using a Casio F-91W 

time clock (Casio Electronics Co. Ltd., Shibuya, Tokyo, Japan) synchronized to the 

GPS receivers, behaviors were manually observed and recorded at each transition, to 

the second they occurred for the whole 6-h observational period. Each 6-h period 

yielded 24 h of high-quality time-stamped cow activity from the 4 cows observed. An 

independent test data set was used on the final classifier models. This consisted of 14 h 

of data gathered from 4 previously unobserved cows managed in a separate, undulating 

paddock, with these cows mixing with the rest of the herd. Pasture was not managed as 

stringently in this paddock and, it contained a sward of varying density. This was a 

purposeful choice and was made to test the stability and robustness of the final models. 
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Data Sets  

            Data were downloaded from each GPS receiver as a comma separated variable 

(csv) file and stored in a spreadsheet program. The GPS data sets for each cow 

contained the record number of each logged position, time (s), latitude, longitude, speed 

(m/s) and altitude (m). The manually recorded field behaviors were matched alongside 

each row of GPS data. The compiled data set consisted of a total of 425 h (71 h of 

human observation) of behavioral and positional data. Behavioral sequences lasting at 

least 8 min were used for the analysis. This was done with the assumption that longer 

behavioral data sequences would provide a more reliable representation of the data 

sampled by the GPS units for each observed behavior. In total, 153 h of data was used 

for analysis: 28, 120, and 5 h for grazing, resting and walking, respectively.  

Data Preprocessing and Preparation 

            Successive coordinates were exploited such that a variety of new features were 

extracted from the original data in 3 different phases. The approach detailed here is 

similar to that of earlier work (Godsk and Kjærgaard, 2011). However, the feature 

extraction and segmentation phases were modified. Briefly, the methodology employed 

is described below. 

Phase 1 

            Raw, ground truth behavior-labeled and time-stamped GPS coordinates along 

with speed and altitude data were used to compute basic features for movement objects 

(MO). Contiguous data sequences for each behavioral class were selected from every 

data set represented by all 40 cows. An analysis of each consecutive GPS record 

allowed the calculation of the cow’s distance traveled, speed, acceleration, absolute 

heading and bearing from one data entry to the next, every 5 s. Whether the cow was 

moving or not was determined using a simple adjustable Bayes induction filter. Three 
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input parameters were used for adjustment of the filter: minimum speed (minimum 

speed required for determining movement), history length (the number of previous GPS 

records taken into account) and heading threshold (the heading threshold required for 

determining movement). Minimum speed and heading threshold were determined for 

all 25 GPS receivers using data collected from a separate dynamic test under guidelines 

set out by the Institute of Navigation (ION, 1997). The average threshold values for all 

25 GPS receivers were then calculated.   

Phase 2 

            Data from phase 1 was grouped into segments of a predetermined size 

depending on the chosen segmentation strategy (i.e., the number of GPS instances to 

include when constructing each of the segments). Advanced features (AF) were then 

extracted for each segment based on the basic features from Phase 1. In total, 43 AF 

were extracted for phase 2 (Table 1). Of the behavioral classes under study, grazing and 

resting tended to be exhibited in the greatest proportion (Kilgour, 2012). Typically, 

dairy cattle graze in bouts of 7 min or less (Hejcmanová et al., 2009) with resting bouts 

lasting approximately 1 h. However, for this work, we explored 3 different time 

intervals for segmentation to investigate whether the segmentation strategy would have 

any effect on classifier performance: 160, 40 and 10 s. Thus, at a GPS sample rate of 5 

s, each segmentation interval comprised 32, 8, and 2 MO, respectively. Data for each 

segmentation strategy were evaluated separately. Once the data had been segmented at 

the desired interval, each group of segmented data then formed a segment object (SO). 

The SO contained the data for all 43 AF. Table 2 shows the unbalanced datasets for the 

3 respective segmentation strategies with the corresponding number of SO.  
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Table 1. Advanced features computed for each segment of GPS data to be used for 

behavioral classification 

Advanced feature Movement type (unit) 

Accumulated time moving Time (s) 

Accumulated time nonmoving Time (s) 

Minimum speed Speed (m/s) 

Mean speed Speed (m/s) 

Maximum speed Speed (m/s) 

Accumulated distance moving Distance (m) 

Accumulated distance nonmoving Distance (m) 

Maximum distance moving Distance (m) 

Maximum distance nonmoving Distance (m) 

Movement percent left Heading (%) 

Movement percent right Heading (%) 

Movement percent forward Heading (%) 

Movement percent U-turn Heading (%) 

Percent nonmoving Heading (%) 

Rate of change moving and nonmoving (no.) 

Rate of change between any movement (no.) 

Rate of change left (no.) 

Rate of change right (no.) 

Rate of change forward (no.) 

Rate of change nonmoving (no.) 

Rate of change U-turn (no.) 

Minimum acceleration Acceleration (m/s2) 

Maximum acceleration Acceleration (m/s2) 

Mean acceleration positive Acceleration (m/s2) 

Mean acceleration negative Acceleration (m/s2) 

Accumulated acceleration positive Acceleration (m/s2) 

Accumulated acceleration negative Acceleration (m/s2) 

Changes between positive and negative 

acceleration 

(no.) 

Heading accumulated left (no.) 

Heading accumulated right 

Heading accumulated forward 

Heading accumulated nonmoving 

(no.) 

(no.) 

(no.) 

Heading accumulated U-turn (no.) 

Maximum heading change left Heading (°) 

Maximum heading change right Heading (°) 

Maximum heading change forward Heading (°) 

Maximum heading change nonmoving Heading (°) 

Maximum heading change U-turn Heading (°) 

Mean heading change per left Heading (°) 

Mean heading change per right Heading (°) 

Mean heading change per forward Heading (°) 

Mean heading change per nonmoving Heading (°) 

Mean heading change per U-turn Heading (°) 
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 We tested the data set where the decision classes (behaviors) were imbalanced 

and also balanced. The data instances were balanced by reducing the size of the 

behavioral category represented by the greatest number of SO (resting) to the same size 

as the category with the fewest SO. This is known as undersampling. We found that 

dairy cows exhibited very little walking behavior during the data collection phase and 

movement in itself was exhibited most of the time as grazing and cows spent the 

majority of their time grazing and resting. This could be due to the greater energy 

expenditure of walking thus this behavior may be limited especially in early-lactation 

cows (Dohme-Meier et al., 2014). Due to the great underrepresentation of walking in 

the data set, resting was reduced to the same level as grazing to preserve the integrity of 

the data set. Balancing the data instances was carried out using a subsampling method 

SpreadSubsample (Japkowicz and Stephen, 2002). This method produced a random 

undersample of the class with the greatest representation to a specified sample size. The 

size of the random undersampled class was predefined and was used to specify the 

number of SO for each individual dataset. Table 2 shows the class distribution for the 

data set balanced using random undersampling.   
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Table 2. Number of segment objects created for each behavior in unbalanced data sets 

and data sets balanced by random undersampling  

1Movement objects present per segment. For example, 32 movements equates to 160 s of GPS data (at a 

5-s GPS sample rate) per segment object. 

2Each segment object contained data for all advanced features for the expressed behavior. 

 

Phase 3 

            The SO and their corresponding ground-truth behaviors were compiled and 

formatted such that they could be examined using the WEKA (Hall et al., 2009) data 

mining suite.  

Classifier Learning  

            The popular data mining suite WEKA was used for the analysis of the data in 

this study. This suite of tools allows many different machine learning approaches to be 

used for comparative analysis and provides a variety of different metrics for assessing 

the performance of learners. The algorithms tested on the data used in this study were 

naïve Bayes (John and Langley, 1995), JRip (Cohen, 1995), J48 (Quinlan, 1993) and 

random forest (Breiman, 2001). Naïve Bayes is a simple technique for constructing 

classifiers, which are represented as vectors of feature values. The classifier considers 

each of the features to contribute independently (strong independence assumption) to 

the probability that an object belongs to a particular decision class. This is assumed 

regardless of any possible actual correlation(s) between features. The maximum 

Segmentation strategy1 

(movement 

object/segment) 

 Segment objects2  

Unbalanced data sets  Balanced data sets 

Grazing Resting Walking  Grazing Resting Walking 

32 631 2,703 96  631 631 96 

8 1,864 5,238 407  1,864 1,864 407 

2 9,921 45,069 1,612  9,921 9,921 1,612 
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likelihood is used as a metric to decide which class a testing object belongs. J48 creates 

decision trees by choosing the most informative features and recursively partitioning 

the data into subtables based on their values. Each node in the tree represents a feature 

with branches from a node representing the alternative values this feature can take 

according to the current subtable. Partitioning stops when all data items in the subtable 

have the same classification. A leaf node is then created, and this classification 

assigned. JRip learns propositional rules by repeatedly growing rules and pruning them. 

During the growth phase, antecedents are added greedily until a termination condition 

is satisfied. Antecedents are then pruned in the next phase subject to a pruning metric. 

Once the ruleset is generated, a further optimisation is performed where rules are 

evaluated and deleted based on their performance on randomised data. Random forest is 

an ensemble learning method for classification. It works by constructing a collection 

(“forest”) of (random) decision trees at training time and returning the class that is the 

mode of all of the classes of the individual trees. Random forest classifiers attempt to 

mitigate the tendency of decision trees to overfit the training data set. The reasoning 

behind these particular choices was to try to provide a realistic set of results and also to 

show the different characteristics of the learners themselves. Naïve Bayes is a 

pessimistic learner and therefore biased but stable (Bouckaert, 2008). J48 is an 

optimistic learner and it is therefore unbiased, suffers from high variance and is thus 

unstable (Bouckaert, 2008). JRip is a rule-based classifier and lies somewhere in 

between naïve Bayes and J48. Random forest attempts to reduce variance (and 

therefore total error). 
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Classifier Validation Strategy 

           Classifier performance was evaluated using stratified 10-fold cross-validation 

(10-FCV). In 10-FCV, the data set is randomly split into 10 folds or subsets of data 

where class representation is preserved in the same proportion (as far as possible) as the 

full data set. The first nine folds are then used to learn a classifier, whereas the tenth is 

used for validation. This process is then repeated each time using a single fold for 

validation with the remainder used for training. This continues until all 10 folds have 

been used for both training and validation resulting in an average classification 

accuracy (CA) and error rate. For the results generated here, 10-FCV was repeated for 

10 different randomisations/runs (10 x 10-FCV) of the data. This helped to learn more 

robust classifiers and was done for all datasets in Table 2. Finally, the best performing 

classifier models were applied to a previously unseen independent test data set. 

Selection of Advanced Features 

            In addition, the redundancy and relevance of the features extracted from the 

GPS data (AF) were investigated for the best performing classifiers to explore which 

features were most useful in classifying the 3 behaviors. Advanced features were 

evaluated using CFS (Hall, 1998) which selects subsets of features that are highly 

correlated with the class value and that have low correlation with each other. A “greedy 

hill-climbing” approach was used to perform the search through the space of AF. 

Classifier performance and stability was then evaluated using the best performing data 

set in Table 2 with 10-FCV.  
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Performance Evaluation 

            The overall CA was one of the metrics used to assess performance. This is the 

most commonly reported and intuitive metric for classifier performance. It serves as a 

general indicator of the efficiency of a model to correctly predict all of the behavioral 

classes: 

Classification accuracy = 
TP + TN

TP + FP + FN + TN
, 

where TP is the number of true positives, TN is the number of true negatives, FP is the 

number of false positives and FN is the number of false negatives. However, as a stand-

alone metric of performance of multi-class problems, CA does not compensate for 

success that is due to mere chance.  

False Positive Rate (FPR) = 
FP

FP + TN
, 

which is the proportion of instances incorrectly labelled as positive instances.  

F-Measure = 
2 * Precision * Recall

Precision + Recall
, 

where precision = TP / (TP + FP), and recall = TP / (TP + FN). The F-measure is 

defined as the harmonic mean of precision and recall.  

Area under the receiver operating curve (AUC) was represented as 

AUC = (TP + TN) / 2, 

which is a measure of the discriminatory power of a classifier which measures the area 

under the receiver operating characteristic (ROC) curve (Fawcett, 2006). The ROC 

curve is constructed using the total true positives (y-axis) and the total true negatives 

(x-axis). A classifier generating more true positives and fewer false positives is 

preferable to the opposite. It should be noted that AUC is not without its problems 
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when used as a metric in and of itself for the classification problem (Hand, 2009) and 

this is the reason for including several other performance metrics above. 

All statistical analysis was undertaken using GenStat Fourteenth Edition (VSN 

International, Hemel Hempstead, UK; footnotes below tables give information on the 

statistical tests used).   
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RESULTS 

 Classification accuracy was first compared with the unbalanced data sets (Table 

2). Weighted average CA across all segmentation strategies was best for JRip and 

random forest (Table 3). Class imbalance can lead to the reinforcement of the majority 

class in the learned rules, thus leading to domination by a particular class (Kohavi, 

1995). In this case, resting represented on average 76% of the SO in each dataset and 

had high CA (Table 3). Interestingly, walking, which represented the behavioral class 

with fewest instances (Table 2), had the highest comparable CA (Table 3); this was due 

to the easily distinguishable characteristics obtained for this class. Due to the relative 

underrepresentation of grazing in each data set and the apparent confusion between this 

class and resting, class-specific CA was generally poor for this behavior particularly for 

the 2 SO dataset. To address this, the data set was balanced by random undersampling 

(Table 2). The success of each classifier was determined based on relative performance 

for each segmentation strategy. The best classifiers were JRip and random forest when 

measured across all metrics regardless of the segmentation strategy employed (Table 

4). The effect of balancing the class representation for the individual behaviors was 

investigated using only JRip and random forest because of their superior performance 

(Figure 1) when compared with naïve Bayes and J48. Additionally, performance for all 

metrics suffered as the data set was segmented into smaller sized SO and best 

performance was found when SO were composed of 32 MO (Table 4). This effect on 

performance is linked to the averaging effects of the inclusion of greater numbers of 

SO. Hence, larger segments produce more easily definable MO. 
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Table 3. Weighted classification accuracy of all classifier learners on unbalanced data 

for grazing, resting and walking for 32-, 8-, and 2-segment object strategies using 10-

fold cross validation 

1Segmentation strategy was the number of movements [or global positioning system (GPS) instances] per 

data segment. For example, the 32-segment object segmentation strategy equates to 160 s of GPS data (at 

a 5-s GPS sample rate) per segment object.  

  Classification accuracy 

Classifier Segmentation 

 strategy1 
Grazing Resting Walking Weighted  

average 

Naïve Bayes 

32 0.72 0.71 0.99 0.72 

8 0.71 0.64 0.99 0.68 

2 0.72 0.60 1.00 0.64 

JRip 

32 0.56 0.92 0.98 0.85 

8 0.48 0.89 0.98 0.79 

2 0.09 0.98 0.96 0.82 

J48 

32 0.56 0.90 0.98 0.84 

8 0.50 0.86 0.98 0.77 

2 0.16 0.95 0.95 0.81 

Random forest 

32 0.53 0.93 0.99 0.86 

8 0.51 0.88 0.99 0.79 

2 0.24 0.93 0.96 0.81 
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Table 4. Weighted average classifier learner performance on data balanced by random undersampling under 32-, 8-, and 2 segment object 

strategy using 10-fold cross validation 

a-dMeans within a row with different superscripts are compared between classifiers for each corresponding segmentation strategy and differ (P < 0.05). 
1Means were tested using ANOVA and Tukey’s post-hoc test. CA = classification accuracy; FPR = false positive rate; AUC = area under the receiver operating curve. 
2Segmentation strategy was the number of movements (or GPS instances) per data segment. For example, the 32-segment object segmentation strategy equates to 160 s of 

GPS data (at a 5-s GPS sample rate) per segment object. 
 

 

 

 

 

 Naïve Bayes 

 

 JRip  J48  Random forest   

Metric1 32 SO2 8 SO 2 SO 

 

 32 SO 8 SO 2 SO  32 SO 8 SO 2 SO  32 SO 8 SO 2 SO  SEM 

CA 0.73c 0.71c 0.69c  0.81a 0.76a 0.73a  0.78b 0.73b 0.72b  0.81a 0.76a 0.72b  0.002 

FPR 0.23a 0.22a 0.23b  0.17c 0.20b 0.23b  0.19b 0.22a 0.24a  0.16c 0.20b 0.24a  0.002 

F-Measure 0.72c 0.70c 0.69c  0.81a 0.76a 0.73a  0.78b 0.73b 0.72b  0.81a 0.76a 0.72b  0.002 

AUC 0.82c 0.82b 0.79c  0.85b 0.83b 0.80b  0.81d 0.76c 0.78d  0.90a 0.86a 0.81a  0.002 
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Balancing the data sets by random undersampling led to an improvement in CA 

for grazing relative to the previous performance (JRip = +0.26, +0.28, and +0.68; 

random forest = +0.33, +0.28, and +0.52 for 32, 8, and 2 SO, respectively) but a 

reduction in performance for resting (JRip = -0.15, -0.18, and -0.33; random forest = -

0.20, -0.20, and -0.28 for 32, 8 and 2 SO, respectively). The effect of class balancing 

the data on walking was negligible. It is clear that these two algorithms have a greater 

ability to classify behaviors where physical movement is a prominent feature of the 

data. Resting behavior was sometimes confused with grazing for all learners, probably 

because of the inherent error of the GPS device and therefore the perceived subsequent 

movement of cows between consecutive fixes (Lewis et al., 2007), when in fact they 

are resting.   

 

Figure 1. Average classification accuracy (±SE) of JRip and random forest classifier 

learners across all 3 behaviors according to segmentation strategy and data balanced by 

random undersampling. 
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Table 5. Rule set generated by the JRip classifier learner for classifying dairy cow 

behavior using advanced features created from GPS data  

1Numbers in parentheses below behavioral classes indicate number of successful classifications/errors in 

the balanced training data.

Rule Behavior1 

IF maximum speed ≥ 1.10 m/s Walking 

(98.0/3.0) 

IF mean acceleration positive ≥ 3.73E-6 m/s2 AND maximum 

distance moving ≤ 2.17 m AND mean speed ≥ 0.10 m/s AND 

accumulated distance moving ≥ 11.92 m 

 

Grazing 

(215.0/19.0) 

 

IF maximum heading change nonmoving ≤ 258.69° AND minimum 

speed ≥ 0.04 m/s AND maximum distance moving ≤ 2.77 m AND 

mean heading change per right ≤ 144.61° 

 

Grazing 

(121.0/12.0) 

 

IF maximum heading change nonmoving ≤ 258.69° AND maximum 

distance moving ≤ 1.38 m AND minimum speed ≥ 0.04 m/s AND 

maximum distance moving ≤ 1.10 m AND mean heading change per 

right ≤ 232.63° AND rate of change between any movement ≤ 0.15 

 

Grazing 

(35.0/3.0) 

 

IF accumulated acceleration positive ≥ 4.59E-5 m/s2 AND 

maximum distance moving ≤ 2.16 m AND mean heading change per 

right ≤ 140.80° 

 

Grazing 

(104.0/26.0) 

IF mean acceleration positive ≥ 3.73E-6 m/s2 AND maximum 

distance moving ≤ 2.40 m AND mean acceleration negative ≥ 

4.97E-6 m/s2 AND maximum distance moving ≥ 1.24m 

 

Grazing 

(54.0/13.0) 

 

IF maximum heading change nonmoving ≤ 255.96° AND changes 

between positive and negative acceleration ≤ 5 AND maximum 

acceleration ≤ 1.12E-5 m/s2 

 

Grazing 

(39.0/8.0) 

 

IF rate of change between any movement ≥ 0.11 AND maximum 

distance moving ≤ 1.60 m AND mean heading change per left ≥ 

148.82° 

Grazing 

(56.0/17.0) 

 

Otherwise Behavior = 

resting 

(636.0/106.0) 
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Due to the superior performance of JRip and random forest when compared 

with other learners (Table 4), further validation and testing took place with these 

learners and the 32 SO data set only. During observation, cows generally exhibited each 

behavior for periods exceeding 3 min; therefore, the 32 SO strategy coincided well with 

average behavioral duration. An independent test set consisting 14 h of ground truth 

behavior-labeled and time-stamped GPS coordinates was used for final model testing 

that was segmented at 32 SO. The final model as derived from the validation phase for 

JRip is shown (Table 5) along with its respective success rates during modeling. It was 

interesting to note the induced rules and their antecedent values for each of the 

behaviors. Many of these were informative and because JRip generates rules that are 

transparent to human scrutiny, it offered an insight into how features of physiological 

movement of cows helped to characterise the behavior. For example, it could be seen 

that walking was so easy to classify that only a single antecedent was required to 

predict the behavior: maximum speed. This was both informative and realistic because 

if a healthy cow was walking in a given direction it would always exceed this threshold 

(≥1.10 m/s). The rules also helped to reflect the complex nature of grazing behavior due 

to the rule clarity and number of actual rules. This complexity should not be interpreted 

as a poor reflection of the learner, but rather that grazing because of the physical nature, 

involves elements of both walking and resting since the cow may stop for a short period 

while it tears at pasture before moving on to the next area. Thus, many different 

antecedents were involved in building a model to represent it.  
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Table 6. Average performance of final models of JRip and random forest classifier 

learners on an independent, balanced 32-segment object test set 

1Tested using 2 sample t-test. CA = classification accuracy; FPR = false positive rate; AUC = area under 

the receiver operating curve. 
2NS = P > 0.05. 

 

No significant differences were found in any of the performance measures (Table 6) for 

JRip and random forest on the independent test set. These results were encouraging 

because data for the test set was purposely retrieved from cattle grazing an undulating, 

densely stocked paddock where pasture conditions were not controlled as stringently as 

the area where the data were gathered for model building and validation. Classification 

accuracy of individual behaviors (Figure 2) was more balanced across the behaviors for 

JRip when compared with random forest. Walking behavior, in both examples, was 

classified with almost 100% accuracy. 

 

 

 

Metric1 JRip  Random forest  SEM P-value 

CA 0.85 0.83 0.008 NS2 

FPR 0.10 0.17 0.010 NS 

F-Measure 0.76 0.77 0.013 NS 

AUC 0.87 0.92 0.009 NS 
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Figure 2. Average classification accuracy (±SE) of final models of JRip and random 

forest classifier learners across all 3 behaviors on an independent, balanced 32-segment 

object test set. 
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A feature selection and stability assessment was performed on the original 32 

SO training data. Table 7 gives a comparison of the performance of JRip and random 

forest both with and without AF selection as tested by 10-FCV. No significant 

improvement or degradation was found in classifier performance when the AF with the 

highest contributions during modeling of the observed behaviors were used (Table 7). 

Figure 3 illustrates the average number of folds in which the most important AF 

appeared during 10-FCV (10 runs x 10 folds). Among the 13 selected AF (Figure 3), 

features 2, 5, 6, and 7 (i.e., maximum heading change nonmoving, minimum speed, 

mean speed and maximum speed) were selected in every fold. This indicated that it 

may not be necessary to consider extracting all of the AF listed in Table 1 for future 

work in this field. Although a marginal improvement was found in performance for 

random forest, this was nonsignificant. Furthermore, both classifiers had a small 

standard deviation and therefore good stability for all measures of performance. 

However, despite the comparable performance of JRip and random forest, the 

simplicity of the rule set generated by JRip (Table 5) is advantageous because it 

provides a model which is transparent and humanly interpretable through the use of 

intuitive if-then rules. 
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Table 7. Weighted average performance and stability (±SD) of JRip and random forest classifier learners before and after selection of advanced 

features on original 32-segment object data set balanced by random undersampling using 10-fold cross validation 

1Tested using 2-sample t-test. CA = classification accuracy; FPR = false positive rate; AUC = area under the receiver operating curve. 
2NS = P > 0.05. 
 

 

 

 

 

 JRip  Random forest 

 

Metric1  All features Selected 

features 

 

SEM P-value   All features Selected 

features 

SEM P-value 

CA 0.81 (3.66) 0.81 (3.74) 0.337   NS2  0.81 (3.37) 0.82 (3.06) 0.306 NS 

FPR 0.17 (0.03) 0.16 (0.03) 0.003 NS  0.16 (0.03) 0.15 (0.03) 0.003 NS 

F-Measure 0.81 (0.04) 0.81 (0.04) 0.004 NS  0.81 (0.03) 0.82 (0.03) 0.003 NS 

AUC 0.85 (0.03) 0.85 (0.03) 0.003 NS  0.90 (0.03) 0.91 (0.03) 0.003 NS 
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Figure 3. Average selection appearances of the most valuable advanced features. The 

advanced features from 1-13 correspond to (1) movement percent forward, (2) 

maximum heading change nonmoving, (3) mean heading change percent left, (4) mean 

heading change percent right, (5) minimum speed, (6) mean speed, (7) maximum 

speed, (8) mean acceleration positive, (9) mean acceleration negative, (10) accumulated 

acceleration positive, (11) accumulated acceleration negative, (12) accumulated 

distance moving, (13) maximum distance moving. 
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DISCUSSION 

The objective of this work was to build a robust model of the most notable 

behaviors of the pasture-based dairy cow: grazing, resting, and walking and to fully 

document how this was derived. We have achieved greater performance than other 

comparable studies using GPS only to classify the most commonly represented 

behavioral activities (Homburger et al., 2014). Homburger et al. (2014) used a logging 

interval of 20 s to record positional fixes achieving an overall CA of 77%. Longer fix 

intervals can create uncertainty about the location and the subsequent intra-sample 

behavior exhibited by cattle (Swain et al., 2008). This can lead to inaccuracies in 

distance traveled and speed between fixes (Pépin et al., 2004). Speed and distance 

metrics featured heavily in the final model generated using the JRip learner for grazing 

and walking behaviors in this work and indeed this was reflected in the learned rules.  

Cattle could of course be grazing or walking in several different directions in 

the period between samples, limiting the use of the extracted features to distinguish 

behaviors. The final models in this study were based on 40 cows and 153 h of time-

stamped cow behavior gathered over a period of 4 mo. To our knowledge, this is the 

most extensive data set used for the preparation of such models. We believe this was 

sufficient to account for conditions out of our experimental control such as atmospheric 

effects and dilution of GPS precision (ION, 1997). Furthermore, the models achieved 

high performance when tested on an independent test set where cows were grazed 

outside experimentally controlled conditions. Unaccounted for in the training data were 

multipath effects, errors in GPS output created by topographical features and buildings, 

for example (Cai et al., 2014). However, the independent test set contained instances 

where cows were standing next to trees, hedgerows, and buildings, suggesting that 

overall performance in the test set may have been higher had cows been restricted to 
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areas where GPS signal-to-noise ratio was lower. We deem the behaviors under study 

not only to be the most easily definable when using temporal movement metrics 

produced from GPS receivers, but perhaps also the most important for monitoring cow 

health in pasture-based cows. Lying times have been shown to increase in both severely 

lame and clinically lame cows (Sepúlveda-Varas et al., 2014) and standing time has 

been shown to be higher in cows with ketosis (Itle et al., 2015). It seems that behavior 

is also affected by age, parity and disease. For example, Charlton et al. (2015) found 

that cows with hock and knee injuries spent less time lying compared to cows without 

injuries and Steensels et al. (2012) found that lying times increased significantly with 

age in housed cows. To our knowledge, little work exists in the long-term monitoring 

of behavioral changes associated with disease in pasture-based dairy cows and is 

therefore the long-term objective of the current work. Information has already been 

gathered on the effect of disease on the feeding behavior of housed cows (Huzzey et al., 

2007; González et al., 2008) and therefore more is needed for long-term assessment of 

behavior in cows at pasture. Inter-cow comparisons are likely to be of lower value than 

long-term intra-cow behavior for disease diagnostics (González et al., 2008; Reader et 

al., 2011).  

As well as the most notable behaviors, other authors (Dutta et al., 2015) have 

had success in classifying other, less frequently exhibited behaviors, for example, 

rubbing, scratching and licking. These behaviors are often combined into a single class 

due to their relatively poor representation in general bovine behavior. Recent success 

has been achieved in classifying data from other cow-mounted sensors. For example, 

Nielsen (2013) successfully classified cattle grazing (sensitivity = 83.63%; specificity = 

90.20%; precision = 85.75%) when data from a 3-dimensional head-mounted activity 

sensor were coupled with data from a 3-dimensional leg-mounted accelerometer. 
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Robert et al. (2009) classified lying and standing behaviors of 15 calves to a very high 

accuracy (CA = 99 and 98%, respectively) using accelerometers however, less success 

was achieved in classifying walking (CA = 68%). We achieved high CA with JRip and 

random forest on the independent test set (JRip = 0.85; random forest = 0.83). Both 

JRip and random forest also achieved a false discovery rate (0.10 versus 0.17, 

respectively) comparable with other published work (Dutta et al., 2015). In comparison 

with such work, Pluk et al. (2012) and Viazzi et al. (2014) describe methods of 

automatically identifying changes in the posture of dairy cows using video recordings 

to automatically detect lameness with some success. Whereas this type of work sets a 

strong benchmark for making gait classifications more reliable, it is less time 

consuming and reduces the subjectivity associated with manual gait assessment and 

does little to detect the early onset of lameness. Cows are often described as stoic prey 

animals and may not display obvious gait abnormalities during the early onset of a 

lameness problem for example. This may account for the little change that is seen 

between the lower end of mobility scoring systems and it may only be when the pain 

has become unbearable that cows eventually show signs of an altered gait. As shown by 

Reader et al. (2011), decreases in milk yield were evident 7 wk before the manifestation 

of the later diagnosed lameness.    

Due to its simplicity, CA is the most commonly used evaluation metric for 

model performance. However, it does not compensate for results that are due to chance 

(Ben-David, 2008). The strength of a model can also be defined by the area under the 

receiver operating characteristic (ROC) curve, known as the AUC. Graphically, in the 

ROC space the diagonal line y = x represents a classification strategy that randomly 

guesses a class (Fawcett, 2006). Larger AUC values are preferred and represent a ROC 
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curve that is positioned toward the top left corner of the ROC space. JRip and random 

forest performed very well on the independent test set (0.87 versus 0.92, respectively).  

Despite the similar performance of JRip and random forest, the simplicity of 

JRip and comparable execution time makes it the favoured choice of the 2 for this 

particular work. JRip uses a global optimization phase on an initial set of rules built 

from scratch, and consequently, the resulting model has reduced complexity. Previous 

studies (Swain et al., 2008; Forin-Wiart et al., 2015) found that increasing the GPS fix 

rate provided a more accurate account of the movement of animals. Fix rate did not 

have a significant effect on absolute accuracy during static accuracy tests (Section 

3.2.4.2); therefore, the only limitation to data collection was battery power. We found 

that the optimal fix rate for maximum data acquisition and power consumption for the 

GlobalSat DG-100 GPS receiver was 5 s (Section 3.2.4.2). This allowed for 

approximately 17,000 fixes to be recorded in 24 h on each receiver equating to 

approximately 28% of the capacity of the receiver. We have already measured the 

stationary accuracy of these receivers in conditions where for example the receiver may 

come into close proximity with hedgerows. For the application of our model in the 

further study of dairy cow behavior in uncontrolled conditions, these factors will be 

taken into account.  

Practically, the simplicity of placing each receiver onto cows was as simple as 

placing any other management tool on cow collars for example a pedometer for 

measuring activity in reproductive management. With minimal positional adjustment 

required, the use of small GPS receivers may be useful in a commercial environment. 

We believe that the versatility and the high level of performance attained in the present 

work constitute a strong case for the use of small, discrete, low cost (approximately $60 

US) GPS receivers mounted on neck collars. Using a variety of features to describe the 
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behavior of cattle from GPS data, we have produced a humanly interpretable model of 

the main behaviors that can be used for further study. This model extends on the 

success of others in identifying cattle behavior (de Weerd et al., 2015; Dutta et al., 

2015) and uses movement features that can be further exploited in understanding the 

behavior of cows at pasture from GPS only. Nevertheless, power consumption is a 

weakness of current GPS receivers and more work on this aspect is required in their 

development for practical application. As well as behavioral identification, the 

flexibility of GPS would also allow herdsmen to retrieve positional fixes as well as data 

on distances travelled by cows and their energy expenditure. This could assist in 

making more informed decisions on future nutritional management as well as the 

possibility of monitoring health status over time. 

CONCLUSIONS 

The results of this work illustrate the application of data mining techniques to 

features extracted from temporal GPS data. Furthermore, it highlights the wealth of 

data that can be gathered from small, low-cost GPS receivers alone. The success rate of 

our final model using JRip highlights its ability to classify the main behaviors exhibited 

by pasture-based dairy cows in a way that is transparent to human scrutiny. The next 

step will be to identify GPS data sequences representative of behavioral transitions. 

This model can then be used to track temporal changes in the behavior of pasture-based 

dairy cows afflicted by disease to work towards providing a more objective means of 

early disease identification. 
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Chapter 2 

The following chapter was accepted for publication in the journal Computers and 

Electronics in Agriculture and is therefore formatted to the requirements of the journal. 

The reference for the publication is: 

Williams, M.L., James, W.P. and Rose, M.T., 2017. Fixed-time data segmentation and 

behavior classification of pasture-based cattle: Enhancing performance using a hidden 

Markov model. Computers and Electronics in Agriculture, 142, pp. 585-596. 

Summary 

 The success of models such as that developed in Chapter 1 used in real-time to 

classify behaviour events as they occur depends on many factors. One of these is how 

well the model copes with behaviour irregularity. In an ideal scenario, if cows 

undertake a long period of grazing, followed by a long period of resting, then models 

can usually identify these behaviours with high accuracy. Indeed, when data are 

collected to develop these models, the data are often free of irregular behaviour patterns 

such as very small bouts of grazing and resting (e.g. seconds to minutes) as these do not 

represent the majority of behaviours. Furthermore, constraints with the technologies 

and methodologies used often mean that it can be very difficult to model behaviour 

with such precision which can lead to some errors in the real-time behaviour 

recognition process. The model developed in Chapter 1 is also open to such anomalies. 

Therefore, the aim of this chapter was to try and account for some of the errors that can 

occur when classification models are used to recognize continuous streams of data 

gathered in real-time. We used a hidden Markov model for this purpose, connected to 

the classification model developed in Chapter 1. Hidden Markov models use 

probabilities to decide whether an agent has moved from one behaviour state to another 
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using estimated probability distributions. These include the probability of a cow 

transitioning from, grazing to resting for example, and also the probability that a cow is 

really grazing when sensor data are suggesting that she is grazing. This chapter 

demonstrates that this technique can correct classification errors and provide a better 

estimate of cow behaviour. This is a continuing area of research in cow behaviour 

classification.                       
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Highlights 

 A hidden Markov model was developed to improve cattle behavior classification.    

 The hidden Markov model significantly reduced segment classification errors. 

 Classifier and hidden Markov model together can improve cattle behavior 

prediction.   

 

ABSTRACT 

It is often difficult to monitor dairy cow behavior where grazing contributes a 

significant proportion of dairy cow diets and where cow contact is reduced. We 

previously developed a behavioral model of the pasture-based dairy cow that requires 

incoming, transformed GPS data collected from cattle to be partitioned into segments of 

a fixed length prior to behavioral classification into grazing, resting or walking. 

However, fixed-time segmentation presents a problem during behavior classification 

because segment boundaries may not be located precisely at the point of behavioral 

transition, leading to classification errors. The objective of this work was to try to 

overcome this problem by statistically correcting the behavioral predictions. This was 

mailto:maw90@aber.ac.uk


138 

 

achieved using a hidden Markov model trained using 90 h of supervised data gathered 

from a previously studied cohort of dairy cattle. The statistical probabilities of the 

behaviors predicted by the classifier being the true (hidden) behaviors exhibited by 

cows and also the probability of transition between behaviors was used to statistically 

modify the predicted output sequences from the classifier. Using 51 h of behavior-

labelled validation data we report a significant mean improvement in the classification 

of grazing, resting and walking behaviors of Holstein dairy cattle (overall classification 

accuracy = 0.85 (CI = 0.83 – 0.87) vs. 0.94 (CI = 0.92 – 0.95)) for the classifier alone 

and after the application of the hidden Markov model to the predicted behaviors 

respectively. To further test our combined models, buffer fed, healthy, early lactation 

(mean ± SD; 43 ± 20.9 DIM) primiparous (n = 12) and multiparous (n = 12) pasture-

based Holstein dairy cattle were fitted with a GlobalSat® DG-100 GPS and monitored 

every other day for 10 days for the proportion of time spent grazing, resting and 

walking. Over the 10-day observation period, the predicted mean daily duration of 

grazing, resting and walking for primiparous cows was 344.86 min (CI = 319.04 – 

370.68), 752.99 min (CI = 725.25 – 780.74) and 42.15 min (CI = 31.35 – 52.95) 

respectively. Multiparous cows were predicted to spend on average 392.33 min (CI = 

366.51 – 418.16) grazing, 714.19 min (CI = 686.45 – 741.94) resting and 33.48 min (CI 

= 22.68 – 44.28) walking. These results corroborate other studies that have measured 

the activity of pasture based-dairy cows and provide confidence in the predictive ability 

of the combined models.         

Keywords: Dairy cattle; Hidden Markov model; Automated measures; Classification; 

Transition detection         
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1. INTRODUCTION 

It is now well established that automatic technologies can provide valuable 

information about dairy cow diet selection (Gregorini et al., 2015) and health status 

(Charlton et al., 2016). Monitoring pasture-based dairy cattle however has historically 

been very difficult but advances in the capability of data gathering tools such as data 

loggers and global positioning systems (GPS) now allow for the simultaneous 

collection of many variables sampled over high temporal resolutions (Bailey et al., 

2015). As such, there has recently been a move towards utilizing such high-frequency 

data for behavioral modelling and inference (González et al., 2015; Williams et al., 

2016). On small spatial scales, supervised methods can be used where direct 

observation of the study population is undertaken to gather behavioral information 

which can be subsequently used to recognize behaviors in spatio-temporal data (Dutta 

et al., 2015). We previously developed a rule-based behavioral model of pasture-based 

cattle (Williams et al., 2016) using a supervised behavioral classification approach with 

data gathered from GPS receivers set to record spatial and temporal information at a 

high sample rate (5 s). The model consisted of nine rules, allowing for the classification 

of the three main behaviors exhibited by pasture-based dairy cattle; grazing, resting and 

walking.  

Fixed-time segmentation of the temporal GPS data was undertaken for training 

and testing the classifier similarly to Bom et al. (2014). The size of the data segments 

was determined according to a trade-off between the average duration of the three 

behaviors at any point in time and the performance of the classifier on data segments of 

varying size during model optimization. However, fixed-time segmentation can be 

problematic. Biological variability and environmental factors will dictate the temporal 

duration of specific behaviors. Therefore, when models are deployed for behavior 
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prediction, segments are unlikely to be partitioned exactly at the point of behavioral 

transition. In other words, data segments could contain data represented by two separate 

behaviors. Thus, for transition detection and classifier error correction we turn to 

hidden Markov models (HMMs). Traditionally used in speech recognition tasks 

(Rabiner, 1989) HMMs are now extensively used in animal research for behavioral 

inference particularly with elusive species which may be difficult to observe (Pedersen 

et al., 2011; McKellar et al., 2014). In these examples, HMMs are useful in providing 

information about different modes of animal movement and its consequences at the 

individual and population level. They have also been demonstrated to be effective in 

the behavioral inference of agriculturally important species such as cattle (Guo et al., 

2009) and sheep (Milone et al., 2009). An HMM requires a set of discrete unobservable 

states that follow a Markovian property where future states depend only on the current 

(Rabiner, 1989). These states are interpretable through a series of observations that are 

emitted through for example data collected at a high frequency such as that gathered 

from data loggers. Emissions such as step length (distance between successive 

positional fixes) and turning angle are then used to infer logical behavioral states. Guo 

et al. (2009) as an example inferred foraging behavior from high angular speed and low 

directional speed from GPS data.    

In this work however, rather than use an HMM as a behavioral inference tool 

(Guo et al., 2009; Dean et al., 2012) using raw GPS movement metrics, we instead 

applied an HMM for use in behavior transition detection by connecting it to our 

classifier. By doing so, behavior emissions produced by the classifier could be 

statistically modified by the HMM. For example, if a data segment quantitatively 

indicates that the exhibited behavior is grazing but this segment occurs in the middle of 
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a sequence of resting segments the HMM will recognize this as a misclassification due 

to its statistical improbability and correct it. 

This paper is organized into two parts. First, we report the performance of our 

classification and HMM label-correcting method in identifying the behaviors of 

pasture-based cattle using supervised test datasets. Secondly, we show the results of the 

deployed models in a simple experiment undertaken to predict the activity budgets of 

primiparous and multiparous dairy cows, paying particular attention to the results of 

other published work to contextualize our predictions.     
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2. MATERIALS AND METHODS 

2.1. Behavioral classification 

The first step in the behavior recognition process is to produce a series of 

predicted behavior labels (emissions) to feed into an HMM. The behavior classification 

step can be broken down into three distinct phases; movement analysis, segmentation & 

feature extraction and behavior prediction.  

1. Movement analysis: 

The movement analysis computes the basic information required for feature 

extraction such as the distance travelled by cows (m), speed (m/s), acceleration (m/s2) 

and turning angle (degrees) between contiguous coordinates and speed data. In this 

work, the GPS sample rate was set to 5 s because this was found to provide the best 

trade-off between battery power and movement resolution.  

2. Segmentation & feature extraction: 

Once the movement analysis is complete the entire dataset is broken down into 

segments of a predetermined size. Here, the size of each segment was set so that each 

contained 32 movements or contiguously gathered data instances (160 s of data). For 

example, a GPS receiver set to gather positional coordinates at a 5 s sample rate would 

gather approximately 17, 280 positional fixes in 24hrs yielding 540 segments. We 

opted for a 160 s segmentation strategy because it yielded the best classification 

performance in our previous work (Williams et al., 2016). Once segmented a number of 

features can be extracted from the data that are derived from the information gathered 

in the movement analysis. The feature extraction phase gathers more information from 

the data to help define the decision classes which in this instance are grazing (where the 

cow is standing and actively ingesting plant material or browsing), resting (where the 
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cow is either standing stationary or lying and not exhibiting the additional features of 

grazing) and walking (where the cow is purposefully moving usually with a high degree 

of directional persistence). For classification, a total of 13 features were extracted from 

each segment in this work, examples of which include minimum, mean and maximum 

speed (m/s) and the rate of directional changes per segment. The full list of features 

extracted from each segment can be found in Williams et al. (2016); Fig. 3.            

3. Behavior prediction: 

Finally, using all of the extracted features, each data segment is classified into 

grazing, resting or walking using a rule-based model of cow behavior. The output of the 

classification process is in fact the emission sequence that subsequently feeds into the 

HMM which is described in the next section.   
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2.2. Hidden Markov model 

An HMM can be used to infer the underlying hidden state or the true behavior that 

cannot be seen being expressed by the focus cow and was chosen for its potential to 

correct classification errors which may arise due to fixed-time data segmentation. Here, 

the hidden states were grazing (GS), resting (RS) and walking (WS). Three components 

are required to train an HMM:  

1. State transition probabilities: 

These are the probability values for the transitions between the hidden states where 

γij denotes the probability of the cow switching from state i (at any time t) to state j (at 

time t + 1).  

2. Emission probabilities: 

These are the probability values of the predicted emissions grazing (GE), resting 

(RE) and walking (WE) given the hidden state. For this work, the emissions are the 

predicted labels given by the classifier which are a product of the features of the GPS 

data such as distance travelled (m) and turning angle (degrees). The classifier uses 

many and often complex combinations of such variables. For example, one sub-

component of the full model that can be used to explain a three-minute grazing segment 

is: 

IF segment mean positive acceleration ≥ 3.73E−6 m/s2 AND maximum distance moved 

between GPS fix within segment ≤ 2.17 m AND segment mean speed ≥ 0.10 m/s AND 

segment accumulated distance moving ≥ 11.92m then Behavior = grazing 

Therefore, the probability values of the emissions were initialized into the HMM 

using the true positive performance values of the classifier. For example, grazing was 

misclassified as resting at a rate of 0.18 by the classifier but was never misclassified as 
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walking. Therefore, the probability of the hidden state GS given the emitted label GE 

was 0.82. This method meant that reverting to the original, raw movement metrics for 

behavioral inference was not required as the emissions are in fact a product of a 

combination of movement metrics. 

3. Initial state probabilities: 

Which are the initial behavioral probabilities where π0 (start probability vector) is 

the probability of starting in state GS, RS and WS.   



146 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1a. Segment classification (1) and hidden Markov model (2) initialization (2.i), optimization (2.ii) and validation (2.iii). GS, RS, WS = 

Grazing state, Resting state, Walking state. GE, RE, WE = Grazing emission, Resting emission, Walking emission.   
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Fig. 1b. Full cattle behavior prediction workflow showing segment classifier and optimized hidden Markov model. GS, RS, WS = Grazing state, 

Resting state, Walking state. GE, RE, WE = Grazing emission, Resting emission, Walking emission. 



148 

 

2.2.1. Initialization 

Initial state and state transition probabilities for the HMM were calculated from 

150 h of behavior labelled (supervised) data sampled every 5 s that was used to create 

the classifier model (Williams et al., 2016). The forty Holstein cows were managed 

according to a typical dairy grazing regime where cows were given a daily allocation of 

approximately 2,500 kg DM/ha of pasture comprising of mainly perennial ryegrass 

(Lolium perenne) which was grazed to a residual of 1,500 kg DM/ha. One of the 

challenges in building a single HMM for use as a statistical label-correcting tool is the 

potential for over or under compensating for variability in the behavior of cattle. For 

example, an HMM could be used to re-classify a segment label t to match the next 

segment t + 1 if the statistical probability of t is very low. Such errors, where behavioral 

states may be intermittent could occur with data gathered from younger cattle where 

behaviors are perhaps more unpredictable (Kutzer et al., 2015) or if cattle are affected 

by disease (González et al., 2008), exhibiting reproductive behavior (Dolecheck et al., 

2015) or interacting with herd mates (Chebel et al., 2016). This will be considered for 

future work, however, we considered creating individual HMM’s impractical for 

monitoring large herds of cattle and opted for a single HMM here. Therefore, using 

data from as many cows as possible to initialize the parameters of the HMM was to 

reduce the likelihood of over fitting the HMM and to increase the chance of creating a 

more general model.  

2.2.2. Optimization  

The transition, emission and initial probability estimates for the HMM were 

optimized using the Baum-Welch algorithm (Baum et al., 1970) of the HMM package 

(Himmelmann, 2010) in R (version 3.1.0; R Core Team, 2014). This function requires 

an initial HMM and a sequence of emissions. For the optimization phase we used all of 
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the available data from cows tracked from previous work in 2014 and hence there was 

no specific reason for the selected datasets for optimization other than data exhaustion. 

Sequences of predicted emissions (for example; GE → GE → RE → RE → WE → n) were 

generated by running our classifier over 20 individual datasets each totaling 270 min of 

GPS data gathered from 20 randomly selected healthy, Holstein cows that had not been 

previously used for the parameter initialization phase. This resulted in a total of 1,800 

emitted segments (behaviors) passed to the Baum-Welch algorithm in sequences of 90 

segments as output from the prediction model. The Baum-Welch algorithm iteratively 

adjusts the original HMM model parameters to maximize the probability of obtaining 

the emissions fed to the algorithm (Rabiner, 1989). After each run of the Baum-Welch 

algorithm on each sequence of segments the transition and emission probability 

estimates of the HMM were re-estimated until no further improvement in the model 

parameters were reached. This was repeated until all sequences had been processed. We 

then used the Viterbi algorithm from the same package to test the HMM on sequences 

of emissions from data with known behavioral states. Using the optimized probability 

estimates, the Viterbi algorithm computes the hidden state sequence that best fits the 

sequence of emissions (Forney, 1973), here provided by the classifier.      

2.2.3. Validation 

To test our HMM we used a total of 51 h of behavior-labelled GPS data 

previously gathered from 9 randomly selected healthy Holstein dairy cows that were 

between parities 1 and 8 at Aberystwyth University dairy farm, Trawsgoed, Ceredigion, 

between March and August 2014. The data used here were not previously used to 

initialize or optimize the parameters of the HMM and this was the total amount of 

validation data available. Each cow had been directly observed by two trained 

observers situated approximately 40 m from the observational paddock for the 
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behaviors grazing, resting and walking (Kappa = 0.96, 0.99 and 1.00 respectively) 

according to the methodology of Williams et al. (2016). Data from each cow were 

downloaded as comma separated variable (csv) files and saved in a spreadsheet 

program. Each dataset contained the record number of each logged position, time (s), 

latitude, longitude, speed (m/s), and altitude (m). Individual datasets from each cow 

were arranged so that a single continuous dataset of 32,783 observations taken at 5 

second intervals was compiled for segmentation, feature extraction and classification. 

Each cow contributed 5 hours of behavior-labelled data equating to 3,600 ± 14 (mean ± 

SD) observations and therefore 112 ± 0.81 (mean ± SD) three-minute segments for 

classification. Datasets were passed to the behavioral classifier for labelling before 

being transferred for statistical correction by the HMM. The entire workflow is 

summarized in Figs. 1a and 1b.  

The prediction performance of both methods was evaluated using overall 

classification accuracy ((TP + TN) / (TP + TN + FP + FN) where TP = true positives, 

TN = true negatives, FP = false positives, FN = false negatives); sensitivity (TP / (TP + 

FN)); specificity (TN / (FP + TN)); F1 (2TP / (2TP + FP + FN)); precision (TP / (TP + 

FP)); and balanced accuracy (TP / (TP + FN)) + (TN / (TN + FP)) / 2. Balanced 

accuracy was included as it is intuitively simple where predictive performance is 

measured independently for each class and aggregated. Furthermore, where class 

distribution is unbalanced considering only overall classification accuracy can be 

misleading (Brodersen et al., 2010). To compare the sensitivity, specificity and 

classification accuracies of both classification methods the resulting classification 

matrices from the validation phase (containing the classifier predictions versus the 

actual behaviors) were combined to form a 2 x 2 confusion matrix for statistical 

comparison. The resulting 2 x 2 matrix contains 1; the number of instances that were 
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correctly classified by the classifier and also by the combined classifier and HMM 

(bottom right cell of the matrix) 2; the number of instances that were correctly 

classified by the classifier but the classifier and HMM failed to correctly identify 

(bottom left cell of the matrix) 3; the number of instances that the classifier alone failed 

to identify correctly but the classifier and HMM correctly identified (top right cell of 

the matrix) and 4; the number of instances that the classifier failed to correctly identify 

and that the classifier and HMM also failed to identify (top left cell of the matrix). For 

this comparison a McNemar’s test was undertaken (McNemar, 1947; Kim and Lee, 

2017).  

2.3. Cattle activity analysis 

Finally, we used our classification and HMM to predict the duration of grazing, 

resting and walking exhibited by two groups of cows in a commercial dairy herd. We 

chose to compare the activities of primiparous (n = 12) and multiparous cows (n = 12). 

Previous authors (Sepúlveda-Varas et al., 2014; Westin et al., 2016) reported 

differences in the behavioral frequencies of primiparous and multiparous cows and it 

was therefore decided that such a comparison could yield useful information on the 

predictive ability of our models. GPS data were collected from 24 healthy Holstein 

dairy cows in a longitudinal study during August 2016 at the same farm. The sample 

size was dictated by the number of GPS units available each day. At the start of the 

experiment the mean (± SD) number of days since calving was 43 (± 22.67) and 43 (± 

19.12) for primiparous and multiparous cows respectively. Data collection took place 

over a period of 20 days. Study cows were fitted around the neck with a randomly 

selected GPS receiver from a sample of 24 units that had been rigorously field tested 

under the specific guidelines of the Institute of Navigation (ION, 1997). Collars were 

placed onto cows every other day at approximately 06:30 h. GPS collars were left in 
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place to collect data for a period of 24hrs, logging positional coordinates at a 5 s sample 

rate. Immediately after placing the collars on the cows, the study cows returned to the 

main group of 120 cows where the entire group was buffer fed a total mixed ration of 

grass silage (25 kg of total fresh weight (FW)), maize silage (10 kg FW), rolled wheat 

(3 kg FW), barley straw (0.3 kg FW) with the remainder comprising a rumen-protected 

fat supplement, dairy mineral blend and molasses prior to returning to the designated 

grazing paddock. Buffer feeding was being used by the farm in order to compensate for 

the shortfall in grass availability. All cows were returned to the designated grazing 

paddock by 08:00 h and were removed from the paddock 8 h later at 16:00 h for the 

afternoon milking. On arrival back at the farm in the afternoon, cows were offered the 

same buffer silage ration before and after milking. Cows were returned to the same 

grazing paddock by 18:00 h where they spent the following 11hrs. GPS collars were 

removed from the study cows for processing during the subsequent morning milking 

period and replaced 24hrs later. Each 24hr data collection period yielded 19hrs of GPS 

data from each grazing paddock for behavioral analysis from each study cow. All cows 

were allocated a new grazing paddock at the start of each day which was part of the 

routine herd management. Cows were set stocked in each grazing paddock which 

provided approximately 2,000 kg DM/ha of Lolium perenne. Pasture quality was not 

managed stringently during the experimental period and so varied throughout each 

paddock. Given the nature of the data retrieval process, 20 consecutive experimental 

days yielded 10 days of data from ten different grazing paddocks for predictive 

analysis. In developing a similar predictive model Guo et al. (2009) collected four 

consecutive days of cow data whereas Alsaaod et al. (2012) recommended the 

collection of approximately 14 days of consecutive data for classifying lame cattle. 
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Here, we deemed that 10 days of data would provide a realistic representation of the 

behavior of cattle given the grazing rotation at the farm. 

2.4. Data handling   

Data from each cow for the 10 days of data collection were downloaded as csv 

files before applying our behavioral prediction methodology to each dataset from each 

cow (Figs. 1a and 1b). Time spent (minutes) in each behavioral category (grazing, 

resting and walking) was computed for each cow on each day. In total, there were 16 

missing cow days of data (6% of total) in the full dataset where GPS units had failed 

either due to impact or water penetration. To deal with missing instances, we separately 

regressed the time spent in each behavioral category on all experimental days (10d) for 

each cow with missing values. Missing values were then replaced by values calculated 

for the missing day from the coefficients of each regression model. A similar method 

was undertaken by Thorup et al. (2016) to deal with missing data when estimating the 

feed intake of cattle.  

2.5. Statistical analysis 

All analyses were performed using R (R Core Team, 2014). Descriptive 

statistics were first computed for the raw behavioral predictions of the daily time spent 

in each behavioral category for both primiparous and multiparous cows combined for 

the duration of the experiment. Hourly time budgets were also calculated as means of 

the proportion of time spent in each behavioral category for both groups over the 10-

day period. Time budgets were created from available GPS records and did not include 

any data where missing values had been computed previously. The activities of the two 

groups of cows over the course of the 10 days were then analyzed. The incidence of the 

variable walking was highly positively skewed and so data were transformed using the 

natural log + 1 to meet the assumptions of normality prior to modelling for this 
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behavior. Data for both grazing and resting were found to meet the assumptions of 

normality. We used the lme4 package in R for linear mixed effects analysis (Bates et 

al., 2007). In an initial screening of the effects under study, we constructed three linear 

mixed effects models for parity (1), parity + day (2) and parity + day + parity x day (3) 

using cow as the random effect in each model and tested these on the daily duration of 

grazing, resting and walking. The full model with interaction was found to fit the data 

best (P < 0.001) for grazing and resting whereas no improvement in fit was seen over 

the main effects model (parity + day) for the behavior walking (P = 0.63). Results are 

presented as least squares means with standard errors for each behavior.          
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3. RESULTS 

3.1. Estimated model parameters 

The final state transition and emission probability matrices as well as the initial 

probability values for the trained HMM are shown in Table 1. As an example of the 

transition probabilities, it can be seen that the probability of a cow remaining in a state 

of grazing (GS) at time t + 1 is 0.953. If a cow is in a state of resting (RS) the probability 

of her being in a state of grazing (GS) at t + 1 is 0.03. In the classifier building phase 

there was difficulty in distinguishing between lying and standing (where a cow is stood 

still) behaviors, which is why a single category ‘resting’ was created. Because 98% of 

the original training data for the classifier model contained instances where the cow 

was physically lying this explains why the probability of a transition between resting 

and walking (RS → WS) and WS → RS is 0. In other words, the probability that a cow will 

rise and immediately start walking or transfer to a lying position immediately from 

walking is very low and in the HMM parameter optimization phase this became zero. 

For the emission probability values, the probability of a cow being in a real state of 

grazing (GS) when the classifier predicted (emitted) grazing (GE) was 0.799 whereas if 

walking (WE) was emitted the probability that the cow was in fact in RS was 0.004. 

Objects can appear to be moving even when GPS receivers are stationary which can be 

explained by receiver accuracy and multipath effects (Ryan et al., 2004; Ganskopp and 

Johnson, 2007). The initial probability values represented the probability of finding a 

cow in each behavioral state at the start of a dataset. Cows were most likely (0.80) to be 

in an initial state of GS.   
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Table 1. Complete hidden Markov model for cattle behavioral analysis. 

a GS
 = the cow is in a true state of grazing (RS = resting state; WS = walking state) at time t. 

b GS + 1 = the cow will be in a state of grazing in the next segment at time t + 1.  
c GE = the predicted emission is grazing (RE = resting emission; WE = walking emission). 
d π = initial probability of behavioral states. 

 

3.2. Prediction performance 

Table 2 shows the resulting confusion matrices generated from the validation 

phase showing the performance of the classifier and the combined classifier and HMM. 

It can be seen that the number of correctly identified segments increased with the 

addition of the HMM for grazing (+ 46 correctly identified segments) and resting (+ 

47). No improvement in prediction performance was seen for walking behavior 

however (71 segments correctly identified by both techniques). This may have been due 

to the high classification accuracy of the prediction model for this behavior and that 

cows were highly likely to remain in a state of walking in the next segment (Pr: 0.98; 

Table 1) which is then undisputed as a prediction by the HMM. 

  

State transition probability GS + 1
b RS + 1 WS + 1 

GS
a 0.9529 0.0151 

 

0.0321 

 

RS 0.0301 

 

0.9699 

 

0.0000 

 

WS 0.0249 

 

0.0000 

 

0.9751 

 

Emission probability GE
c RE WE 

GS
 0.7989 

 

0.2011 

 

0.0000 

 

RS 0.2010 

 

0.7950 

 

0.0040 

 

WS 0.0000 

 

0.0197 

 

0.9803 

 

Initial probability    

πd 0.8000 0.1500 0.0500 
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Table 2. Confusion matrices generated from the validation dataset showing the 

classification performance of the classifier and the combined classifier and hidden 

Markov model versus the true behavioral segments in the dataset. 

 Prediction method 

 Classifier 

True behavior Grazing Resting Walking ∑ 

Grazing 288 88 3 379 

Resting 62 510 1 573 

Walking 0 1 71 72 

∑ 350 599 75 1024 

     

 Classifier + hidden Markov model 

Grazing 334 42 3 379 

Resting 15 557 1 573 

Walking 1 0 71 72 

∑ 350 599 75 1024 

 

Table 3 shows the performance of the classifier and associated 95% CI’s and 

also performance after the addition of the HMM to the predicted emissions on the 

compiled validation dataset for the behaviors grazing, resting and walking. There was 

an improvement in average performance across all of the measured parameters 

(sensitivity, specificity, precision, F1, balanced accuracy) for grazing and resting 

behaviors with the use of the HMM. The results for walking corroborate that seen in 

Table 2 in that no improvement in these parameters were seen for this behavior using 

the HMM. To test whether the overall improvement seen by using the HMM was 

statistically meaningful a 2 x 2 confusion matrix was created from the data provided in 

Table 2. Table 4 shows the resulting 2 x 2 matrix with the number of correct and 

incorrect classifications by the classifier and combined classifier and HMM. Overall, 

the McNemar’s test revealed that the HMM significantly improved the identification of 

the behavioral labels of the segmented validation dataset compared to the classifier 

alone (χ² = 88.1; P < 0.001). 
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Table 3. Performance (and 95% CI) of the classifier on the validation dataset versus the combined performance of the classifier and hidden 

Markov model. 

Sensitivity = true positive rate; Specificity = true negative rate; Precision = positive predictive value; F1 = harmonic mean of precision and sensitivity; Balanced accuracy = 

sensitivity + specificity / 2; Overall accuracy = fraction of correctly classified instances. 

 

Prediction method Behavior Sensitivity Specificity Precision F1 Balanced 

accuracy 

Overall 

accuracy 

Classifier Grazing 0.76 

(0.73 – 0.79) 

0.90 

(0.88 – 0.92) 

0.82 

(0.80 – 0.85) 

0.79 

(0.76 – 0.82) 

0.83 

(0.81 – 0.85) 

NA 

 Resting 0.89 

(0.87 – 0.91) 

0.80 

(0.77 – 0.83) 

0.85 

(0.83 – 0.88) 

0.87 

(0.85 – 0.89) 

0.85 

(0.83 – 0.87) 

NA 

 Walking 0.99 

(0.98 – 0.99) 

1.00 

(0.99 – 1.00) 

0.95 

(0.93 – 0.96) 

0.97 

(0.95 – 0.98) 

0.99 

(0.98 – 1.00) 

NA 

        

Average  0.88 

(0.86 – 0.90) 

0.90 

(0.88 – 0.92) 

0.87 

(0.85 – 0.89) 

0.88 

(0.86 – 0.90) 

0.89 

(0.87 – 0.91) 

0.85 

(0.83 – 0.87) 

        

Classifier + hidden 

Markov model 

Grazing 0.88 

(0.86 – 0.90) 

0.98 

(0.97 – 0.98) 

0.95 

(0.94 – 0.97) 

0.92 

(0.90 – 0.93) 

0.93 

(0.91 – 0.95) 

NA 

 Resting 0.97 

(0.96 – 0.98) 

 0.91 

(0.89 – 0.92) 

0.93 

(0.91 – 0.95) 

0.95 

(0.94 – 0.96) 

0.94 

(0.92 – 0.96) 

NA 

 Walking 0.99 

(0.98 – 0.99) 

1.00 

 (0.99 – 1.00) 

0.95 

(0.93 – 0.96) 

0.97 

(0.95 – 0.98) 

0.99 

(0.98 – 1.00) 

NA 

        

Average  0.93 

(0.91 – 0.95) 

0.96 

(0.95 – 0.97)  

0.94 

(0.92 – 0.96) 

0.95 

(0.94 – 0.96) 

0.95 

(0.94 – 0.96) 

0.94 

(0.92 – 0.95) 
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Table 4. Confusion matrix showing the observed number of correct and incorrect 

outcomes for the classifier and classifier and hidden Markov model combined. 

 

To visually demonstrate the effect of the classifier and HMM in predicting the 

behaviors of cattle, we randomly selected two 5 h sequences of data from the compiled 

dataset represented by two separate cows and plotted their behaviors. Fig. 2 shows two 

example path plots produced by two cows that exhibited all three behaviors under 

study. It can be seen that grazing intensity was highest in the northern regions of these 

plots where the fresh strip of pasture was located. Evidently, both cows made a single 

trip to the water source which was located in the southerly region before returning to 

graze and finally rest. Each data point within each path plot corresponds to a single 

observation sampled every 5 s (32 observations = 1 segment). Plots (a) show the 

efficacy of the classifier alone in predicting the behaviors. Plots (b) and (c) respectively 

illustrate the predicted behaviors after the application of the HMM to the classified 

segments and the visually verified behaviors. Series 1(a) shows that 79% of the 

segments were correctly identified by the classifier (73 out of 93 segments). 

Application of the HMM to this dataset resulted in all segments being correctly 

classified (1b vs. 1c). The second series in Fig. 2 shows the path plot of the second cow. 

In this example the classifier alone (2a) correctly identified 83% of the segments (77 

out of 93 segments) while the HMM improved the classified labels to 97% (total = 90 

out of 93 segments correct). The majority of misclassifications for the classifier during 

 Classifier + hidden Markov model  

Allocation Incorrect Correct ∑ McNemar’s 

test χ² 

statistic and 

P-value 

Classifier     

Incorrect 61 93 154  

Correct 1 869 870  

∑ 62 962 1024 χ² = 88.1; 

P<0.001 
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model construction occurred between the behaviors grazing and resting. This can be 

seen in both series 1 and 2 (plot a) where some grazing instances were labelled as 

resting. This usually occurs where the motion of grazing takes place very slowly. These 

segments are usually found in amongst grazing segments and the HMM corrects these 

segments due to their low statistical probability of occurrence. However, for series 2, 

the HMM misidentified three grazing segments as resting.  
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Fig. 2. Two five-hour path plots of the behaviors of two cows as predicted by the classifier model (a), after smoothing the predictions with the 

hidden Markov model (b) and the visually verified behaviors (c). Each data point corresponds to a GPS coordinate sampled at 5 s intervals.
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3.3. Group activity analysis 

For the 10-day experimental period, all cows (n = 24; 240 observations) were 

predicted to have spent a median duration of 357 min/d grazing (25th – 75th percentile = 

294 – 448 min/d), 738 min/d resting (25th – 75th percentile = 656 – 822 min) and 24 

min/d walking (25th – 75th percentile = 9 – 48 min). Fig. 3 shows the variation found in 

all three behavioral categories across the experimental period for all cows. Fig. 4 shows 

the predicted hourly allocation of behavior averaged over the whole 10-day 

experimental period for both study groups. Between the hours of 08:00 h and 16:00h 

(am period) and 18:00 h and 05:00 h (pm period) it was predicted that primiparous and 

multiparous cows respectively allocated on average 37% and 40% of their time to 

grazing during the am period and 22% and 25% during the pm period. It was predicted 

that primiparous and multiparous cows proportionally allocated 58% and 54% of their 

time to resting during the am period and 74% and 71% during the pm period. Walking 

was represented in the smallest proportion with primiparous and multiparous cows 

predicted to have allocated 6% of their time to this behavior during the am period and 

4% during the pm period.     
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Fig. 3. Frequency distribution of the daily duration (min/d) of grazing, resting and 

walking of 24 cows as predicted from 10 days of experimental data (n = 240 

observations).
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Fig. 4. Proportion of time spent grazing, resting and walking by multiparous and 

primiparous cows at pasture as predicted from 10 days of experimental data. Means for 

each cow were taken over the 10 days and are expressed as a grand mean for both 

groups. 
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With reference to the predicted behaviors, the mixed effects analysis showed 

that multiparous cows grazed on average 48 min/d longer (P = 0.01) over the course of 

the 10-day observation period and rested for approximately 39 min/d less (P = 0.05, 

Table 5). There was no significant difference in the daily duration of walking between 

the two groups (Table 5). There was a significant effect of day on the duration of 

grazing and resting compared to the first day of observation (Table 5) but these 

differences could not be reconciled under the experimental conditions. There was no 

significant effect of day however on the duration of walking over the 10 days compared 

to the first day of observation (Table 5). There was a significant interaction between 

parity and day with primiparous cows showing significant day on day variation in the 

daily duration of grazing (SD = 86.83 min/d; P < 0.001) and resting (SD = 85.36min/d; 

P < 0.05). No such variation was found for the multiparous group for grazing (SD = 

38.51 min/d; P > 0.05) or resting (SD = 43.07 min/d; P > 0.05). 
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Table 5. Results of linear mixed-effects models on the daily duration of grazing, resting and walking (min/d) by primiparous and multiparous 
cows over the 10-day experimental period.  
 

a Reference level; b Log transformed values.

  Grazing Resting Walkingb 

Variable Level Coefficient SE 95% CI P ‒value Coefficient SE 95% CI P ‒value Coefficient SE 95% CI P ‒value 

Parity Primiparous Referencea ‒ ‒ ‒ Reference ‒ ‒ ‒ Reference ‒ ‒ ‒ 

 Multiparous 47.48 12.57 22.84 ‒ 72.12 0.01 -38.8 13.50 -65.26 ‒ -12.34 0.05 -0.43 0.19 -0.80 ‒ -0.06 0.12 

Day 1 Reference ‒ ‒ ‒ Reference ‒ ‒ ‒ Reference ‒ ‒ ‒ 

 2 -63.38 19.60 -101.80 ‒ -24.96 0.31 101.92 22.29 58.23 ‒ 145.61 0.03 -0.69 0.23 -1.14 ‒ -0.24 0.28 

 3 64.75 19.60 26.33 ‒ 103.17 0.28 -51.00 22.29 -94.69 ‒ -7.31 0.80 0.08 0.23 -0.37 ‒ 0.53 1.00 

 4 10.29 19.60 -28.13 ‒ 48.71 1.00 29.46 22.29 -14.23 ‒ 73.15 0.99 -0.78 0.23 -1.23 ‒ -0.33 0.14 

 5 22.75 19.60 -15.67 ‒ 61.17 0.98 -21.21 22.29 -64.90 ‒ 22.48 0.99 0.14 0.23 -0.31 ‒ 0.59 1.00 

 6 109.58 19.60 71.16 ‒ 148.00 0.002 -77.50 22.29 -121.19 ‒ -33.81 0.23 -0.30 0.23 -0.75 ‒ 0.15 0.99 

 7 104.13 19.60 65.71 ‒ 142.55 0.003 -68.21 22.29 -111.90 ‒ -24.52 0.41 -0.61 0.23 -1.06 ‒ -0.16 0.48 

 8 -3.29 19.60 -41.71 ‒ 35.13 1.00 27.71 22.29 -15.98 ‒ 71.40 0.99 -0.29 0.23 -0.74 ‒ 0.16 0.99 

 9 73.25 19.60 34.83 ‒ 111.67 0.14 -66.33 22.29 -110.02 ‒ -22.64 0.45 0.11 0.23 -0.34 ‒ 0.56 1.00 

 10 107.88 19.60 69.46 ‒ 146.30 0.002 -71.00 22.29 -114.69 ‒ -27.31 0.35 -0.75 0.23 -1.20 ‒ -0.30 0.18 

Intercept  365.42 26.53 313.42 ‒ 417.42 <0.001 736.00 30.18 676.85 ‒ 795.15 <0.001 3.17 0.26 2.66 ‒ 3.68 <0.001 
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Between parity groups (Fig. 5), a highly significant difference was found in the 

duration of grazing (P < 0.001) on day 2 with resting tending to differ significantly 

between the two groups on this day (P = 0.09). Again, this effect could not be 

reconciled under the experimental conditions. On average, it was predicted that 

primiparous cows spent 345 min/d, 753 min/d and 42 min/d grazing, resting and 

walking respectively. Multiparous cows on the other hand were predicted to have spent 

on average 392 min/d, 714 min/d and 34 min/day performing the same behaviors 

respectively (Table 6). 
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Fig. 5. Least squares means of daily duration (min/d) of grazing, resting and walking 

activities of primiparous and multiparous cows over the 10-day experimental period. 
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Table 6. Least squares means (and 95% CI) of time spent (min/d) in each behavior by 

primiparous and multiparous cows over the 10‒day experimental period. 

a Values are from mixed effects models accounting for the effect of day, the interaction between parity 

and day and the random effect of cow.  
b Values are from mixed effects models accounting for the effect of day and parity and the random effect 
of cow. Values are back transformed where the natural log + 1 transformation was used.  

Variable Primiparous Multiparous P ‒ value 

Grazing (min/d)a 344.86 

(319.04 ‒ 370.68) 

392.33 

(366.51 ‒ 418.16) 

0.01 

Resting (min/d)a 752.99 

(725.25 ‒ 780.74) 

714.19 

(686.45 ‒ 741.94) 

0.05 

Walking (min/d)b 42.15 

(31.35 ‒ 52.95) 

33.48 

(22.68 ‒ 44.28) 

0.12 
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4. DISCUSSION 

4.1. Behavior recognition 

The application of an HMM to the predicted output of our behavioral model of 

pasture-based cattle allowed us to significantly improve our experimental predictions of 

cattle activity. Initializing the HMM using the state and emission probabilities gathered 

from the performance of the original behavioral prediction model meant that reverting 

to using untransformed GPS movement metrics such as velocity or turning angles to 

train the HMM was not necessary. This approach to the behavioral prediction problem 

meant that the sequences of emissions as predicted by the classifier alone could be 

statistically corrected using the HMM. The limitation of classifying segmented data 

alone is that each segment is treated independently of the next and does not consider the 

sequence of behavior-labelled segments as a whole. The HMM in this instance was 

useful in improving the outcome of the classification task by contextualizing the 

behavioral sequences, taking a probabilistic approach to the likelihood of occurrence of 

each classified label. This led to a mean improvement in the overall classification 

accuracy of 9%. This level of performance is comparable to others that have had 

success in classifying the behaviors of cattle. For example, using data gathered from a 

combined accelerometer and magnetometer and an ensemble classifier Dutta et al. 

(2015) achieved an average classification accuracy of 96% (range 92% – 98%) for the 

behaviors grazing, searching, ruminating, resting and scratching. The improvement in 

classification in this work was only recognized for the behaviors grazing and resting 

where classification errors were more likely to occur. However, the test data revealed 

that the HMM was not completely effective in statistically modifying the predicted 

grazing and resting labels of the classifier. On occasion, emitted sequences may be 

intermittent, and the exact point of transition may be detected earlier or later by the 
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HMM when the statistical likelihood of the transition is met. This is problematic for the 

methodology and refining the HMM to be robust to such anomalies is challenging. One 

solution to this would be to train the HMM on a greater number of behavioral 

sequences from a greater number of cattle than that used here in order to better 

generalize the HMM and to incorporate the biological variability of individuals. 

Foraging behavior of cattle for example has been shown to vary greatly in other work 

that has explored the use of an HMM to infer the behavior of cattle (Guo et al., 2009). 

A second method could be to tailor individual HMM to groups of cattle, for example, in 

order to account for the variation in behavior between age or health status (González et 

al., 2008; Kutzer et al., 2015).  

The behavior walking was distinct in that it could be identified by high 

directional persistency and velocity by the classification model and the final HMM 

matrix reflected this. For example, the likelihood that a cow would remain in a state of 

walking in the next segment was very likely (0.98). Thus, the final classification of 

walking segments using the HMM was well recognized. Imperfections for this behavior 

may have been due to erroneous GPS fixes where cows appeared to move very quickly 

over a particular area. Coupled with the high probability of an observed walking 

segment being the true state (0.98) this meant that the HMM made adjustments to the 

behaviors flanking each side of the predicted walking segment rather than adjusting the 

walking segment itself. Further refinement of the HMM would help in reducing this 

problem. The high behavioral state probabilities of the HMM could however be seen as 

a reflection of the way in which contemporary dairy cattle behave. Using automated 

techniques to identify activities immediately limits the user in the number of behaviors 

that can be identified. However, it is well documented, that given the energy demand of 

dairy cattle for functional maintenance and milk production that the main behaviors 
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exhibited can be partitioned into the three under study with grazing and resting 

occupying the majority of the time budget (Kilgour, 2012). 

4.2. Time budgets  

To contextualize and test our models, we created a simple longitudinal 

experiment to study the activities of two sets of cattle grouped by parity. Our 

predictions corroborate other work in that the time allocated to grazing, resting and 

walking each day varies greatly between cows and herds (Gomez and Cook, 2010; 

Westin et al., 2016; Solano et al., 2016). Here we reported a median daily grazing time 

over all cows of 357 min/d (mean = 369 min/d). Arachchige et al. (2013) reported a 

mean grazing time of 312 min/d when cows were supplemented with silage at pasture. 

Williams et al. (2006) reported a grazing time of between 384 and 426 min/d when 

cows were supplemented with cereal grain and pasture hay. On the other hand, cows 

not supplemented at pasture grazed for a mean daily duration of 438 min/d in the study 

by Soca et al. (2014) and for 527 min/d in the study of Dohme‒Meier et al. (2014). 

Supplementation likely had an impact on the amount of time cows spent grazing when 

at pasture in the current study. This was reflected in the time spent resting where cows 

were predicted to have spent a median duration of 738 min/d at rest (mean = 734 

min/d). On average, the greatest proportion of cows housed in tie-stalls in the study by 

Charlton et al. (2016) rested for 780 min/d whereas Solano et al. (2016) found that on 

average, cows spent 649 min/d resting. Cows housed on farms with automatic milking 

systems rested for a median daily duration of 684 min/d (25th – 75th percentile = 582 – 

774 min/d) in the study by Westin et al. (2016). Both lying and feeding behavior have 

been used to indicate cow comfort and changes in the health and welfare status of cows 

(O’Driscoll et al., 2008; González et al., 2008; Charlton et al., 2016) but relatively little 

work has been focused explicitly on measuring the resting times of cattle at pasture. 
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However, Hernandez-Mendo et al. (2007) found that cows on pasture spent less time 

resting compared to cows housed indoors (654 min/d vs. 732 min/d). At pasture, the 

time required for searching and consuming forage will depend on its accessibility and 

quality (Gregorini, 2012) which will ultimately govern the time that cattle are able to 

allocate to other behaviors such as resting. However, the activity results of this study 

are comparable with others in the literature. 

An analysis of the time spent in each behavioral category per hour revealed the 

distinct diurnal grazing pattern that is well documented for cattle (Gregorini, 2012; 

Sheahan et al., 2013). Both primiparous and multiparous groups spent the majority of 

their time grazing around sunrise and sunset with major bouts of grazing occurring after 

both milking periods. A small peak of grazing occurred at midnight with the majority of 

time thereafter allocated to resting prior to the morning milking period. We found that 

primiparous cows spent more time resting compared to multiparous cows. This differs 

to the study of Sepúlveda-Varas et al. (2014) who found that primiparous cows for the 

first 15 days after calving spent less time lying per day compared to multiparous cows. 

However, primiparous cows gradually increased their lying times thereafter, until there 

was no difference in lying duration between both groups. This has also been seen in 

other studies examining lying duration (Nielsen et al., 2000; Vasseur et al., 2013). 

Proportionally therefore, multiparous cows grazed for longer overall in the present 

study but did not significantly change the amount of time allocated to grazing and 

resting over the 10-day observation period. The daily behavior of primiparous cows 

however varied significantly between days. Although there was no direct control over 

pasture quality and field size during this study, we hypothesize that the daily variation 

shown in grazing and resting behaviors of the primiparous group could be explained by 

lack of grazing experience. Speculatively, older cows may have been dedicating more 
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time towards grazing the best areas of each paddock while the younger cows simply 

went to rest.   
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5. CONCLUSIONS 

The use of an HMM to probabilistically recognize behavioral change points in 

the output of our behavioral classifier was successful in improving the accuracy of the 

predicted behaviors. This improvement was only realized however for the behaviors 

grazing and resting but highlighted the benefit and computational efficiency of using an 

HMM to contextualize sequences of behavior labels. By comparing our results with the 

wider literature, we were able to identify that our predictions were in close association 

with the most recent studies that measured the duration of time spent by healthy cows 

in each of the studied behaviors. Furthermore, we found that our predictions coincided 

with the documented diurnal behavior patterns of cattle. On occasion however, GPS 

multipath effects of grazing near woodland meant that cattle would appear to move 

very quickly which the classifier identified as walking (high speed and high directional 

persistency). As a consequence, the HMM would fail to recognize this as a 

misclassification because the likelihood of a cow exhibiting walking behavior 

following grazing is very high. Eliminating this type of error however would require 

the refinement of the classifier itself to deal with such multipath effects which would 

ultimately lead to an improved sequence of emissions being fed to the HMM. This is 

important moving forward because gaining an accurate estimation of the exhibited 

proportion of each behavior is vital in the context of precision livestock husbandry.  

This method provides an efficient solution to fixed-time data segmentation and 

classification, eliminating the need for separate change point detection algorithms for 

segmentation. The results also provide confidence in the combined use of a classifier 

and HMM and that data gathered from GPS receivers alone can be used effectively to 

track bovine spatio-temporal behavior in both precision livestock husbandry and 

behavioral research contexts.     
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Chapter 3 

The following chapter was accepted for publication in the journal Biosystems 

Engineering and is therefore formatted to the requirements of the journal. The reference 

for the publication is: 

Williams, M.L., James, W.P. and Rose, M.T., 2019. Variable segmentation and 

ensemble classifiers for predicting dairy cow behaviour. Biosystems Engineering, 178, 

pp. 156-167. 

Summary 

 An alternative technique to partitioning data with fixed window sizes for 

machine learning is to extract information from behaviours for the whole duration that 

they occur (variable segments). With fixed window sizes of 10 s duration for example 

(Chapter 2), a two-minute sequence of grazing behaviour would be broken down into 

12 segments. With variable segmentation, the two-minute sequence is treated as one 

continuous segment for feature extraction. One benefit of this method is that models are 

based on sequences that are more representative of cow behaviour. A second benefit is 

that real-time sequences of data can be partitioned using separate changepoint 

algorithms. The behaviour classifier then takes these variable sequences and classifies 

them. The success of the technique depends on collecting as many sized segments as 

possible so that the classifier will generalise well on new data. The success of 

classification also depends heavily on the ability of the changepoint algorithm to 

identify the points at which the behaviour changes. To validate variable segmentation, a 

number of standard machine learning algorithms were evaluated in this chapter as well 

as an ensemble algorithm. Ensemble algorithms are gaining a lot of attention in other 

fields such as medical diagnosis. The reported benefits of ensembles are that they can 

result in improved classification performance over standard algorithms (base learners). 
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This is because they make collective decisions based on the inputs of often several 

other classifiers built from standard machine learning algorithms. Given their 

popularity in other fields, the aim was to see whether an ensemble classifier could 

provide improved classification performance over classifiers built from standard 

algorithms on data partitioned using variable segmentation.             
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Highlights 

 Variable segmentation of GPS data gathered from dairy cattle was undertaken 

 >90% of behavioural changepoints were correctly identified  

 The best base learner achieved 96% classification accuracy on the derived 

segments 

 Classification accuracy was not improved when Stacking algorithm was used  

 Variable segmentation is a promising strategy for cattle behaviour identification 

 

ABSTRACT 

Automatically classifying cattle behaviour using high frequency data usually 

involves segmentation of data with fixed window sizes for feature extraction. Machine 

learning algorithms can then be used for supervised modelling of the most biologically 

important behaviours using these segments. In this work, variable segmentation was 

applied to GPS data gathered from 30 dairy cows at pasture. Using these segments, the 

performance of 13 machine learning algorithms (base learners) implemented in WEKA 

were compared using default parameters in classifying grazing, resting and walking. 
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Two Stacking ensembles (WEKA implementation of Super Learner) were then derived. 

The first ensemble contained the best performing base learners. The second was an 

optimised version derived using a manual ensemble selection method. Both versions of 

the ensemble were evaluated on an independent test set derived from 10 cows. Overall, 

the variable segmentation strategy identified 90.2% of changepoints. On the training 

set, all base learners achieved classification accuracies and F-measures 0.90. 

Optimising the Stacking ensemble led to no further improvement in F-measure (full 

ensemble = 0.93; optimised ensemble = 0.92) on the test set. The ensembles performed 

well but base learners utilising boosting algorithms (e.g. simple logistic; logistic model 

trees) performed as well as the more computationally expensive ensembles. Variable 

segmentation and ensemble classifiers are promising strategies for classifying the 

behaviour of dairy cows. However, more work is needed to fully explore and evaluate 

the potential of ensembles because some base learners may perform equally if not better 

in some contexts.  

Keywords: Variable segmentation; Changepoint; Ensemble classifier; Dairy cattle 

behaviour classification; Machine learning; Stacking algorithm 

Nomenclature: BN, Bayes net algorithm; BinSeg, Binary segmentation method for data 

segmentation; CA, Classification accuracy; cpt.mean, Function to identify changes in 

the mean of data; cpt.meanvar, Function to identify changes in the mean and variance 

of data; cpt.var, Function to identify changes in the variance of data; LR, Logistic 

regression algorithm; ML, Machine learning; MP, Multilayer perceptron algorithm; NB, 

Naïve Bayes algorithm; SL, Simple logistic algorithm; SMO, Sequential minimal 

optimisation; SVM, Support vector machine algorithm. 
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1. INTRODUCTION 

The utility of precision technologies in supporting the management of livestock 

is becoming increasingly evident and is providing the opportunity for practitioners to 

gain a deep insight into livestock behaviour (Rutten, Velthuis, Steeneveld, & 

Hogeveen, 2013). Information gathered on a minute-by-minute basis can be used as an 

additional tool for monitoring performance (Borchers et al., 2016), welfare (Meen et al., 

2015), and animal: environment interactions (Fournel, Rousseau, Laberge, 2017) and 

may provide opportunities for more objective decision support on farms (Neethirajan, 

Tuteja, Huang, & Kelton, 2017).  

Many behavioural recognition studies that gather data using precision 

technologies such as GPS and accelerometers attempt to classify biologically important 

behaviours using supervised machine learning (ML) techniques (Diosdado et al., 2015), 

where the dataset is labelled by manual observation of the behaviours that took place. 

The next challenge is to partition the dataset prior to the ML phase into appropriately 

sized segments. Segment size is often determined by some combination of criteria such 

as the length of time that the target behaviours tend to take place for, and the sampling 

interval of the device used. The majority of behavioural classification studies segment 

data at fixed intervals (Martiskainen et al., 2009; Williams, Mac Parthaláin, Brewer, 

James, & Rose, 2016) followed by a feature extraction step which yields summary 

statistics that can be used for class discrimination in the modelling phase. A limitation 

of segmenting temporal data at fixed intervals is the likelihood that some segments will 

contain data representing more than a single behaviour resulting in misclassifications 

(Bom, Bouten, Piersma, Oosterbeek, & van Gils, 2014; Williams, James, & Rose, 

2017). Consequently, an alternative segmentation methodology has been used in some 

studies where the temporal data sequences are partitioned at statistically significant 
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changepoints that are indicative of changes in behaviour (Bom et al., 2014). These 

methodologies are often used in unsupervised classification schemes in circumstances 

where there is no prior knowledge of the behaviour that took place in each segment 

(Valletta, Torney, Kings, Thornton, & Madden, 2017). Expert opinion is then used to 

carefully describe the likely behaviour that is taking place between each partition point.  

To our knowledge, only one other study has used variable segmentation as a 

strategy to partition data gathered from dairy cattle where it was used to detect heat 

events (Shahriar et al., 2016). The first objective of our study was to see whether a 

variable-time segmentation strategy could be used to effectively partition supervised 

GPS data gathered from dairy cattle. The segmentation strategy used herein was that 

developed by Killick and Eckley (2014) and is implemented in R (R Core Team, 2014) 

as the package ‘changepoint.’ This package provides several options for segmentation, 

but we opted for the strategy which detects changes in the variance of the time series 

which has also been successfully implemented in studies of ocean wave heights 

(Killick, Eckley, Ewans, & Jonathan, 2010) and a species of migratory bird (Madon & 

Hingrat, 2014).  

The second objective of this work was to explore the performance of several 

ML algorithms implemented in the WEKA data mining suite (Witten, Frank, Hall, & 

Pal, 2016) on the segmented data for modelling the behaviour of dairy cows. As well as 

using standard base learners we also wanted to see whether an ensemble classifier could 

provide better classification performance. The ensemble algorithm used in this work 

was Stacking; an algorithm which uses a second level meta-learner trained on the 

output predictions of a set of base learners. Ensemble algorithms have gained 

popularity in agricultural applications (Escalante, Rodriguez, Cordero, Kristensen, & 

Cornou, 2013; González-Recio, Rosa, & Gianola, 2014) and have been shown to be 



190 

 

very powerful tools in other subject areas for their superior performance in many cases 

(Petersen et al., 2015).       
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2. MATERIALS AND METHODS 

2.1. Datasets 

GPS data were collected from 40 Holstein dairy cows in 2014 that were 

managed according to a typical UK dairy grazing regime. Cows were given a daily 

allocation of approximately 2,500 kg [DM] ha-1 of pasture comprising mainly of 

perennial ryegrass (Lolium perenne) which was grazed to a residual of 1,500 kg [DM] 

ha-1 (Williams et al., 2016). Timestamped GPS data was sampled every 5 s because this 

sample rate was previously found in calibration experiments to provide the best 

resolution for behaviour recording and power consumption. The GPS data included 

latitude, longitude and speed. The recorded behaviours were grazing, resting and 

walking which represent the majority of the time budget of dairy cows (Kilgour, 2012). 

Grazing was identified when the cow was either walking or standing still with the head 

lowered and biting the pasture and also if the cow was walking with her head close to 

the pasture in search of grass. Resting was identified when the cow was lying or stood 

still with her head raised. Previously Williams et al. (2016) found that separately 

identifying lying and standing using GPS alone is very difficult and it was therefore 

decided to combine these behaviours and identify ‘resting’ as a cow either lying or 

standing. Walking was identified when the cow was walking or running with her head 

raised. Approximately six hours of behaviour-labelled data recorded by a single 

observer was available for each cow for use in this study.  
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2.2. Variable segmentation 

For the purpose of segmentation in this work, the R package ‘changepoint’ 

(Killick & Eckley, 2014) which has previously been successful in segmenting data 

gathered from a migratory bird (Madon & Hingrat, 2014) and marine species (Patel et 

al., 2015) was chosen. The changepoint package provides users with three main 

parameterised options for segmentation. Users can choose to search for changes in the 

mean (cpt.mean()), variance (cpt.var()) or both (cpt.meanvar()) in a continuous 

timeseries. Changes in the variance of our data were selected for identification. This 

was simply because upon visual inspection of the majority of sequences, the magnitude 

of the change in variance between behaviours was usually greater than the changes in 

the mean. For the changepoint search method the binary segmentation strategy 

(BinSeg) was implemented. This method iteratively splits the data where changes are 

identified and searches each new segment for further changes until no further changes 

are found. In order to implement the cpt.var() function, the data must meet the 

assumptions of constant mean and normality.  

2.2.1. Data transformation   

The data was searched for changepoints in the variance of speed (m h-1) 

gathered from the GPS receivers. The overwhelming majority of this data was heavily 

tailed, so the Box-Cox transformation was applied to each sequence of speed data 

before any changepoint estimation took place (Box & Cox, 1964). Data was then 

visually inspected using histograms and confirmed for normality using the 

Kolmogorov-Smirnov test (Smirnov, 1939). In order to meet the assumption of constant 

mean for the application of the cpt.var() function, data were further transformed using 

first-differencing and again checked for normality using the aforementioned 

procedures.       
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2.2.2. Segment building 

A training set of segments was built using data from 30 of the cows in the full 

sample. The changepoint function cpt.var() was operated over each speed sequence 

from each cow and the GPS data between each estimated changepoint boundary used 

for feature extraction. From these segments a total of 43 features were extracted, such 

as turning angle and acceleration, that could be used for the ML phase. For a full 

account of the features used see Williams et al. (2016). In total, 100 segments each 

were created for the behaviours grazing and resting and 47 segments were compiled for 

the behaviour walking. This was labelled as the training set. An independent test set for 

subsequent model evaluation was compiled using the remaining 10 cows in the full 

sample. The test set contained 42 segments each for grazing and resting and 12 

segments for the behaviour walking. The number of segments created for each category 

represented the availability of data and that proportionally, cows spent less time 

exhibiting walking compared to grazing and resting.     
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2.3. Machine learning  

For this phase, the Experimenter GUI of the software package WEKA version 

3.9 (Witten et al., 2016) was used. A number of algorithms are available for ML, but 

the selection of candidates can often be difficult and depend on the data to be modelled, 

the error risk and computational efficiency (Vilalta & Drissi, 2002). A set of base 

learners and an ensemble learner were used to test whether using an ensemble added 

additional prediction power over the best performing individual base learners. Each 

phase is described below. 

2.3.1. Base learner selection  

To provide a diverse representation of base learners, the performance of learners 

selected from four main domains was tested (Bayes, Functions, Rules, Trees) in the 

WEKA library using k-fold cross validation with k = 10 on the training set. The best 

performing from each domain were then used as input into an ensemble. Those selected 

formed our library of learners.   

2.3.2. Ensemble classifier  

The Stacking algorithm (sometimes referred to as a ‘Super Learner’) uses a 

library of learners which are again trained (and tested) initially using 10-fold cross 

validation to produce a set of predicted values on the training set. A meta learner 

(within the Stacking algorithm) is then trained on the outputs of the base learners (Van 

der Laan, Polley, & Hubbard, 2007). A logistic regression as the meta learner was used 

for the ensembles as this has been used previously (Whalen & Pandey, 2013) and it has 

been shown to help avoid overfitting (Ting & Witten, 1999). 
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2.3.3. Ensemble selection  

A manual ensemble selection method was used. The best individual base 

learners from section 2.3.1 were first evaluated for their performance as individual 

predictors in empty ensembles. Performance was measured as the cross-validated risk 

using the estimated root mean squared error (RMSE). The performance among each 

individual base learner was then statistically evaluated (section 2.5) and only the best 

performing were added to the ensemble. While recognising that this method disregards 

the value of each individual base learner to the ensemble and that other methods are 

available (e.g. Caruana, Niculescu-Mizil, Crew, & Ksikes, 2004), it has been found that 

this manual selection method with an ensemble comprised of few base learners (e.g. 

<14) performs as well as other methods (Whalen & Pandey, 2013) that add predictors 

according to their performance contribution to the ensemble (Caruana et al., 2004).     

2.3.4. Ensemble performance  

The performance of (1) the optimised ensemble with selected base learners 

(section 2.3.3) was evaluated against the performance of (2) the ensemble with all of 

the best base learners from section 2.3.1 using a variety of metrics (section 2.5) 

including training time.       

2.4. Machine learning algorithms  

The ML algorithms used here were not an exhaustive list but those selected 

were from five main domains (Bayes, Functions, Rules, Trees, Meta) within the WEKA 

software in order to provide a diverse range of algorithms and also because some have 

performed well previously (Díez-Pastor, Rodríguez, García-Osorio, & Kuncheva, 2015; 

Williams et al., 2016). Algorithms were selected from each domain and kept within 

these domains for statistical comparison for the sake of simplicity, despite there being 

differences in algorithm mechanics within each domain. Algorithms are grouped in the 
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WEKA library largely according to their mathematical attributes. Due to the large 

number of hyperparameter tuning options available for most of the algorithms used, it 

was decided to test each one using default parameters. Below is a brief summary of 

each algorithm tested. 

Bayes – two algorithms were chosen from this folder; naïve Bayes (NB; John & 

Langley, 1995) and Bayes net (BN; Friedman, Geiger, & Goldszmit, 1997). 

Functions – this folder contains several algorithms including functions for linear 

regression modelling, logistic regression, support vector machines and neural networks. 

Selected were; logistic regression (LR; Le Cessie & Van Houwelingen, 1992), simple 

logistic (SL; Friedman, Hastie, & Tibshirani, 2000), support vector machine (SVM; 

Vapnik, 1999) SMO (sequential minimal optimisation) and the neural network, 

multilayer perceptron (MP; Bishop, 1995).    

Rules – the algorithms selected were JRip (Cohen, 1995), PART (Frank & 

Witten, 1998) and OneR (Holte, 1993).        

Trees – three decision tree algorithms were selected from this category, naïve 

Bayes tree (NBTree; Kohavi, 1996), J48 (Quinlan, 1993) and an algorithm for building 

logistic model trees (LMT; Friedman et al., 2000; Landwehr, Hall, & Frank, 2005).          

Meta – the ensemble algorithm chosen was Stacking, often referred to in the 

literature as ‘Super Learner’ (Petersen et al., 2015; Van der Laan et al., 2007). Stacking 

uses a set of base learners to firstly classify instances from the training set which are 

subsequently channelled into a meta level training set to produce a meta classifier 

(Dzeroski & Zenko, 2004; Wolpert, 1992). 
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2.5. Classifier performance 

The overall performance of classifiers was evaluated using the classification 

accuracy (CA): 

CA = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
   

where TP is the number of true positives, TN is the number of true negatives, FP is the 

number of false positives and FN is the number of false negatives. However, class 

imbalance can lead to over optimistic performance (Stąpor, 2018). Therefore, as well as 

CA we evaluated each learner using sensitivity (TP / (TP + FN)), specificity (TN / (FP 

+ TN)), precision (TP / (TP + FP)), and F-measure (2TP / (2TP + FP + FN)) which is 

the harmonic mean of precision and sensitivity. 

For the statistical comparison of base learners within each WEKA category 

(section 2.3.1) we used the F-measure. This metric has previously been shown to be 

highly correlated with other metrics of performance such as CA (Ferri, Hernández-

Orallo, & Modroiu, 2009) and is useful in cases where datasets are imbalanced (Díez-

Pastor et al., 2015). For WEKA algorithm groups with more than two learners, the 

Friedman non-parametric two-way analysis of variance (Friedman, 1937) with Iman-

Davenport extension (Iman & Davenport, 1980) was used to test the null hypothesis 

that all base learners within each group performed the same. If  was 0.05 we used the 

Nemenyi post-hoc test (Nemenyi, 1962) which is the non-parametric equivalent of the 

Tukey test for ANOVA for pairwise comparisons (Demšar, 2006). Groups with only 

two base learners were tested using a t-test for repeated cross validation (Stąpor, 2018). 

Next, in order to find the optimal base learner combination for the ensemble, we 

used the RMSE performance of the best base learners was used from above for 
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statistical comparison (section 2.3.3). The RMSE was derived from the individual 

inclusion of each base learner in empty ensembles on the training set. Statistical 

comparison was done, again using the extended Friedman test and Nemenyi post-hoc 

test if  was 0.05. For the RMSE statistics we also provide the bootstrapped 95% CI 

(Carpenter & Bithell, 2000). We chose bootstrapped CI’s because of the non-Gaussian 

distribution of the RMSE data. These were calculated in R using the software package 

‘boot’ (Canty & Ripley, 2012). For non-statistical comparison, we also provide the 

training time for each learner in empty ensembles. 

Finally, the best performing base learners were put forward for the optimised 

ensemble learner for a performance comparison against the full (non-optimised) 

ensemble (section 2.3.4). Both ensembles were evaluated on their F-measures, using a 

t-test for repeated cross validation.    
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3. RESULTS 

3.1. Data transformation  

Figure 1A shows the data transformation procedure for an example supervised 

dataset from a single cow with two behavioural changepoints, the first at instance 1,393 

and the second at instance 1,847. Panels a-c show the raw speed data, a histogram of 

raw speed with distributional curve and an autocorrelation function (acf) plot of the 

speed data respectively. Some important requirements of the changepoint detection 

algorithm are that the data are normally distributed and have a constant mean. The Box-

Cox transformation was used to achieve data normality for each dataset before first-

differencing to remove data mean fluctuations (Fig. 1A; panel d). Transformation and 

first-differencing meant that the data met the assumption of normality as closely as 

possible (Fig. 1A; panel e). A potential issue for the changepoint algorithm is the 

detection of false positive changepoints. Data gathered at a high sample rate is 

susceptible to high positive autocorrelation (Perotto-Baldivieso et al., 2012) and the 

procedure of first-differencing was also an attempt at removing as much of this 

autocorrelation as possible. Figure 1A panel f shows an example of a transformed 

dataset after removing the autocorrelation showing majority removal of this 

phenomenon.  
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Fig. 1 - A. GPS data transformation procedure. Panels a - c show a sample of raw speed 

data collected by GPS from a dairy cow at pasture, a histogram of speed distribution 

and an autocorrelation plot of speed respectively. Panels d - f show the speed data after 

Box-Cox transformation and first-differencing, a histogram of the transformed speed 

data and resulting autocorrelation plot respectively. B. Example of variable 

segmentation (a) and behaviour prediction (b). Panel a shows Box-Cox transformed and 

first-differenced speed data from a dairy cow and also the estimated and true 

changepoints defining the first grazing bout (G1), resting bout (R) and a second grazing 

bout (G2). Panel b shows the spatial data of the same cow plotted to define the 

behaviour bouts estimated by the changepoint method in panel a.  
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3.2. Performance of the changepoint model framework 

Based on the supervised data collected for the 30 cows, on average (±SD), the 

changepoint algorithm identified changepoints correctly to within 4.45min (±5.23) of 

the true changepoint taking place with 90.2% of changepoints being identified. Figure 

1B, panel a gives an example of the true and estimated changepoints in a dataset of 

3,600 observations (5 h) after applying the changepoint algorithm. The resultant 

pathplot is shown in Fig. 1B panel b showing the spatial data and the two distinct 

grazing bouts (G1, G2) surrounding the single resting bout (R). Despite the overall 

average delay in segmentation at the exact transition point across all datasets, an 

observation of the data showed that in the overwhelming majority of cases, changes in 

the variation of speed as logged by the GPS receivers occurred more slowly in relation 

to the time point where the cow actually changed behaviour. Examples of true and 

estimated changepoints are shown in Fig. 2. Panels a, c, d and e show behavioural 

transitions from grazing to resting states while panels b and f show examples of cows 

moving from resting to grazing. In most cases, the changepoint algorithm was 

identifying points of significant change in variance when it empirically occurred (as it 

should) and not necessarily at the timestamp where the behaviour actually changed. 

Some segments during compilation were therefore contaminated with false positive 

behaviours equating to on average (±SD) 68.6 (±69.8) GPS instances. This can be seen 

as a fundamental weakness of the GPS receiver itself in adjusting to changes in 

movement rather than a weakness of the changepoint algorithm in identifying 

changepoints. The average number of instances per segment for each behaviour 

exhibited in the supervised training set was compiled and duration calculated for the 30 

cows. The mean time (±SD) cows spent per segment exhibiting grazing resting and 
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walking was 15.58min (±14.30), 60.1min (±37.46) and 0.38min (±0.24) respectively, 

highlighting the variation exhibited by different cows in these behaviours.  
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Fig. 2 - True and estimated behavioural changepoints of dairy cows as predicted by the 

changepoint method. Panels a, c, d and e show cows moving from grazing to resting 

states. Panels b and f show cows moving from resting to grazing states. The Y axis is 

the speed variable collected by GPS receivers after Box-Cox transformation. The X 

axis represents the timestamped observation number sampled every 5 s. 
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3.3. Performance and selection of base learners 

Overall, each base learner performed very well on the training set across all 

evaluation metrics with all achieving >0.90 CA. Table 1 shows the performance of each 

base learner within each category as defined in the WEKA library. Even the less 

complex algorithm OneR which selects a single rule with the smallest total error from a 

list generated for each feature in the dataset achieved very good performance (CA = 

0.90; sensitivity = 0.88; specificity = 0.92; precision = 0.92; F-measure = 0.90). 

However, as with the LR classifier and the SVM with RBF Kernel the sensitivity for 

this learner was lower. Despite this, the OneR learner was trained in a fraction of the 

time (training time = 0.01min) compared to both MP and NBTree which both took 

>19min to train. The more complex classifiers seemed to perform the best overall 

however which included the neural network algorithm MP. All classifiers returned very 

high specificity (≥0.92) and precision (≥0.92) metrics. The differences between the F-

measures of each classifier and the results were statistically tested for significance as 

shown in Table 1. In the Functions category, both SL and MP outperformed LR and 

were thus selected for further analysis as components in the ensemble. BN 

outperformed the NB classifier in the Bayes category. For the decision tree classifiers 

only LMT was selected for further analysis in the full ensemble. In the rules category, 

PART was selected only, despite JRip significantly outperforming OneR on the training 

set. In an attempt to ensure algorithm diversity, JRip was not included. Of the two SVM 

tested, the SVM with PolyKernel function performed better than the equivalent 

classifier with RBFKernel function and was thus selected for further analysis.
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Table 1 - Classification performance of base learners within each WEKA domain on the training set tested using 10-fold cross-validation. Tests 

were performed on a Windows 7, Intel Core i5-3470 CPU machine with 3.2 GHz. 

a-cF-measures for classifiers within the column and within each WEKA library domain with different superscripts are significantly different (P < 

0.05). 

WEKA library domain Base learner Classification 

accuracy 

Sensitivity Specificity Precision F-

measure 

Training time 

(min) 

Functions 

Simple logistic 0.97 0.96 0.97 0.97 0.96a 0.86 

Logistic 0.92 0.89 0.94 0.94 0.91b 0.16 

Multilayer 

perceptron 
0.96 0.95 0.97 0.97 0.96a 19.14 

        

Bayes 
Naïve Bayes 0.93 0.91 0.94 0.94 0.92b 0.01 

Bayes net 0.95 0.94 0.96 0.96 0.95a 0.02 

        

Decision trees 

NBTree 0.95 0.93 0.96 0.96 0.94b 19.31 

J48 0.94 0.92 0.95 0.95 0.93b 0.02 

LMT 0.96 0.95 0.97 0.97 0.96a 2.35 

        

Rules 

JRip 0.93 0.91 0.94 0.94 0.92b 0.05 

PART 0.94 0.93 0.95 0.95 0.94a 0.05 

OneR 0.90 0.88 0.92 0.92 0.90c 0.01 

        

Support vector 

machines 

SVM + PolyKernel 0.94 0.93 0.95 0.95 0.94a 0.12 

SVM + RBFKernel 0.91 0.89 0.93 0.93 0.91b 0.24 
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3.4. Ensembles 

3.4.1. Ensemble optimisation 

The RMSE performance and bootstrapped 95% CI of base learners evaluated in 

empty Stacking ensembles on the training set is shown in Table 2. Overall, LMT, MP 

and SL (mean RMSE = 0.16) significantly outperformed (P < 0.05) BN, PART and the 

SVM with PolyKernel function (mean RMSE = 0.21) and were thus chosen to form the 

optimised ensemble. It was interesting to note that the three best performing algorithms 

were indeed those that either implemented the LogitBoost algorithm (SL and LMT) or 

backpropagation method of classification (MP). A closer analysis of the time taken to 

train each learner showed that the empty ensemble learner with the MP algorithm took 

63 min to train compared to a total training time for every other learner of 11.20 min 

(Table 2). This represents a substantial computational cost in training the ensemble with 

nested MP algorithm. Comparatively, the empty ensemble with LMT algorithm took 

7.53 min and the empty ensemble with SL took 3.06 min for training.   
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Table 2 - Root mean squared error performance (±95% bootstrapped CI) of selected 

base learners in empty ensemble classifiers on the training set evaluated using 10-fold 

cross-validation. Tests were performed on a Windows 7, Intel Core i5-3470 CPU 

machine with 3.2 GHz.  

a-bDifferent superscripts indicate significant differences in the RMSE performances of 

base learners (P < 0.05).  

3.4.2. Ensemble performance on training and independent test sets 

The performance per class of the full and optimised Stacking ensemble 

classifiers on the training and test set is shown in Table 3. Overall, the CA of both 

learners on the training set was very high with both achieving 0.96 on average across 

all classes. Similarly, performance was excellent for sensitivity, specificity and 

precision and there was no significant difference in the F-measure of both classifiers. 

However, as would be expected, the training time of the optimised classifier was 

significantly shorter (-6 min; P < 0.001) compared to the classifier with the full 

complement of base learners. Therefore, the only apparent benefit of optimisation was 

the marginal saving in training time of the optimised ensemble.    

Performance on the test set was marginally poorer compared to the training set 

for both ensemble classifiers with both achieving an overall CA of 0.93. The major per 

class loss in CA on the test set was for the behaviour walking. One distinct 

Base learner Training time 

(min) 

RMSE (±95% 

CI) 

Bayes net 0.09 0.20 (±0.01)a 

LMT 7.53 0.15 (±0.02)b 

Multilayer perceptron 63 0.17 (±0.02)b 

PART 0.16 0.21 (±0.02)a 

Simple logistic 3.06 0.15 (±0.01)b 

SVM + PolyKernel 0.36 0.22 (±0.01)a 
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disadvantage of the test set was the relatively small number of instances, especially for 

this particular class (n = 12 instances). The full and optimised versions of the classifier 

suffered an overall average 3% loss in CA and very similarly in the F-measure on the 

test set compared to the training set. On the test set, there was no significant difference 

between the F-measure performances of both ensembles (P > 0.05). There was however 

a marginal difference in testing time between the ensembles with the optimised 

ensemble being marginally faster (P < 0.001).     

The computational time required to teach the ensemble classifiers on the 

training set averaged 220 min (Table 3). This raises the question of whether this 

additional time can be justified by the performance of the ensembles in this work. Table 

1 also shows the computational time for training each of the base learners on the 

training set. It can be seen that in comparison with the base learners, training the 

ensembles comes at greater computational cost with very little performance 

improvement over the best base learners selected (Table 1; Table 3). In fact, the F-

measure achieved on the training set with the SL classifier (0.96) was the same as that 

achieved on the training set by both ensembles. SL also had a marginally higher CA 

(0.97). For a fraction of the computational power, SL, LMT and MP performed at least 

as well as both ensembles on this particular training set.          

  



209 

 

Table 3 - Individual class performance of full and optimised ensemble classifiers on 

training (10-fold cross-validation) and test sets. Tests were performed on a Windows 7, 

Intel Core i5-3470 CPU machine with 3.2 GHz.  

*No significant difference (P > 0.05) between F-measure of full and optimised ensemble on training set. 
** No significant difference (P > 0.05) between F-measure of full and optimised ensemble on test set. 
†Training time differs significantly (P < 0.001) between full and optimised ensemble on training set. 
‡Testing time differs significantly (P < 0.001) between full and optimised ensemble on test set. 

Training set Classification 

accuracy 

Sensitivity Specificity Precision F-

measure 

Training 

time 

(min) 

Full 

ensemble (6 

base 

learners) 

      

Grazing 0.94 0.94 0.94 0.94 0.94 74 

Resting 0.94 0.91 0.96 0.96 0.93 74 

Walking 0.99 0.99 1.00 1.00 0.99 75 

Average 0.96 0.95 0.97 0.97 0.95* ∑        

223† 

Optimised 

ensemble (3 

base 

learners) 

      

Grazing 0.95 0.96 0.94 0.94 0.95 74 

Resting 0.95 0.92 0.97 0.97 0.94 71 

Walking 0.99 0.99 1.00 1.00 0.99 72 

Average 0.96 0.96 0.97 0.97 0.96* ∑        

217† 

       

Test set      Testing 

time (s) 

Full 

ensemble (6 

base 

learners) 

      

Grazing 0.94 0.95 0.93 0.93 0.94 0.06 

Resting 0.94 0.93 0.94 0.94 0.93 0.04 

Walking 0.92 0.83 1 1 0.91 0.04 

Average 0.93 0.90 0.96 0.96 0.93** ∑       

0.14‡ 

Optimised 

ensemble (3 

base 

learners) 

      

Grazing 0.94 0.93 0.94 0.94 0.93 0.04 

Resting 0.92 0.93 0.90 0.90 0.92 0.03 

Walking 0.92 0.83 1 1 0.91 0.02 

Average 0.93 0.90 0.95 0.95 0.92** ∑       

0.09‡ 
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4. DISCUSSION 

4.1. Variable segmentation  

The first aim of this study was to test whether a variable segmentation technique 

could be used to partition GPS data collected from dairy cows into recognisable 

segments for ML. Similar segmentation approaches have been used previously with 

good success for the segmentation of data gathered by accelerometers from crab 

plovers (Dromas ardeola) (Bom et al., 2014) and golden eagles (Aquila chrysaetos) 

(Sur et al., 2017). Such variable segmentation techniques fundamentally differ to the 

commonly used fixed-time segmentation method. The latter partitions data at fixed 

intervals which can lead to behavioural overlap and misclassification (Bom et al., 2014) 

but does not require changepoint inference. The benefit of the former, applied in its 

usual context is that it can be applied without supervision of the dataset (in fact it is 

largely used on elusive species). The sensitivity of such methods to data fluctuations 

can also lead to a broader range of behaviours being identified (although this could also 

be detrimental to the task). Thus, it has been proposed that variable segmentation 

techniques are probably best suited to species where supervision of the training set is 

not possible and where behaviours are likely to persist for shorter periods, and change 

rapidly (Sur et al., 2017).  

To our knowledge, variable segmentation of data gathered from cattle has only 

been explored in one other study which was to classify heat events in dairy cows 

(Shahriar et al., 2016). From the results herein, combined with ground-truth data, 

variable segmentation could potentially lead to improvements over methods utilising 

fixed segments for cattle behaviour recognition (Williams et al., 2016). This is indeed 

because dairy cow behavioural bouts of grazing and resting generally take place for 

long periods of time (section 3.2). Provided that sensors are sufficiently able to detect 
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changes represented by these behaviours, from our experience, change detection 

algorithms such as the one used in this work are very useful. The sensitivity of the 

changepoint algorithm can also be tuned to better fit individual datasets and more work 

is required in exploring these parameters for further evaluation. The success of the 

algorithm will also depend on the study species (e.g. cattle or sheep), the sampling 

interval of the device used to capture the data as well as the location of the sensor on 

the animal. For example, better results may be achieved with accelerometers where 

users need not account for satellite positional fix error or multipath effects as is usually 

the case with GPS (Ganskopp & Johnson, 2007). Furthermore, the changepoint 

algorithm was somewhat let down in this work by the fact that there was a delay in the 

empirical transition point in many cases, leading to contaminated segments. However, 

the algorithm was still successful in identifying >90% of changepoints.  

Overall, devices such as accelerometers are likely to provide access to a wider 

range of behaviours, going beyond that which is often limited to GPS such as grazing, 

resting and walking. For example, rumination is a very important metric for 

consideration for cow health and production, but GPS is not sufficiently sensitive 

enough to capture this information and further dimensionality is needed (Rayas-Amor 

et al., 2017). Variable segmentation shows very good potential in identifying transition 

points in data gathered from livestock using precision technologies that can provide 

greater resolution. Supervised applications of variable segmentation methods provide a 

good opportunity to properly evaluate these algorithms and to optimise the algorithm 

used to search for transition points. The binary segmentation (BinSeg) algorithm was 

found to be very successful in its current application but other researchers are 

encouraged to evaluate the full range of options in future work.  
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4.2. Base learner evaluation   

The WEKA ML suite provides a range of algorithms for training and testing. 

The second aim of this work was to evaluate a sample of these for model learning on 

variable data segments with the ultimate goal of using the best performing classifiers as 

components in a Stacking ensemble. Overall it can be stated unequivocally that all base 

learners performed very well in cross-validation on the training set across all metrics 

analysed with the SL classifier performing the best (CA = 0.97; sensitivity = 0.96; 

specificity = 0.97; precision = 0.97; F-measure = 0.96). Training time for SL was 

marginally longer however compared to the majority of the other algorithms tested 

(training time = 0.86 min). SL fits logistic regression models using the LogitBoost 

algorithm and supports automatic attribute selection (Landwehr et al., 2005) making it 

computationally efficient, usually producing compact classifiers and has been found to 

perform very well previously (Alickovic & Subasi, 2014). Similarly, the LMT 

algorithm performed very well on the training set (CA = 0.96; sensitivity = 0.95; 

specificity = 0.97; precision = 0.97; F-measure = 0.96) but taking longer to train (2.35 

min).    

The performance of all learners was equal to or marginally better compared to 

similar studies (Dutta et al., 2015; Williams et al., 2016) that have classified dairy cow 

behaviour. One important benefit which became apparent with variable segments was 

that the algorithms used were able to form simple decision rules based on fewer 

attributes compared to segments of fixed size (Williams et al., 2016). For example, 

OneR was able to classify instances with an overall CA of 0.90 on the training set using 

the single attribute of the accumulated number of non-moving instances (instances 

where the animal was not empirically moving). This attribute amongst others helped 

simplify the classification task compared to fixed segments where more complex 
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models were developed (Williams et al., 2016). The more complex algorithms, 

although performing well, were computationally expensive and it is questionable 

whether the additional performance of such algorithms, (e.g. MP) outweighs the 

computational cost in training.  

Manual ensemble selection was used to select the most appropriate base learners 

for optimising the ensemble. While other methods were available, this method has been 

used previously (Whalen & Pandey, 2013) and found to have been appropriate for 

ensembles with few base learners (e.g. <14). However, it is recommended that other 

methods are also tested, such as iteratively adding base learners that maximise the 

performance of the ensemble thus accounting for the value of each base learner to the 

full ensemble. Whichever method is used, in order for the ensemble to perform better 

than any of its individual members, algorithm diversity is an important consideration 

and care must be given to avoid overfitting which can be problematic with some 

methods (Whalen & Pandey, 2013).  

4.3. Ensemble evaluation 

 Compared to single classification algorithms, ensemble algorithms are being 

used more frequently in agricultural contexts (Chaudhary, Kolhe, & Kamal, 2016; 

Dutta et al., 2015; Hill, Connolly, Reutemann, & Fletcher, 2014) because of their 

efficacy. The final aim of this work was to evaluate the performance of selected base 

learners in an ensemble classifier. The ensemble chosen was Stacking. An optimised 

(best 3 base learners) and full ensemble (6 best base learners) were compared for 

performance. Despite better performance with some of the base learners in empty 

Stacking ensembles, no statistically significant improvement was found between the F-

measures of the full and optimised versions of the ensemble in neither training nor test 

set. However, there was a difference in the time required to teach the models on the 
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training set (full ensemble = 223 min vs. optimised ensemble = 217 min) and in 

execution time on the test set (full ensemble = 0.14 s vs. optimised ensemble = 0.09 s). 

This is a very marginal gain in computational efficiency, but the performance of neither 

classifier fully justifies its use when compared to the performances of the single base 

learners that could be trained in a fraction of the time while achieving comparable 

performance.  

The loss in performance found for both classifiers in the test set was largely due 

to the loss in sensitivity for the class walking, probably because of the small sample 

size and similar instances not appearing in the training set. When selecting an ML 

algorithm, evidently the context of the work is important and the means by which the 

data are collected and segmented may well impact performance. Thus, we would 

recommend that algorithms such as SL and LMT are used for further analysis on 

similar datasets for behavioural classification with potential for use as single classifiers 

or integrated in an ensemble. Based on their individual performances here these 

algorithms are more efficient than the ensembles and base learner combinations tested. 

SL and LMT use a boosting algorithm and despite similar performance to MP on the 

training set this contributes toward better computational efficiency in training. We 

would not recommend the use of MP on similar data gathered by GPS simply based on 

the training time, however, it must be noted that we did not attempt to tune any 

hyperparameters in this work and so more experimentation would be required before 

firm conclusions could be made as to the potential performances of all algorithms 

tested. The options for hyperparameter tuning are almost non-exhaustive and outside 

the scope of this work. Methods for automatic hyperparameter selection do exist 

however and could be utilised in future (Thornton, Hutter, Hoos, & Leyton-Brown, 

2013). It is well known though that if class decision boundaries are complex then the 
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convergence of the backpropagation method of MP is slow (Chaudhuri & Bhattacharya, 

2000). Others have also experienced excellent performance with MP as well as lengthy 

training times (Nookala, Orsu, Pottumuthu, & Mudunuri, 2013). 

More work is needed to fully explore the capabilities of ensemble classifiers for 

similar applications in livestock behaviour prediction. For example, accelerometers 

provide an opportunity to gather data at higher sampling rates, thus potentially allowing 

for subtler and often inconspicuous behaviours to be identified. Examples of which 

include transitional behaviours (e.g. moving from lying to standing) that usually occur 

very quickly but can provide important cues that variable segmentation techniques 

could firstly identify. Diosdado et al. (2015) had some success in classifying overall 

behavioural transitional events with dairy cows but distinguishing between lying to 

standing events and standing to lying events was more difficult. Future work should 

aim to elucidate the power of ensemble algorithms in this regard as well as for 

identifying other behaviours that may be useful for monitoring health and performance 

such as overall feed intake and bite rate (González, Tolkamp, Coffey, Ferret, & 

Kyriazakis, 2008). With an increase in the amount of data available for analysis in the 

livestock sector (Wolfert, Ge, Verdouw, & Bogaardt, 2017) training time, model 

complexity and performance are examples of variables that need careful consideration 

in the selection of the most appropriate algorithm for the task at hand.  
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5. CONCLUSIONS 

 Variable segmentation techniques present an efficient framework for 

partitioning data for classifying dairy cattle behaviour using ML algorithms. This 

technique may be more efficient and potentially lead to enhanced behaviour recognition 

than data segmented at fixed intervals. This is likely to be especially true if used on data 

captured at frequent intervals and with sensors that are sufficiently able to detect 

changes quickly (e.g. seconds). This latter point is important because as we found in 

this work there was often a delay in the empirical transition point, for example when a 

cow moved from a state of grazing to a state of resting. This resulted in changes being 

detected later than the true changepoint; a problem that could be mitigated if 

accelerometers were used in conjunction with the GPS receivers. The sensor used is 

also an important consideration. As discussed, variable changepoint detection 

algorithms tend to be used most where it is not possible to view the species directly for 

supervision of the training data. Such applications are often aimed at elucidating 

behaviours that may not require the resolution needed for livestock monitoring. 

Examples include deciphering the dispersal patterns of terrestrial (Gurarie et al., 2016) 

and marine species (Patel et al., 2015) where data is likely to be infrequently sampled. 

In these examples GPS is usually sufficient. In modern livestock husbandry where 

long-term behaviour monitoring is important for disease recognition (González et al., 

2008), efficient and accurate tools are required for detecting subtle changes in 

behaviour and robust models are needed for classifying those behaviours. For this 

purpose, it was established that the base learners explored here performed very well. 

Ensemble algorithms also show great promise in precision livestock husbandry and 

more work is needed in exploring the different options available for farm-level tasks 
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that may benefit from the added power of ensemble learning that is already being 

discovered in other areas.  
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8. Review of Chapter 1: Williams, M.L., Mac Parthaláin, N., Brewer, P., James, 

W.P.J. and Rose, M.T., 2016. A novel behavioral model of the pasture-based dairy 

cow from GPS data using data mining and machine learning techniques. Journal 

of Dairy Science, 99(3), pp.2063-2075. 

8.1 Overview 

This was a contribution to the PLF literature by using computational techniques 

that are well recognised in other disciplines such as mathematics and computer science 

although the field of dairy genetics has been making use of these techniques for a 

number of years (Weigel et al., 2017). A comprehensive dataset was gathered from 

cows grazed in an experimental paddock, providing a total of 153 h of data for analysis. 

Several classifiers were developed and evaluated for their performance in correctly 

recognising the behaviours of dairy cows in pasture-based systems. The best classifiers 

were those created using a type of ensemble algorithm (random forest) (Breiman, 2001) 

and a rule-based classifier developed using the JRip (RIPPER) algorithm (Fürnkranz 

and Widmer, 1994). The difference in performance was marginal between these two 

classifiers, but JRip provided intuitive rules that could be easily interpreted and offered 

an insight into the complex way in which the classified behaviours manifest themselves 

in the GPS data. Despite the high classification performance of random forest and its 

popularity for use in the ML literature, random forest often produces highly complex 

and large decision rules. This often makes it difficult to interpret and so gaining 

biological intuition from the output of this algorithm can be very difficult. This was one 

of the main reasons why JRip was selected here given that the rules produced were very 

easy to interpret and could be scrutinised visually. In PLF applications it may be that 

this type of output will not be required by farmers for management decisions. However, 

in future, it may be useful to experiment with various algorithms to see whether 

additional information can be gathered such as that produced here with JRip.  
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The rule-set developed by the JRip algorithm demonstrated the variety of 

different ways in which cows may graze (as determined by GPS), with seven rules 

explaining the occurrence of grazing behaviour. These rules can intuitively provide 

analysts with a better understanding of the movement ecology of grazing cows. In the 

experimental paddock at least, these rules may represent the seven most common ways 

in which cows were found to be grazing and could be useful in future studies for 

understanding more about grazing ecology. For example, it may be that grazing 

behaviour can actually be defined by a finite set of rules and this could be very useful in 

modelling the impact of grazing on various landscapes and systems. It would be very 

interesting to undertake further work in this area to see whether differences occur 

between the movements of different animals grouped by age or breed perhaps. Care is 

needed in the interpretation of the rule-set developed here as JRip undertakes a pruning 

step which means that the rules presented here were the most optimal for representing 

the various behaviours. For the purpose of classification, the final model showed very 

good performance. Furthermore, despite an original feature set of 43 features, a feature 

analysis showed that there were 13 features that appeared to be the most useful to the 

JRip algorithm. Feature selection is very useful so that classifiers can be learned 

without the need for added computational complexity.   

An important consideration for the future will be to ask how a variety of 

managerial scenarios affect classification performance. Can models developed in 

controlled conditions extend to correctly classify behaviour (especially grazing) when 

cows are managed in suboptimal conditions? This will be true no matter what sensor or 

modelling technique is used. 
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8.2 A finite behaviour set 

It was evident that only a limited number of behaviours could be modelled and 

predicted with acceptable performance using GPS data. One of the most notable 

disappointments in the preliminary modelling stages was the realisation that no clear 

distinction could be made between the behaviours lying and standing. These of course 

have biological value as it is well known that patterns in these behaviours are indicative 

of certain issues such as lameness (Walker et al., 2008). Indeed, one of the initial 

objectives of this candidature was to develop a behaviour model for a long-term 

experiment to study patterns in the behaviours of dairy cows that could be indicative of 

disease onset. This is not to say that this would not be possible with the final model 

developed in Chapter 1, but it certainly reduces the opportunity to evaluate a breadth of 

important behaviours. The number of correct and misclassified instances in the 

development stages for the behaviours grazing, lying, standing and walking can be seen 

later in this section (unbalanced classification performance shown in Table 5).  

It was clear that additional sensors would be required to discriminate between 

instances of lying and standing despite having extracted a number of different features 

from the dataset. A GPS collar with integrated accelerometer for example could be very 

useful in distinguishing between lying and standing behaviours. Indeed, in future, it 

may be that GPS will be used simply for gaining a positional fix for the animal with 

accelerometers being used for behaviour classification. Nevertheless, it was decided to 

merge the instances of lying and standing into a single category (resting) and despite 

not being the optimal outcome, resting was identifiable in the data. A search of the 

literature showed that others have also faced this problem and have combined 

behaviours as a consequence (Guo et al., 2009; Owen-Smith et al., 2012; de Weerd et 

al., 2015). To the candidate’s knowledge, only Godsk and Kjærgaard (2011) have 
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successfully discriminated between lying and standing behaviours of cows with 

acceptable performance using only GPS. They achieved CAs of 77% and 76% for lying 

and standing respectively. 

The merging of behaviours is not uncommon in other studies that have used 

different sensors for behaviour classification. The decision to merge certain behaviours 

essentially depends on three factors, (1) the ability of an algorithm to discriminate 

between the behaviours (2) the biological importance of the behaviours to the study 

objective or to the industry and (3) the representation of those behaviours in the training 

set. González et al. (2015) developed a decision tree classifier from data collected from 

GPS and accelerometers fitted to steers. The identified behaviours were ruminating, 

foraging, travelling and resting, with head shaking, scratching and grooming grouped as 

‘other active behaviours’ because of their low occurrence in the training data. They also 

noted that this category had a lower sensitivity compared to the other evaluated 

categories. Following on from the rationale of Dutta et al. (2015), an unsupervised 

cluster analysis could also be undertaken to search for structure in the feature-space for 

aiding decisions on the number of classes that can be identified in the supervised stage. 

This technique will be considered as this work progresses into the future.  

8.3 Behaviour representation   

8.3.1 Grazing and lying dominate   

 Gaining an even distribution of training data across all behaviour categories was 

challenging in the present work. Even the behaviour standing was underrepresented 

compared to grazing and lying; the two most abundant behaviours in the dataset. Very 

rarely did cows stand for periods exceeding 1 min and it was very uncommon to find 

cows standing for at least 3 min which was the threshold required for feature extraction.   



233 

 

Walking was also very sparsely represented. Indeed, it became clear based on 

observations that the cohort of dairy cows under observation did not often walk 

purposefully, at least to the extent that it was described in the methodology (Chapter 1: 

Grazing Management and GPS). Instead, cows often grazed, or browsed their way to 

another location. In the experimental paddock, cows would often walk to the water 

trough, but unfortunately, this represented the main instance of walking that could be 

recorded. Having said that, given the persistence velocity and directionality represented 

by a bout of walking, this behaviour was actually very easy to discriminate by the ML 

algorithms tested. Lying and standing on the other hand were characterised by similar 

features such as acute turning angles and small movements between fixes. Future 

modelling should try and ensure that rare behaviours are well represented in datasets 

providing that these behaviours are of biological value. For behaviours like standing, 

this could require that observers search only for this behaviour in order to balance 

behaviour classes. Furthermore, observing animals in a standard-sized paddock may be 

useful for gaining greater instances of walking, although catching sight of focal cows 

would be more difficult within a larger cohort of cattle.      

8.3.2 Data balancing techniques  

Balancing datasets so that the most represented behaviours were equal helped 

improve the discriminatory power and therefore performance of the algorithms tested, 

and this was true across all segment sizes. To balance the majority classes, random 

under-sampling was used (Batista et al., 2004). Under-sampling had very little, if any 

effect on the efficacy of the majority of classifiers to discriminate walking from the 

other behaviours because of its strong feature characteristics (high speed and 

directionality). For grazing and resting, balancing meant that the performance of 

classifiers was more even. For classes that have high representation in a dataset, some 
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algorithms can favour their presence and sometimes this leads to high classification 

success of the majority class and poorer performance for the others (Longadge, and 

Dongre, 2013). Having said that, the naïve Bayes classifier was resilient to this 

phenomenon (Chapter 1: Table 3) and this has been documented previously for naïve 

Bayes classifiers (Provost, 2000). As well as under-sampling, other techniques can be 

used which include cost-sensitive classification techniques and over-sampling. Cost-

sensitive classification is used frequently in medical diagnostics (Yang et al., 2009; Hsu 

et al., 2015). For example, when building classifiers for diagnosing a type of cancer, the 

training dataset will most often include more instances of benign tumours compared to 

malignant. Thus, using cost-insensitive classification on this training set could lead to 

the development of classifiers that miss TP instances of malignant tumours which is far 

more costly than incorrectly classifying a benign tumour as malignant. Cost-sensitive 

classification accounts for the importance of each class despite its representation by 

adding weight to each class (Ling and Sheng, 2011).         

 Although cost-sensitive classification was not tested in Chapter 1, an over-

sampling technique was initially tested. Over-sampling can be performed in WEKA 

using SMOTE (synthetic minority over-sampling technique) which creates synthetic 

samples of the selected class using a k-nearest neighbour technique (Chawla et al., 

2002). The original, compiled dataset for the classes grazing, standing, lying and 

walking was highly imbalanced with 631, 196, 2,507 and 96 segment instances 

respectively. Such imbalances can lead to poor classification performance because 

algorithms will favour the majority class (Chawla et al., 2003). Table 5 shows the 

results of a random forest classifier on this unbalanced dataset. Overall, the classifier 

had a strong bias towards the class lying, resulting in a misleadingly high CA (Section 

2.3.1.2).     
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Table 5. Classification performance of random forest classifier on full, unbalanced dataset. 

Results show high bias towards the class lying. Note a high overall classification accuracy 

largely due to the high number of correctly classified lying instances    

 Data balancing is essential in these circumstances. Here, balancing could first be 

undertaken by reducing the size of the lying class to equal that of the grazing class (631 

segments each). Re-modelling using random forest produces the results in Table 6. 

Despite poorer but misleading CA (does not fully represent the per class results), the 

performance of the resulting model improves the classification success for grazing 

greatly, and marginally for the class standing.    

 
Table 6. Classification performance of random forest classifier on dataset balanced for the 

classes grazing and lying (631 instances each) using random under-sampling 

Over-sampling can be used to raise the number of standing instances only as it 

seems that walking is discriminated well by random forest. Raising the percentage of 

standing instances by 200% using 5 nearest neighbours provides a more balanced 

Random 

forest 

Grazing Standing Lying Walking TP FP Precision F1 Overall 

CA 

Grazing 355 1 275 0 0.56 0.05 0.68 0.61 

0.83 

Standing 29 26 141 0 0.13 0.001 0.89 0.23 

Lying 134 2 2,371 0 0.94 0.45 0.85 0.89 

Walking 0 0 0 96 1.00 0 1.00 1.00 

Random 

forest 

Grazing Standing Lying Walking TP FP Precision F1 Overall 

CA 

Grazing 567 2 62 0 0.89 0.23 0.72 0.80 

0.76 

Standing 79 32 85 0 0.16 0.006 0.80 0.27 

Lying 137 6 487 1 0.77 0.15 0.76 0.77 

Walking 0 0 0 96 1.00 0.001 0.99 0.99 
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dataset with 631, 588, 631 and 96 instances for grazing, standing, lying and walking 

respectively. Table 7 shows the results of a random forest classifier on the new dataset 

balanced using SMOTE. Per class performance increases greatly for the class standing 

but reduces marginally for grazing and lying. Overall, CA improves, but only slightly.  

Despite great improvement in performance for identifying standing instances, 

care needs to be taken when class instances are synthetically increased in number 

because new data are generated from existing instances which means that it is unlikely 

that the technique will introduce much variance into the dataset (Chawla et al., 2002). 

In the present example, if the original dataset balanced by under-sampling includes only 

196 instances for grazing, lying and standing (under-sampling to equal that of standing) 

it can be seen in Table 8 that performance is actually reduced and the classification 

performance for standing and lying is almost identical.  

 

Table 7. Classification performance of random forest classifier on dataset balanced for the 

classes grazing, standing and lying using synthetic minority over-sampling technique 

Some authors have used SMOTE to increase minority class instances 

(Homburger et al., 2014; Krug et al., 2015) when working with livestock data. It seems 

that an effective method of using SMOTE as recommended by Chawla et al. (2002) is 

to combine under-sampling and over-sampling in the same dataset, which reduces the 

initial bias towards the majority class to favour the minority class. On the example 

Random 

forest 

Grazing Standing Lying Walking TP FP Precision F1 Overall 

CA 

Grazing 526 51 54 0 0.83 0.13 0.75 0.70 

0.78 

Standing 59 467 62 0 0.79 0.10 0.77 0.78 

Lying 113 88 429 1 0.68 0.08 0.78 0.73 

Walking 0 0 0 96 1.00 0.001 0.99 0.99 
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dataset here, under-sampling the majority classes by 50% and over-sampling the 

minority class by 50% does improve the prediction accuracy of both lying and standing, 

and, on average their TP rate improves by 20% whilst grazing TP rate improves by 

14%. Overall, the CA improves to 80% with more even performance across classes 

(confusion matrix not shown). Whilst this could serve as an effective technique to 

demonstrate potential classifier capability, it should perhaps be used as an exercise to 

supplement additional data collection for minority class instances so that a rigorous 

assessment can be made of classifiers on real-world data.     

 
Table 8. Classification performance of random forest classifier on dataset balanced by random 

under-sampling of grazing and lying classes to match original number of standing instances (n 

= 196) 

     

  

Random 

forest 

Grazing Standing Lying Walking TP FP Precision F1 Overall 

CA 

Grazing 146 38 12 0 0.74 0.18 0.62 0.67 

0.65 

Standing 52 103 41 0 0.52 0.18 0.52 0.52 

Lying 37 54 104 1 0.53 0.10 0.66 0.58 

Walking 0 0 0 96 1.00 0.002 0.99 0.99 
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8.4 Limitations of GPS receivers 

8.4.1 GPS hardware 

 The GPS receivers themselves were a source of variation which became evident 

in the preliminary trials (Section 3.2.4) and this phenomenon must be considered for 

future work with satellite-based receivers to maximise the chances of consistent data. 

No further stationary tests were undertaken during the remainder of the candidature to 

ensure ongoing consistency so no comment can be made as to whether the experimental 

sample of receivers (n = 25) remained homogenous for the duration of the work which 

took place between 2014-2016. With regard to the integrity of the hardware, the 

receivers used were not specifically designed for use with livestock and so were open to 

physical damage (physical damage was very rare) and water ingress during the work 

which sometimes (very rarely) led to data loss. During the stationary tests, each 

receiver was wrapped in a polythene bag before each launch to prevent water ingress. 

To ensure consistency, the receivers were also wrapped in polythene bags before 

attaching to cow collars which led to reduced data loss.  

 One major limitation of GPS receivers is power consumption which increases 

in-line with the sampling interval. High sampling frequency is usually desired in animal 

movement studies because it maximises the information gathered about the study 

species. Furthermore, to decrease the size and weight of receivers, traditional receivers 

often require small batteries which leads to a trade-off between the number of locations 

that can be generated and battery life. In marine species, significant savings can be 

made in battery power as positional fixes are taken only when the animal surfaces 

(Bestley et al., 2016). A similar means of saving battery power can be undertaken with 

terrestrial animals where GPS can be programmed to log only when the animal is 

moving. Longer sampling intervals (minutes rather than seconds) can also be used with 
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terrestrial animals and gaps in GPS fixes filled using inertial movement sensors such as 

an accelerometer and an electronic compass to make estimates on where the animal was 

and what it was doing (Tomkiewicz et al., 2010). It has been found that vegetation 

density and time to satellite fix also increase battery drain (Fischer et al., 2018). 

Fundamentally, with re-capture loggers such as those used here, the receiver has to be 

removed from the animal for data processing and so the capacity of the onboard 

memory card is also an issue with high-frequency data collection. Bio-telemetry 

devices that transmit data to a central processing station can be more cost-effective in 

terms of power consumption, particularly if accelerometers are used for behaviour 

classification and that the classification algorithm is computationally simple (Kwong et 

al., 2012; Abbasi et al., 2014).  

In this work, a 5 s sampling interval was chosen as a result of the static receiver 

tests (no significant difference in horizontal error between tested intervals) and also 

because it provided the best resolution for the battery power available. This meant 

however, that batteries would only provide 24 hrs of power, meaning that daily battery 

changes were required in subsequent cow studies (Chapter 2). On board GPS in 

purpose-built tracking collars for animal studies (e.g. Lotek LiteTrack series; Biotrack 

ltd., Wareham, UK) are usually used for low-level behaviour inference or solely for 

positional fixes and an integrated accelerometer is usually used for behaviour 

classification if required. This means that batteries last weeks, to months at a time, 

relative to the frequency of positional fixes. It seems likely that this will be a common 

hardware choice in future especially if rechargeable solutions are provided that improve 

unit longevity. 
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8.4.2 Sources of GPS error 

 As well as multipath error (signals reflect off structures) and atmospheric effects 

(delay in signal as it passes through atmosphere) (Kos et al., 2010; Li et al., 2015), 

satellite constellation is another source of error that cannot be directly controlled for 

and requires post-processing of the GPS data (Polojärvi et al., 2011). For the GPS 

receivers used in the current work, the accompanying software allowed for differential 

correction of the accuracy of the positional coordinates by enabling the EGNOS 

(European geostationary navigation overlay service) function. Such errors are important 

to consider so that accurate estimations can be made on the movement of individual 

animals if the objectives include monitoring individual health. While it was realised in 

the present work that even small structures could lead to multipath errors (even with 

EGNOS enabled) and that this was accounted for in the experimental design, future 

studies should assess the extent of the errors caused by physical barriers. The impact of 

tree cover, farm buildings and other structures should be fully assessed so that 

horizontal error can be accounted for appropriately in the post-processing phase 

(Ganskopp and Johnson, 2007). Figure 13 gives an example of how GPS error 

distributions can be plotted to visualize the standard horizontal error metrics. Shown in 

Figure 13 is GPS receiver #32 (located at red cross) scheduled to sample at 30 s 

intervals. Its estimated CEP and R95 are also shown which were 1.31 m and 2.74 m 

respectively. Error-drift can be seen in the top right-hand area of the plot. This was 

present in 32 of the 36 receivers tested.        
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Figure 13. Horizontal error distribution of GPS receiver #32 logging at 30 s intervals 

showing CEP (1.31 m) and R95 (2.72 m). Plot shows 2,881 coordinates with some 

coordinate drift evident in the right-hand corner of the plot. This phenomenon was 

present in 32 of the 36 GPS receivers in the original sample. Red cross at point 0,0 

indicates location of GPS receiver. 

 

 

8.4.3 Implications of sensor variation to other studies 

The candidate is not aware of other work that has undertaken preliminary trials 

of other sensors such as accelerometers to ensure homogeneity between units. 

Speculatively, it may be that more variability is introduced by the animals themselves 

compared to that introduced by precision engineered sensors such as accelerometers. 

With that and while in pursuit of models that can generalise well between animals, the 

candidate is only aware of one study (Diosdado et al., 2015) that has assessed the 

degree of variability in accelerometer signatures between animals for the same 

behaviour. They found that variability (measured as sensitivity) between individual 

cows for feeding behaviour was low (78.49-100%) but sensitivity for lying behaviour 

showed greater variation (21.82-100%). They also found that misclassifications 

occurred for the same behaviour within cows on successive days and they hypothesised 

that this may have been down to small variations in the location of the sensor on the 
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neck of the animal. However, it seems that there are no studies that have assessed 

performance for the same animal in different environments. In supervised classification 

exercises, the aim is to gather as much training data as possible so that a pooled sample 

is accrued for ML. However, in most circumstances this information is gathered at 

once, perhaps over a number of days (Nielsen, 2013) or weeks (Robert et al., 2009) 

where little variation is represented in physical (e.g. feed height at feed fence or 

pasture) or biological factors (e.g. height of the animal) and so more is needed to assess 

the degree of variability represented by these variables.          

8.5 Dealing with biological and environmental variability in future studies   

 

 It is well established that a range of sensors are capable of capturing meaningful 

information about cattle and that this data can be modelled to make accurate predictions 

of behaviour states. Moving forward, there seems to be two clear objectives.  

The first objective should be to ascertain whether daily variation in the 

environment of cows has an impact on the predictability of established models. This is 

particularly important for attributes of feeding behaviour which could be affected by 

variables such as pasture quality, pasture density, silage height at the feed fence and the 

components of a total mixed ration. Some researchers modelling the precise attributes 

of feeding behaviour are attempting to account for some of these variables using 

acoustic monitoring (Milone et al., 2009; Galli et al., 2011). It remains to be seen 

whether accelerometers can be used to distinguish between different attributes of 

feeding (e.g. tearing pasture, swallowing and regurgitating), and it may be that other 

sensors such as acoustics are required for this. However, combining sensor systems is 

likely to provide greater resolution for the behaviour classification process. As well as 

using accelerometers for feeding and resting behaviours, additional information can be 

inferred from GPS or LPS location data across a pasture or within a barn environment. 
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For example, location can be important for monitoring grazing areas that are at a higher 

risk of parasite burden (Falzon et al., 2013) or used for monitoring displacement 

activity in barns which could lead to more information on disease progression (Gygax 

et al., 2007). Perhaps in future, farmers will have to decide on what level of 

surveillance they need for their particular farming system. For example, it may be 

enough to know that a cow was feeding between 9-10am (e.g. classification by 

accelerometers) on one farm but another farmer may require a higher level of behaviour 

discrimination and may want to know how much feed was actually consumed between 

9-10am (e.g. classification by noseband pressure sensor).  

Once models are considered robust to these daily variations, the second 

objective should be to monitor the long-term impact of other variables such as weather, 

topography, aspect and stocking density (particularly important in pasture-based 

systems) on the behaviour of cows. If health monitoring is one of the objectives of such 

surveillance systems, then it will be important to account for the variability introduced 

by such factors to reduce the risk of FP alarms to a particular issue. For example, if 

early lameness detection is incorporated into the surveillance system, then the 

algorithm should account for variables that may reduce or increase the amount of 

behaviour undertaken beyond that expected within the normal range of individual cows. 

Already established products should ideally be accounting for such variation.                 
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9. Review of Chapter 2: Williams, M.L., James, W.P. and Rose, M.T., 2017. Fixed-

time data segmentation and behavior classification of pasture-based cattle: 

Enhancing performance using a hidden Markov model. Computers and Electronics 

in Agriculture, 142, pp.585-596. 

9.1 Overview 

 Chapter 2 described an attempt at improving on the performance of the model 

developed in Chapter 1. When models such as that described in Chapter 1 are 

developed, behaviours are usually modelled independently by extracting features from 

groups of single behaviours. As such, transitions between behaviours are not often 

considered. Indeed, the candidate is only aware of a small number of publications 

(Robert et al., 2009; González et al., 2015; Diosdado et al., 2015) that have directly 

attempted to model the transitionary behaviours of cattle. Of these, only Diosdado et al. 

(2015) successfully classified non-specific transitions (combination of standing up and 

lying down transitions). However, discriminating between standing up and lying down 

was more difficult. The other publications noted the difficulty of classifying transitions 

given the very rapid nature of a transitionary event. 

Fixed-time modelling of behavior can therefore lead to reductions in overall CA 

when deployed on continuous streams of data and future attempts to model cow 

behavior should certainly consider transitionary events. In the current study, rather than 

use an HMM to model the behaviour of cows outright which has been done previously 

(Guo et al., 2009), it was decided to develop an HMM for error correction and this 

significantly improved the overall classification performance. The assumption behind 

the Markov process is that any given future state depends only on the current state and 

not on any previous states. Transitions between the selected finite states are then 

governed by a set of transition probabilities. Many classification approaches (e.g. ML) 

assume independence between individual observations but in sequential GPS or 

accelerometer data there is a natural dependence between behaviour observations 



245 

 

(Leos-Barajas et al., 2017). The intervals between data points vary widely between 

studies and in reality, the sampling interval will affect the methods used and the 

inferences that can be made from movement data. Ideally, the temporal scale of 

observations should be selected before sensor deployment based on the behavioural 

characteristics of the focal animal. Often, the studied behaviours outlast the sample rate 

of the sensor and therefore, studies where serial dependance is assumed in the data has 

often been dealt with using HMMs (Ward et al., 2006; Mannini et al., 2011). HMMs 

provide a means of accounting for strong autocorrelation in sensor data rather than 

neglecting this feature. If sampling rate varies or samples are taken at random times 

then HMMs are not suitable as the Markov process breaks down (Patterson et al., 

2017). With this in mind, it was envisaged that an HMM would be able to deal with 

transitionary events in a more effective manner. The classified segments were used 

effectively as the movement path which was then assumed to follow the Markov 

assumption. This was a more intuitive means of dealing with transitionary events given 

the independence assumed between segments by the ML classification process (Chapter 

1).     

Prior to using this methodology, an attempt was made at modelling transitionary 

events using ML techniques. In agreement with the previous publications, these events 

were very rapid, and the majority occurred faster than the GPS sampling interval (< 5 

s).  
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9.2 Modelling transitionary events  

9.2.1 Transition segments 

 An attempt was made at modelling transitions by sampling a window equivalent 

in size to that determined as the optimum in Chapter 1 (32 movements) and centralizing 

the point of transition within the window (16 movements either side of the transition 

point) (Figure 14).  

 

Figure 14. Method for collecting transition events. Event windows were 32 movements 

in length (160 s) with the point of transition at the center of each window. Window 

length was chosen to coincide with optimal segmentation strategy as determined in 

Chapter 1. 

       



247 

 

The rationale, based on observations, was that cows were likely preparing for the 

transition sometime in advance and that after the transition, cows would still be 

exhibiting some movement. The most prevalent transitions were those between grazing 

and resting (G-R) and resting and grazing (R-G) and so, segments were compiled to 

represent only these two transitionary groups. In total, 76 G-R segments and 84 R-G 

segments were compiled and tested with several algorithms for classification 

performance. Table 9 shows the confusion matrices and performance of JRip and 

random forest classifiers using 10-fold cross-validation on the unbalanced transition 

dataset. It can be seen that neither model discriminated between transitions very well. 

Furthermore, balancing the number of instances in each class (n = 76 instances per 

class) resulted in almost a 10% reduction in CA for JRip and only a 6% improvement in 

CA for random forest (confusion matrices and results not shown).  

    

Table 9. Confusion matrices and performance of JRip and random forest classifiers on 

unbalanced transition dataset. G-R indicate grazing to resting transitions. R-G indicate 

resting to grazing transitions 

 

Given the poor performance, it was decided to merge the transitions into a 

single category (transition) to see whether classifiers could discriminate between this 

category and the various behaviour classes. The number of transition segments totalled 

JRip G-R R-G TP FP Precision F1 Overall CA 

G-R 25 51 0.32 0.31 0.49 0.39 

0.52 

R-G 26 58 0.69 0.67 0.53 0.60 

Random forest        

G-R 32 44 0.42 0.52 0.45 0.43 

0.48 

R-G 38 46 0.54 0.57 0.51 0.52 
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152 instances. Grazing and resting were represented equally (n = 631 instances per 

class) and walking was represented by 96 instances. Results of the reconfigured dataset 

are shown in Table 10. Far better performance was realised having merged the 

transitionary segments, which to some extent was not expected given that half of each 

transition segment is represented by either one of the two behaviours modelled (grazing 

and resting). The results in Tables 9 and 10, before and after transition merger 

corroborate that found by Diosdado et al. (2015) in that non-specific transition events 

can be detected with very acceptable performance.   

 

Table 10. Confusion matrices and performance of JRip and random forest classifiers on dataset 

balanced for grazing and resting and including the combined transitionary behaviours 

(Transition) 

 

  

JRip Grazing Resting Walking Transition TP FP Precision F1 Overall 

CA 

Grazing 499 124 0 8 0.79 0.17 0.76 0.77 

0.79 

Resting 149 475 3 4 0.75 0.15 0.77 0.76 

Walking 0 2 94 0 0.97 0.002 0.96 0.97 

Transition 4 10 0 138 0.90 0.009 0.79 0.79 

Random 

forest 

         

Grazing 558 70 0 3 0.88 0.18 0.77 0.82 

0.83 

Resting 154 474 2 1 0.75 0.09 0.85 0.75 

Walking 1 0 95 0 0.99 0.001 0.97 0.98 

Transition 9 10 0 133 0.87 0.11 0.84 0.83 
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Despite good transition classification performance of the combined transition 

set, the fundamental issue with trying to recognise data segments as already established 

is that unless the moving window aligns perfectly with the point of transition, then 

classification performance if likely to suffer (Section 4.1.1.2 and Figure 6). The analyst 

is subsequently faced with the same challenge as previously. No attempt was made 

therefore at deploying this model on sequences of data given the issue with transition 

boundaries. However, it was concluded that discrimination of non-specific transitions 

was indeed possible, and in fact, on a per class basis, success was higher compared to 

classes grazing and resting with the JRip classifier. 

One solution to this issue would be to develop a classifier that can undertake an 

initial ‘sweep’ of the timeseries data to define the transitionary events first, before 

classifying behaviour events within the partitioned data. An example of which was 

undertaken by Diosdado et al. (2015) using thresholds for determining transitions in the 

Y-axis of acceleration data. Their methodology achieved very good determination of 

non-specific transitionary events (sensitivity = 95.45%; precision = 87.50%). In 

essence, the initial identification of transition events using this type of method is akin to 

using VS methods in a timeseries and is one of the main reasons why VS was attempted 

in Chapter 3.        
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9.2.2 HMM for transition inference 

 HMMs have been used for a number of years to model the movement of a 

variety of animals (Franke et al., 2006; Langrock et al., 2012; Pohle et al., 2017) 

including cows (Guo et al., 2009) and even for recognizing bovine call types (Jahns, 

2008). HMMs are typically used outright to infer the path of behavioural states using a 

set of probabilities, these being the initial state probabilities, the probabilities of 

transitions between states, and the probability of observation given the hidden state. 

Guo et al. (2009) modelled the stay regions of cattle (areas between travel sites) using 

HMMs. They used a hierarchical combination of HMMs, producing time-dependent 

models for each individual cow. Data were collected from GPS and accelerometers and 

the authors related the directional and angular speeds of cows to three categories of 

behaviour; foraging, bedding and relocating. The benefit of modelling each individual 

cow was that they could make tailored predictions of the behaviour of each animal as 

they found that some cows exhibited large variation in their behavioural attributes. 

Including time of day also accounted for the fact that behaviour probability 

distributions can differ depending on time period.  

 In principle, developing an HMM for detecting transitions in classified 

sequences (Chapter 2) is the same as for outright behaviour modelling. When 

initializing the HMM described in Chapter 2, both initial state and transition 

probabilities were calculated from 150 h of data gathered during the observational 

study undertaken as part of Chapter 1. The emission probabilities (probability of 

observation) however were inferred from the classified instances of the algorithm 

developed in Chapter 1 in conjunction with the known behaviour states. Finally, when 

run on sequences of predicted behaviours, it was possible for the HMM to detect 

whether the classified instances were representative of the likely behaviour sequence 
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that cows had actually undertaken. Any classifications deemed erroneous by the HMM 

were then corrected.  

The HMM in Chapter 2 was developed using the R package ‘HMM’ 

(Himmelmann, 2010) which, in hindsight is slightly more limited in its functionality 

compared to other packages developed for this purpose such as depMixS4. This 

package provides capabilities for selecting the optimal number of hidden states (not 

necessarily required for the present study) and also further functions for optimizing 

model parameters and for model selection (Visser and Speekenbrink, 2010). Several 

other packages exist that also provide similar functionalities including HiddenMarkov 

(Harte, 2015) and msm (Jackson, 2011). A more recent package which provides a 

workflow process that is specifically aimed at the analysis of ecological and animal 

movement data is moveHMM (Michelot et al., 2016). A range of software exists for 

fitting HMMs, and for future work, some of these alternative packages will be 

explored.  

A limitation of the technique in this work was that, as noted by Guo et al. 

(2009), the behaviour of cows can vary greatly, and the HMM could make corrections 

to classified instances that were in fact true representations of the behaviour state. This 

could be problematic for example, if the HMM was modelled on higher parity cows but 

applied to younger cows that exhibit more erratic behaviour characterized by short 

behaviour bouts. Furthermore, there were occasions where erroneous GPS instances 

would give the impression that cattle had moved very quickly and the HMM would 

identify this as a walking instance. Data smoothing techniques may be able to help in 

this respect as part of a pre-processing phase to reduce the number of instances that are 

highly unlikely to be true representations of cow behaviour. More also needs to be done 

to test and optimize different HMM configurations to suit different groups of animals 
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and possibly optimize for the time of day. This could be especially challenging if the 

aim of the analysis is to track changes in behaviour which may be indicative of disease 

progression.  
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10. Review of Chapter 3: Williams, M.L., James, W.P. and Rose, M.T., 2019. 

Variable segmentation and ensemble classifiers for predicting dairy cow 

behaviour. Biosystems Engineering, 178, pp.156-167. 

10.1 Overview 

 Given the few examples of VS techniques applied to cattle sensor data, it was 

necessary to test whether this technique could provide improvements in classification 

performance over FTS. Although no statistical comparison was made between the 

classification performances of algorithms derived from both segmentation techniques, 

the performance of classifiers was very strong under VS and probably better than those 

derived from FTS. This certainly seems like a promising strategy for future use, but VS 

must be sufficiently sensitive enough to detect subtle changes in data. This of course 

depends on the sensitivity required, but there were instances where the Changepoint 

method did not detect behaviour transitions. As reported, the method correctly 

identified approximately 90% of transitions and one would speculate that this could be 

improved upon if different sensors were used to capture the movement data. Given the 

various algorithms and tuning parameters available in the Changepoint package, more 

needs to be done to fully explore its potential in detecting transitions in data collected 

from cows. Furthermore, many other packages exist which could also be evaluated on 

performance.   

 The evaluated base learners performed very well, particularly the neural 

network and SL classifiers. No significant performance improvement was realised by 

using the Stacking ensemble. This does question whether these are necessary in this 

context, especially given the additional computational time required for training, 

although this is strongly dependent on the base learner configuration. However, once 

models are developed, testing time is usually less of an issue. Stacked generalization 

(Stacking) was used as the ensemble here, but others exist (Section 5.4.6) and should be 
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evaluated in future with VS. Furthermore, future studies should look to evaluate any 

biological insights or important information that can be gained from such ML 

algorithms on sensor data as was undertaken in Chapter 1. Such insights are lacking in 

the study of livestock movement ecology. Gaining a better understanding could 

enhance the recognition of non-normal behaviours more objectively and also lead to 

learning novel information about the interactions of livestock with the environment and 

with conspecifics. In Chapter 3, the output model of each ML algorithm was not 

evaluated for this purpose. Often, ML models are complex and only interpretable by 

their performance metrics on test data. More work is needed to recognize the 

functionality of models from a pattern-recognition and data-mining perspective that 

may be useful to movement ecologists. However, from a practical standpoint, most of 

the time, it is only the power of the model to recognise the behaviour of interest that is 

important.  

In this work, the best algorithms performed as well as the ensembles explored 

by Dutta et al. (2015) and it may be that with improvements in transition recognition 

and enhanced algorithm hyperparameter tuning that even better performance can be 

achieved.  

10.2 Variation in GPS data and implications for changepoint detection 

 Despite a good level of transition detection using Changepoint, there were often 

instances where the variance of the GPS data did not consistently change at the point of 

transition. This will eventually lead to some inaccuracies in the duration of behaviour 

expression. Mitigating this issue with GPS could be difficult given the sources of 

variability that are difficult to control for (Section 8.4.2). There are options in the 

Changepoint package to test the data for changes in the mean and also for changes in 

both the mean and the variance. We explicitly chose to detect changes in the variance 
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of speed because in preliminary tests, the magnitude of variance change was greater 

across behaviours than that of the mean. Also, variance change-detection was generally 

more effective, if more computationally intensive given that data transformations are 

required.  

 There were also instances in the data where, despite a visually observed 

transition having taken place, no change was detected by the changepoint algorithm 

(Figure 15). This could have occurred because of the way in which particular cows 

graze. If cows move very slowly while grazing, then there may have been very little 

difference between their moving speed and the speed of movement when they were 

stationary (resting). This could be influenced by pasture height or density for example 

leading to little requirement for cows to move forward while grazing (Gibb et al., 

1997). GPS signal quality could also have led to such anomalies driven by some of the 

factors already discussed. Another reason could be that the GPS receiver itself may 

have been damaged. GPS receivers were not re-tested for horizontal accuracy as this 

was not deemed necessary at the time (2014-2016). With this, it seems that GPS does 

introduce a significant amount of variation that is very difficult to control for and as 

such, data from other sensors should be tested in the same context for efficacy of 

transition detection.  
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Figure 15. Example timeseries of Box-Cox transformed and first-differenced speed 

data containing 600 observations, each sampled at 5 s intervals. No changepoint was 

detected in this timeseries using the variance changepoint detection algorithm cpt.var. 

The transition was present at observation 364 where the cow moved from grazing to 

resting (vertical dashed line).    

 

Further investigation could be undertaken in future to optimize the change-

detection procedure from the perspective of the function itself. There are options to 

select different algorithms for change-detection, and others have had good success 

using the PELT algorithm for multiple changepoints (Madon & Hingrat, 2014). Users 

can also select the optimal penalty threshold to prevent overfitting and state the 

assumed distribution of the data. Clearly, there are many parameters that can be tested, 

and this exercise was outside the scope of this work. Few papers are available on the 

use of this package on other species and certainly, Chapter 3, as far as the candidate is 

aware is one of only two examples that have discussed its use for detecting changes in 

data collected from cattle (Shahriar et al., 2016).  
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10.3 Application of the changepoint method (Killick and Eckley, 2014) to 

accelerometer data 

 As an example, as to the efficacy of the changepoint method used in Chapter 3 

on accelerometer data gathered from housed dairy cows, data were taken from the 

supporting material provided by Diosdado et al. (2015). The BinSeg algorithm of the 

changepoint function was used to search for changes in the mean of the data sampled at 

1-min intervals. The data provided were the mean VeDBA (Section 5.2) and the mean 

static component of acceleration in the Y-axis (SCAY). In total there are 34 behaviour 

transitions in this dataset. Because the authors omitted drinking (amongst other 

behaviours) from their classification scheme, these behaviours were not considered for 

this exercise and so only transitions between feeding, lying and standing were included. 

The total number of transitions considered therefore were 31. The Changepoint 

function (cpt.mean) was configured so that Q = 40 (maximum number of changepoints 

to search for) and pen.value = 0.01 (theoretical type I error). For more information on 

the various algorithm configurations, see Killick and Eckley (2014). Figure 16 shows 

the results of the algorithm run on both datasets.        
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Figure 16. Changepoint detection algorithm used to search for changes in the mean 

vectorial dynamic body acceleration (VeDBA) and static component of acceleration in 

the Y-axis (SCAY) of data captured from neck-mounted accelerometers attached to the 

necks of housed dairy cows. Horizontal red lines indicate underlying fitted means 

(represent estimated behaviour boundaries). Vertical green dashes indicate boundaries 

of true transitions between behaviours. Dataset included 2,019 observations taken at 1-

min intervals. Data taken from Diosdado et al. (2015). 

     

The results show that the changepoint algorithm was effective in detecting 

behaviour transitions in the acceleration data. Overall, it seems that the algorithm was 

more sensitive to changes in the SCAY of the data and that this feature may be a more 

effective representation for detecting sensitive changes in the behaviour of dairy cows. 

The results also suggest that the algorithm underestimated the number of changepoints 

in the VeDBA data and overestimated on occasion in the SCAY data. Further 

supplementary data taken at different sampling intervals are provided with the 

publication (Diosdado et al., 2015), and it may be worth exploring the success of such 

changepoint algorithms on this data as well as larger datasets. 
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10.4 Other unsupervised changepoint detection methods 

 

Changepoint detection algorithms can be categorized into two main types 

namely, ‘online’ and ‘offline’. Offline algorithms retrospectively analyse data for 

significant changepoints and the majority of the techniques discussed earlier in this 

thesis fall under this category of algorithms although some can be adapted for online 

changepoint detection e.g. cpm (Section 4.1.2.2.2). Online algorithms on the other hand 

attempt to detect significant changepoints in almost real-time, processing each data 

point as it arrives. However, no changepoint algorithm can work in absolute real-time 

as algorithms require new data to be processed before a changepoint can be detected.     

The choice of whether to process in real-time or retrospectively will be context-

dependent and determined by factors such as the level of importance placed on any 

changes that may occur in the measured process (e.g. fault detection or falls in elderly 

individuals). Examples where both online and offline detection techniques discussed in 

the literature beyond movement ecology include methods used for human activity 

analysis (Brahim-Belhouari and Bermak, 2004), speech recognition (Rybach et al., 

2009) and medical condition monitoring (Bosc et al., 2003). Here, likelihood and 

probabilistic-based methods are discussed which have potential for use in both PLF and 

movement ecology studies.  

10.4.1 Likelihood ratio segmentation methods 

Likelihood ratio methods (as used in Chapter 3, Section 2.2; Killick and Eckley, 

2014) are based on comparing probability densities between two consequent intervals 

(Page, 1954; MacEachern et al., 2007). A cumulative sum control chart (CUSUM) is 

another example of a likelihood ratio method. CUSUM can be used for detecting small 

shifts and variations in continuous data streams that deviate from the process target 

using a subsequence of retrospective data (Amiri et al., 2012). If the variation in the 
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recorded measure is within the expected boundary then the process is considered to be 

operating on target (Amiri et al., 2012). Conversely, if a sample deviates beyond the 

allowable boundary then the process is considered to be operating away from the target 

value. CUSUM control charts were used by Pastell et al. (2008) to detect changes in the 

weight distribution of dairy cows for the detection of lameness in a milking robot. This 

is an example of how a statistical process method can be used to monitor individual 

animals over time using an off-animal sensor that is not supported by a complex 

algorithm for classification. The benefit of these systems is that they evaluate long-term 

deviations in the measured output and so do not assume that all individuals fit a 

particular model of behavior e.g. a general ML classification algorithm for grazing. In 

this particular work, load cells were used to measure individual limb weight and 

CUSUM charts were developed to track weight distribution (mean ± SD) over time. For 

this application, approximately 15 days of historic data were needed for the system to 

make informed judgements as to the normal leg-load distribution and variation for 

individual cows. A similar process was applied to accelerometer data gathered from 

pregnant sows to detect farrowing (Pastell et al., 2016). Here, trend and seasonal 

components were extracted from accelerometer data (neck-mounted accelerometers) 

using a dynamic linear modelling approach before applying a CUSUM chart to detect 

activity increases. The authors reported an average positive detection of farrowing 

activity (mean ± SD) 13 ± 4.8 h before farrowing with a sensitivity and specificity of 

96.7% and 100% respectively.    

10.4.2 Probabalistic segmentation methods  

 Two notable probabilistic changepoint detection methods exist, namely 

Bayesian and Gaussian methods. The majority of Bayesian changepoint detection 

methods had previously focused on offine, retrospective timeseries analysis (Smith, 
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1975; Stephens, 1994) but online methods have since been developed (Adams and 

Mackay, 2007). Online Bayesian techniques aim to generate an accuracte distribution 

of the forthcoming and unseen data in the timeseries using only past observed data. The 

posterior distribution is estimated over the timeseries data elapsed since the last 

detected changepoint. This elapsed time is defined as the ‘run length’ and increases by 

1 if no changepoint is detected and returns to 0 when the state changes. The run length 

distribution is based on Bayes’ theorem and takes a set of observations within the run as 

well as prior, likelihood and recursive components. The probability that the current 

datum belongs to the current state is represented by the likelihood term. After 

calculating the run length distribution and updating the corresponding statistics, a 

changepoint is detected if the run length has the highest probability in the distribution 

(Aminikhanghahi and Cook 2017).  

 A Gaussian process is another example of a probabilistic timeseries analysis 

method and can be defined as a collection of random variables, any number of which 

having a joint Gaussian distribution. In the case of Gaussian processes, timeseries data 

are defined as a noisy version of Gaussian distribution function values (observations are 

corrupted versions of the function values). The distribution function is specified by 

mean zero and a covariance function. A Gaussian process changepoint algorithm 

estimates the predictive distribution at a given point in the timeseries using previous 

timeseries values (Chandola and Vatsavai, 2010). Probability values are then computed 

for incoming data using the reference distribution and a threshold is used to determine 

when new observations do not follow the predicted distribution (Chandola and 

Vatsavai, 2011).    
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Several other changepoint detection methods exist but only a small number have 

been discussed in this thesis. Readers are referred to Aminikhanghahi and Cook (2017) 

for a comprehensive overview of methods.                    

10.5 Ensemble algorithm selection methods 

 The method undertaken to select the best base learners for the Stacking 

ensemble was a manual method described by Whalen and Pandey (2013). The 

weakness of this approach is that despite selecting the best available base learners on 

test data, the method does not consider the impact of each of these classifiers on the 

performance of the ensemble. A better approach could be to iteratively add the best 

classifiers to the ensemble and select those that improve the performance of the 

ensemble. This alternative method could become very difficult to perform manually 

especially if a number of candidate base learners are considered. Others have 

undertaken automatic base learner selection based on optimizing a certain evaluation 

function (Fan et al., 2002; Martınez-Munoz and Suárez, 2004). These techniques will 

be considered in future for ensemble optimization using packages such as that 

developed by Polley et al. (2018). In fact, a number of different ensemble selection 

methods exist and Tsoumakas et al. (2008) have reviewed some of these methods, 

namely, search-based methods, clustering-based methods and ranking-based methods. 

 Initially selecting a subset of the best base learners was thought necessary in the 

current work in order to reduce the pool of candidates for the ensemble. Indeed, this is a 

common method amongst publications (Whalen and Pandey, 2013). In hindsight, it 

may have been the case that some of those that performed the weakest may have 

provided additional diversity to the ensemble and may have improved the classification 

performance of the final ensemble. Diversity is of course an important characteristic of 

base learners and Whalen and Pandey (2013) demonstrate a technique of empirically 
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measuring diversity using Yule’s Q-statistic (Yule, 1900). This statistic can be used to 

generate a contingency table with the data based on the classified labels of a pair of 

classifiers. With this, both classifiers can be assessed for similarity in their classified 

instances and the information used as a tool to support the level of diversity within the 

ensemble.  
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11. Conclusion 

11.1 Future research 

 

 Progress is being made quickly in PLF research. There is no doubt that most 

future livestock production will, at least in developed regions, make use of precision-

based means of measuring something about a particular component of the system. PLF 

methods are already being used in many intensively managed systems. Given that 

livestock production systems are at the forefront of some of the biggest challenges 

facing humanity such as global climate change (Rojas-Downing et al., 2017), PLF 

methods and technologies could help producers manage their systems more efficiently 

but also demonstrate the accountability of livestock industries to these wider challenges 

(Tullo et al., 2018). Having examined the literature, it is evident that the next decade 

will bring many advances in the ability to quickly recognize constraints on livestock 

production systems and solutions to quickly manage them. Advances in sensor 

hardware, data processing and pattern recognition will probably mean that data-driven 

management decisions will be possible at the level of the individual animal which could 

be beneficial for a range of welfare and production issues.  

 With regard to the dairy industry, broad areas where future research should be 

focused include (1) understanding the motivation of UK farmers to adopt (or not) PLF 

technologies. Limited research is available in this area, particularly from the 

perspective of UK farmers. Research should also look to (2) measure the impact that 

PLF interventions have had on farms both from an empirical and qualitative opinion-

based perspective. This will be important to assess the impact of PLF intervention. 

Herd size (3) should also be assessed for relationships between performance and 

welfare as the evidence for these relationships is either not fully conclusive in existing 

research or is currently unavailable from a UK perspective. It would also be very useful 
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to see whether PLF adoption is more likely in larger herds. Finally (4), more research is 

needed to assess the behaviour of cows using various sensor systems and how 

management regimes, disease and other factors such as separation manifest in the data.  

11.2 Combining sensors for livestock behaviour and movement 

 

 In this thesis, GPS receivers were used for data collection throughout and were 

applied to pasture-based cattle. Monitoring animals with sensors that can combine 

position and behaviour prediction could be very valuable in the context of Welsh 

livestock production systems and indeed any system where grazed grass is an important 

component of the diet. GPS could be important for future livestock monitoring to gain 

an understanding of livestock behaviour trends and also to better understand the 

movement of livestock. It is clear that more needs to be done to realise the benefits of 

GPS in this repect. Chapter 1 showed that a simple rule-based model could provide an 

insight into the movement associated with grazing. One of the weaknesses of GPS is 

the error associated with the estimates of location and movement due to issues such as 

satellite position relative to the receiver, and multipath errors due to buildings and other 

large objects. This could lead to erroneous movement models including those that 

represent behaviours such as grazing. Other sensors that have and will probably 

continue to improve estimates of behaviour in combination with GPS include 

accelerometers and magnetometers. Magnetometers were not discussed in this thesis 

previously, but these sensors can be built to fit livestock and indeed many species in 

discrete on-animal housing. Magnetometers are used to measure posture from the static 

data component with respect to the Earth’s magnetic field and also dynamic movement. 

They have been used previously in conjunction with GPS and accelerometers for the 

classification of dairy cow behaviour at pasture (Dutta et al., 2015) and are becoming 

more popular in movement ecology (Chakravarty et al., 2019). Magnetometers are 
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reportedly able to record some movements that accelerometers can miss such as low 

acceleration behaviours (Williams et al., 2015). In Williams et al. (2017), the authors 

found some large differences between accelerometers and magnetometers in their 

capabilities to recognise certain behaviours. In future, it will be worth considering how 

these two sensor types can be leveraged for their complimentarity for recognising the 

various behaviours of livestock including the most fundamental such as grazing, lying 

and standing.  

 For housed production systems, LPS is likely to be an important tool for future 

use in monitoring behavioural interactions and localisation. Given that GPS is not fit 

for purpose in housed systems, LPS will probably be important from a research 

perspective in aiding the diagnosis of disease and for supporting other interesting work 

on herd behavior such as hierarchy and the interplay between social interactions and 

production disorders. In combination with on-animal sensors, both GPS and LPS will 

be able to provide a level of dimensionality not seen previously in dairy production 

systems and allow analysts the opportunity to learn far more about the dynamics of the 

production environment. There is also potential for LPS in grazed systems, allowing 

triangulation of animal location and reducing the need for a power-intensive system 

such as GPS and the uncertainties that come with it. Given these opportunities, there is 

great potential for future research in both extensive and intensive dairy production 

systems that were previously unavailable. 
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11.3 Final recommendations 

   

 Data-driven dairying is not new; in fact, performance recording has always been 

a key factor in improving system performance. The major difference now is that the 

data available are vast and dealing with this information can, at times seem a difficult 

task. With greater engineering capabilities, data can be processed quickly, but a key 

requirement will be that this information is useful to the individuals who work with 

livestock on a daily basis. Indeed, this project has highlighted the complexities involved 

with processing a relatively small quantity of data in order to make effective use of it in 

behaviour recognition. There are also several highlighted areas that will require further 

work in future so that cow-mounted sensor data can be fully understood and exploited. 

These challenges include:  

(1) Finalizing a selection of behaviours that are biologically useful and realistic 

to identify and also measure automatically. These behaviours may vary 

depending on application, system type and farm objectives.  

(2) Producing models of behaviour that are deployable and capable of 

classifying behaviours in continuous time (outside of the training and testing 

environment). These models need not necessarily follow the same format as 

those proposed in this thesis (developed via ML). Methods developed in the 

field of movement ecology are likely to be less computationally intensive 

(e.g. behavioural changepoint detection and localization). In conjunction 

with supervised behaviour classification methods, these techniques could 

provide an efficient means of behaviour recognition or to decipher patterns 

in data indicative of perturbations in normal behaviour.  

(3) Measuring the impact of biological and environmental variability on the 

predictability of derived models.  
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(4) Supporting sensor systems with useful advice and information on the 

trajectory that farm managers should take given a particular event.                 

It is clear that the wealth of data available will allow researchers and farmers to 

gain a deep insight into the mechanisms that drive performance in production systems 

in future. This will be necessary to better inform farmers of any changes that require a 

managerial response and inform quality and welfare assurance. Sensor systems will 

also be important for allowing consumers to better understand livestock production, 

helping to provide confidence in an age where the story behind the food item is just as 

important as the quality of the product on the plate. Sensor systems will also allow for 

the precise monitoring of inputs and outputs which includes environmentally degrading 

by-products. This will help the livestock industry meet some of its global challenges. 

The applications of the techniques discussed in this thesis and in the wider literature 

also go beyond those of livestock production systems and in fact, many of the 

techniques are derived from the study of animal movement ecology and behaviour. The 

methods and works discussed in this thesis are also applicable to a range of other 

species. This includes zoo or park-kept animals (Whitham and Miller, 2016) that may 

require a level of observation necessary for precisely monitoring behaviour and 

behaviour change, or for optimizing conditions for those animals (Wijers et al., 2018).  

Specifically, the experimental chapters in this thesis have contributed to better 

understanding cattle movement by combining methods used in animal movement 

ecology with those already being applied to livestock production research. The context 

of the work is unique to pasture-based livestock systems which are an important 

component of the UK agricultural economy. Simultaneously knowing the location and 

behaviour of livestock in extensive systems could help lead to more sustainable 

agricultural systems by making better and more efficient use of resources. Achieving 
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trust in such systems will require extensive work in improving the longevity of sensors, 

battery power and also demonstrating to farmers that the technology works. The 

information gained in this thesis could help direct further research in cattle grazing 

ecology. Specifically, it is hoped that it will make livestock scientists interested in PLF 

aware of the challenges that have and are being faced in the field of animal movement 

ecology and help bridge the gap between the two disciplines.     
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Appendix 1 

Open field treatment 

Table 11. Mean horizontal accuracies of each of the 36 GPS receivers sampled at 30 s 

intervals in open field treatment 

GPS 

receiver 

Minimum 

(0%) 

CEP 

(50%) 

1 Sigma 

(68%) 

R95 

(95%) 

2 Sigma 

(98%) 

Maximum 

(100%) 

1 0.20 4.20 5.18 8.74 10.37 76.47 

2 0.07 1.33 1.65 2.76 3.30 6.59 

3 0.15 1.32 1.62 2.74 3.24 7.07 

4 0.32 1.31 1.61 2.73 3.21 7.59 

5 0.05 1.33 1.62 2.78 3.24 6.43 

6 0.22 1.29 1.56 2.67 3.12 6.60 

7 0.23 1.42 1.75 2.96 3.50 9.20 

8 0.30 1.28 1.56 2.67 3.11 7.26 

9 0.09 5.27 6.33 10.96 12.67 187.77 

10 0.11 1.40 1.71 2.91 3.43 7.86 

11 0.36 1.31 1.61 2.73 3.22 6.92 

12 0.21 1.29 1.57 2.69 3.14 7.05 

13 0.07 1.32 1.62 2.74 3.24 7.39 

14 0.48 1.30 1.60 2.71 3.21 7.17 

15 0.15 3.58 4.30 7.44 8.59 81.74 

16 0.25 1.34 1.64 2.79 3.27 7.47 

17 0.34 1.24 1.52 2.59 3.03 6.54 

18 0.39 1.28 1.56 2.67 3.13 7.22 

19 0.61 1.29 1.58 2.69 3.16 6.90 

20 0.09 1.34 1.64 2.78 3.27 7.63 

21 0.26 1.39 1.71 2.88 3.41 6.85 

22 0.30 1.29 1.57 2.68 3.15 7.08 

23 0.14 1.30 1.60 2.70 3.21 7.18 

24 0.42 1.31 1.59 2.72 3.18 7.44 

25 0.28 1.41 1.73 2.94 3.45 7.63 

26 0.57 1.40 1.70 2.91 3.39 7.27 

27 0.22 1.31 1.60 2.74 3.20 7.54 

28 0.33 1.33 1.62 2.77 3.25 7.65 

29 0.08 1.26 1.53 2.63 3.06 7.88 

30 0.35 1.26 1.56 2.63 3.11 7.48 

31 0.38 1.59 1.96 3.32 3.92 11.59 

32 0.14 1.30 1.59 2.71 3.18 8.36 

33 0.09 1.28 1.55 2.67 3.09 7.24 

34 0.09 1.26 1.53 2.62 3.06 6.77 

35 0.18 1.48 1.83 3.07 3.66 9.27 

36 0.14 1.31 1.60 2.73 3.21 7.02 

Mean  0.24 1.58 1.93 3.29 3.86 16.48 

SE 0.02 0.15 0.18 0.30 0.35 5.63 

SD 0.14 0.87 1.05 1.82 2.11 33.76 
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Table 12. Mean horizontal accuracies of each of the 36 GPS receivers sampled at 10 s 

intervals in open field treatment 

 

  

GPS 

receiver 

Minimum 

(0%) 

CEP 

(50%) 

1 Sigma 

(68%) 

R95 

(95%) 

2 Sigma 

(98%) 

Maximum 

(100%) 

1 0.04 2.02 2.43 4.21 4.86 28.66 

2 0.08 1.30 1.59 2.70 3.18 7.03 

3 0.08 1.30 1.60 2.71 3.21 7.46 

4 0.13 1.38 1.70 2.87 3.41 7.86 

5 0.32 1.33 1.62 2.76 3.25 6.79 

6 0.04 1.21 1.48 2.52 2.95 6.92 

7 0.12 1.35 1.66 2.80 3.32 7.60 

8 0.22 1.34 1.64 2.79 3.28 8.71 

9 0.09 9.68 12.08 20.14 24.15 438.20 

10 0.12 1.26 1.54 2.62 3.09 7.74 

11 0.07 1.30 1.60 2.71 3.20 7.34 

12 0.25 1.30 1.60 2.71 3.21 7.08 

13 0.25 1.31 1.61 2.73 3.21 7.34 

14 0.19 1.23 1.52 2.57 3.03 7.41 

15 0.08 1.15 1.41 2.38 2.82 6.38 

16 0.06 1.33 1.62 2.77 3.25 8.24 

17 0.17 1.35 1.65 2.81 3.31 7.06 

18 0.10 1.49 1.82 3.10 3.64 8.63 

19 0.13 1.30 1.59 2.70 3.17 7.80 

20 0.09 1.34 1.64 2.79 3.28 7.67 

21 0.23 1.35 1.66 2.82 3.32 7.21 

22 0.15 1.24 1.52 2.58 3.04 7.65 

23 0.05 1.26 1.55 2.62 3.10 7.54 

24 0.03 1.30 1.58 2.71 3.17 7.62 

25 0.32 1.33 1.62 2.77 3.24 7.95 

26 0.20 1.34 1.63 2.79 3.26 7.66 

27 0.12 1.36 1.66 2.82 3.32 7.57 

28 0.07 1.36 1.67 2.84 3.34 7.93 

29 0.04 1.44 1.78 3.00 3.57 8.48 

30 0.13 1.22 1.50 2.53 2.99 6.62 

31 0.05 6.54 9.32 13.60 18.64 317.70 

32 0.12 1.29 1.58 2.68 3.16 7.35 

33 0.20 2.53 3.13 5.27 6.25 31.42 

34 0.09 1.26 1.54 2.62 3.08 7.31 

35 0.06 6.13 10.95 12.75 21.89 176.56 

36 0.12 0.70 1.25 1.46 2.50 7.24 

Mean  0.13 1.86 2.43 3.87 4.85 34.05 

SE 0.01 0.30 0.43 0.62 0.86 15.07 

SD 0.08 1.79 2.59 3.73 5.19 90.39 
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Table 13. Mean horizontal accuracies of each of the 36 GPS receivers sampled at 5 s 

intervals in open field treatment 

 

            

GPS 

receiver 

Minimum 

(0%) 

CEP 

(50%) 

1 Sigma 

(68%) 

R95 

(95%) 

2 Sigma 

(98%) 

Maximum 

(100%) 

1 0.04 1.83 2.28 3.80 4.55 41.74 

2 0.41 1.18 1.44 2.45 2.88 7.69 

3 0.19 1.32 1.63 2.75 3.26 10.09 

4 0.16 1.40 1.74 2.91 3.47 10.92 

5 0.10 1.28 1.56 2.65 3.12 7.88 

6 0.47 1.21 1.48 2.51 2.95 8.17 

7 0.27 1.36 1.69 2.84 3.38 12.70 

8 0.15 1.31 1.60 2.72 3.20 9.79 

9 0.09 3.91 5.00 8.12 10.01 181.56 

10 0.11 1.33 1.61 2.76 3.23 8.67 

11 0.25 1.28 1.58 2.67 3.17 8.68 

12 0.34 1.36 1.66 2.83 3.33 10.68 

13 0.07 1.25 1.53 2.61 3.06 8.50 

14 0.03 20.12 31.71 41.86 63.42 3976.69 

15 0.06 2.92 3.69 6.07 7.38 138.57 

16 0.15 1.39 1.71 2.89 3.42 10.71 

17 0.23 1.26 1.54 2.63 3.08 9.64 

18 0.10 1.48 1.80 3.09 3.60 13.11 

19 0.21 1.33 1.62 2.76 3.24 10.76 

20 0.10 1.39 1.71 2.88 3.41 10.66 

21 0.08 1.33 1.63 2.77 3.27 8.48 

22 0.08 1.33 1.64 2.77 3.29 10.73 

23 0.14 1.29 1.59 2.69 3.19 8.68 

24 0.19 1.27 1.56 2.64 3.11 8.26 

25 0.12 1.33 1.62 2.77 3.24 8.35 

26 0.02 1.47 1.80 3.05 3.61 10.82 

27 0.42 1.24 1.52 2.59 3.04 8.63 

28 0.16 1.41 1.72 2.93 3.45 10.90 

29 0.04 1.41 1.74 2.94 3.47 15.19 

30 0.34 1.23 1.51 2.57 3.01 7.39 

31 0.17 1.80 2.24 3.75 4.47 31.20 

32 0.25 1.40 1.72 2.90 3.44 11.03 

33 0.03 1.82 2.21 3.78 4.42 20.48 

34 0.10 1.27 1.55 2.64 3.11 10.61 

35 0.06 1.23 1.51 2.57 3.03 12.88 

36 0.68 1.36 1.68 2.83 3.35 10.36 

Mean  0.18 2.00 2.66 4.17 5.32 130.31 

SE 0.02 0.52 0.84 1.09 1.67 110.05 

SD 0.14 3.15 5.02 6.55 10.05 660.33 
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Hedgerow treatment 

 

Table 14. Mean horizontal accuracies of each of the 36 GPS receivers sampled at 30 s 

intervals in hedgerow treatment 

 

GPS 

receiver 

Minimum 

(0%) 

CEP 

(50%) 

1 Sigma 

(68%) 

R95 

(95%) 

2 Sigma 

(98%) 

Maximum 

(100%) 

1 0.12 5.15 6.68 10.71 13.36 61.26 

2 0.06 1.49 1.83 3.09 3.66 11.56 

3 0.10 1.65 2.09 3.43 4.18 13.44 

4 0.03 1.64 2.05 3.42 4.10 13.40 

5 0.12 2.10 2.83 4.37 5.67 34.10 

6 0.04 1.72 2.20 3.57 4.40 24.39 

7 0.09 1.63 2.07 3.40 4.14 21.11 

8 0.08 2.22 2.91 4.61 5.81 31.92 

9 0.09 3.46 4.50 7.20 9.00 53.99 

10 0.10 1.58 1.95 3.29 3.89 13.38 

11 0.03 1.51 1.87 3.14 3.74 19.26 

12 0.11 1.35 1.70 2.82 3.41 15.13 

13 0.24 1.99 2.53 4.15 5.06 39.79 

14 0.09 1.61 2.02 3.35 4.04 28.43 

15 0.03 1.72 2.21 3.59 4.41 24.19 

16 0.10 1.74 2.22 3.61 4.44 27.38 

17 0.05 1.49 1.89 3.09 3.78 7.64 

18 0.18 1.38 1.70 2.88 3.40 6.60 

19 0.06 1.41 1.77 2.93 3.54 8.47 

20 0.10 1.65 2.06 3.42 4.12 20.07 

21 0.07 1.50 1.89 3.12 3.77 9.47 

22 0.07 1.49 1.86 3.10 3.72 10.51 

23 0.19 1.75 2.21 3.64 4.42 21.11 

24 0.06 1.59 2.00 3.32 4.01 10.02 

25 0.02 1.43 1.81 2.98 3.62 10.28 

26 0.16 1.38 1.69 2.87 3.38 7.24 

27 0.07 1.33 1.66 2.78 3.32 9.27 

28 0.31 1.47 1.82 3.06 3.64 10.60 

29 0.20 1.86 2.40 3.87 4.80 17.90 

30 0.07 1.41 1.74 2.93 3.48 12.59 

31 0.09 2.33 3.08 4.84 6.16 34.36 

32 0.04 1.68 2.11 3.49 4.21 17.38 

33 0.08 2.48 3.21 5.17 6.41 26.72 

34 0.17 1.37 1.71 2.86 3.41 8.41 

35 0.10 1.95 2.50 4.05 4.99 22.77 

36 0.02 1.48 1.86 3.08 3.73 14.01 

Mean  0.10 1.81 2.29 3.76 4.59 19.95 

SE 0.01 0.12 0.16 0.24 0.31 2.13 

SD 0.06 0.70 0.94 1.47 1.88 12.76 
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Table 15. Mean horizontal accuracies of each of the 36 GPS receivers sampled at 10 s 

intervals in hedgerow treatment 

 

  

GPS 

receiver 

Minimum 

(0%) 

CEP 

(50%) 

1 Sigma 

(68%) 

R95 

(95%) 

2 Sigma 

(98%) 

Maximum 

(100%) 

1 0.12 4.02 5.26 8.36 10.52 96.34 

2 0.06 1.58 1.96 3.29 3.91 18.87 

3 0.13 1.54 1.94 3.21 3.89 12.89 

4 0.03 1.64 2.06 3.42 4.12 12.86 

5 0.12 1.50 1.89 3.12 3.77 24.67 

6 0.04 1.57 1.95 3.26 3.90 17.13 

7 0.09 1.80 2.29 3.74 4.58 21.48 

8 0.08 1.75 2.18 3.64 4.36 8.37 

9 0.09 4.48 5.72 9.32 11.44 162.08 

10 0.04 1.66 2.04 3.45 4.07 14.78 

11 0.03 1.48 1.81 3.09 3.62 18.71 

12 0.11 1.37 1.73 2.85 3.45 14.14 

13 0.03 1.94 2.45 4.03 4.90 46.11 

14 0.09 1.69 2.08 3.51 4.16 15.27 

15 0.03 1.29 1.60 2.69 3.21 8.56 

16 0.10 1.58 1.94 3.28 3.88 11.46 

17 0.05 1.71 2.14 3.55 4.27 16.27 

18 0.09 1.37 1.72 2.84 3.44 8.09 

19 0.06 1.68 2.08 3.50 4.16 10.68 

20 0.10 1.61 1.96 3.34 3.93 10.80 

21 0.04 1.66 2.05 3.45 4.10 8.34 

22 0.07 1.56 1.97 3.25 3.95 14.99 

23 0.17 1.60 1.98 3.33 3.97 9.80 

24 0.06 1.58 1.98 3.28 3.97 9.13 

25 0.30 1.49 1.83 3.09 3.65 7.65 

26 0.02 1.39 1.73 2.89 3.46 8.14 

27 0.06 1.43 1.77 2.97 3.55 9.12 

28 0.27 1.40 1.73 2.91 3.45 11.48 

29 0.11 1.63 2.01 3.39 4.02 20.12 

30 0.07 1.57 1.91 3.28 3.83 10.57 

31 0.12 480.40 595.15 999.22 1190.30 11062.80 

32 0.04 1.75 2.22 3.64 4.45 19.33 

33 0.08 3.56 4.40 7.40 8.79 90.99 

34 0.17 1.36 1.68 2.82 3.36 8.19 

35 0.10 1.89 2.34 3.92 4.68 25.10 

36 0.36 1.44 1.81 2.99 3.62 15.13 

Mean  0.10 15.08 18.70 31.37 37.41 330.01 

SE 0.01 13.30 16.47 27.65 32.94 306.69 

SD 0.08 79.77 98.82 165.92 197.65 1840.17 
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Table 16. Mean horizontal accuracies of each of the 36 GPS receivers sampled at 5 s 

intervals in hedgerow treatment 

 

  

GPS 

receiver 

Minimum 

(0%) 

CEP 

(50%) 

1 Sigma 

(68%) 

R95 

(95%) 

2 Sigma 

(98%) 

Maximum 

(100%) 

1 0.12 3.55 4.58 7.38 9.17 103.49 

2 0.06 1.83 2.28 3.82 4.56 10.07 

3 0.07 1.52 1.89 3.17 3.78 11.68 

4 0.03 1.57 1.93 3.26 3.86 8.47 

5 0.12 1.94 2.43 4.03 4.86 35.09 

6 0.04 1.40 1.73 2.91 3.47 17.39 

7 0.09 1.54 1.90 3.21 3.80 16.67 

8 0.08 1.90 2.38 3.95 4.75 10.94 

9 0.09 2.87 3.71 5.96 7.41 34.65 

10 0.13 1.54 1.91 3.20 3.82 14.38 

11 0.03 1.34 1.63 2.80 3.25 9.65 

12 0.11 1.48 1.87 3.08 3.75 16.01 

13 0.15 2.32 2.97 4.82 5.94 55.11 

14 0.09 2.18 2.74 4.53 5.47 36.25 

15 0.03 1.48 1.80 3.08 3.60 12.26 

16 0.10 1.70 2.09 3.54 4.18 17.40 

17 0.05 1.71 2.12 3.56 4.23 8.82 

18 0.09 2.62 3.19 5.46 6.37 144.19 

19 0.06 2.01 2.47 4.19 4.94 10.50 

20 0.10 1.91 2.39 3.97 4.78 13.67 

21 0.04 1.78 2.20 3.69 4.40 9.46 

22 0.11 1.72 2.13 3.59 4.26 12.42 

23 0.17 1.58 1.92 3.29 3.85 11.24 

24 0.13 1.92 2.31 3.99 4.62 11.62 

25 0.02 1.58 1.95 3.30 3.89 10.98 

26 0.02 1.31 1.63 2.73 3.27 7.41 

27 0.06 1.71 2.07 3.56 4.13 10.21 

28 0.07 1.40 1.73 2.91 3.47 13.57 

29 0.11 2.54 3.33 5.29 6.66 27.66 

30 0.07 1.75 2.17 3.64 4.33 17.13 

31 0.09 3.25 3.99 6.75 7.98 106.22 

32 0.04 1.86 2.40 3.88 4.81 29.33 

33 0.08 2.54 3.25 5.29 6.49 16.95 

34 0.17 1.45 1.80 3.01 3.61 9.01 

35 0.10 2.29 2.95 4.77 5.90 19.07 

36 0.10 1.46 1.83 3.03 3.65 18.29 

Mean  0.08 1.90 2.38 3.96 4.76 25.48 

SE 0.01 0.09 0.12 0.19 0.23 5.08 

SD 0.04 0.54 0.70 1.11 1.40 30.49 
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Appendix 2 

Open field treatment 

Table 17. Mean horizontal accuracies of each of the 25 standardised GPS receivers 

sampled at 30 s intervals in open field treatment 
GPS 

receiver 

Minimum 

(0%) 

CEP 

(50%) 

1 Sigma 

(68%) 

R95 

(95%) 

2 Sigma 

(98%) 

Maximum 

(100%) 

2 0.07 1.33 1.65 2.76 3.30 6.59 

3 0.15 1.32 1.62 2.74 3.24 7.07 

4 0.32 1.31 1.61 2.73 3.21 7.59 

5 0.05 1.33 1.62 2.78 3.24 6.43 

6 0.22 1.29 1.56 2.67 3.12 6.60 

8 0.30 1.28 1.56 2.67 3.11 7.26 

10 0.11 1.40 1.71 2.91 3.43 7.86 

11 0.36 1.31 1.61 2.73 3.22 6.92 

12 0.21 1.29 1.57 2.69 3.14 7.05 

13 0.07 1.32 1.62 2.74 3.24 7.39 

16 0.25 1.34 1.64 2.79 3.27 7.47 

17 0.34 1.24 1.52 2.59 3.03 6.54 

19 0.61 1.29 1.58 2.69 3.16 6.90 

20 0.09 1.34 1.64 2.78 3.27 7.63 

21 0.26 1.39 1.71 2.88 3.41 6.85 

22 0.30 1.29 1.57 2.68 3.15 7.08 

23 0.14 1.30 1.60 2.70 3.21 7.18 

24 0.42 1.31 1.59 2.72 3.18 7.44 

26 0.57 1.40 1.70 2.91 3.39 7.27 

27 0.22 1.31 1.60 2.74 3.20 7.54 

28 0.33 1.33 1.62 2.77 3.25 7.65 

29 0.08 1.26 1.53 2.63 3.06 7.88 

30 0.35 1.26 1.56 2.63 3.11 7.48 

32 0.14 1.30 1.59 2.71 3.18 8.36 

34 0.09 1.26 1.53 2.62 3.06 6.77 

Mean  0.24 1.31 1.60 2.73 3.21 7.23 

SE 0.03 0.01 0.01 0.02 0.02 0.09 

SD 0.15 0.04 0.05 0.08 0.10 0.47 
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Table 18. Mean horizontal accuracies of each of the 25 standardised GPS receivers 

sampled at 10 s intervals in open field treatment 

 

  

GPS 

receiver 

Minimum 

(0%) 

CEP 

(50%) 

1 Sigma 

(68%) 

R95 

(95%) 

2 Sigma 

(98%) 

Maximum 

(100%) 

2 0.08 1.30 1.59 2.70 3.18 7.03 

3 0.08 1.30 1.60 2.71 3.21 7.46 

4 0.13 1.38 1.70 2.87 3.41 7.86 

5 0.32 1.33 1.62 2.76 3.25 6.79 

6 0.04 1.21 1.48 2.52 2.95 6.92 

8 0.22 1.34 1.64 2.79 3.28 8.71 

10 0.12 1.26 1.54 2.62 3.09 7.74 

11 0.07 1.30 1.60 2.71 3.20 7.34 

12 0.25 1.30 1.60 2.71 3.21 7.08 

13 0.25 1.31 1.61 2.73 3.21 7.34 

16 0.06 1.33 1.62 2.77 3.25 8.24 

17 0.17 1.35 1.65 2.81 3.31 7.06 

19 0.13 1.30 1.59 2.70 3.17 7.80 

20 0.09 1.34 1.64 2.79 3.28 7.67 

21 0.23 1.35 1.66 2.82 3.32 7.21 

22 0.15 1.24 1.52 2.58 3.04 7.65 

23 0.05 1.26 1.55 2.62 3.10 7.54 

24 0.03 1.30 1.58 2.71 3.17 7.62 

26 0.20 1.34 1.63 2.79 3.26 7.66 

27 0.12 1.36 1.66 2.82 3.32 7.57 

28 0.07 1.36 1.67 2.84 3.34 7.93 

29 0.04 1.44 1.78 3.00 3.57 8.48 

30 0.13 1.22 1.50 2.53 2.99 6.62 

32 0.12 1.29 1.58 2.68 3.16 7.35 

34 0.09 1.26 1.54 2.62 3.08 7.31 

Mean 0.13 1.31 1.61 2.73 3.21 7.52 

SE 0.02 0.01 0.01 0.02 0.03 0.10 

SD 0.08 0.05 0.07 0.11 0.13 0.50 
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Table 19. Mean horizontal accuracies of each of the 25 standardised GPS receivers 

sampled at 5 s intervals in open field treatment 

GPS 
receiver 

Minimum 
(0%) 

CEP 
(50%) 

1 Sigma 
(68%) 

R95 
(95%) 

2 Sigma 
(98%) 

Maximum 
(100%) 

2 0.41 1.18 1.44 2.45 2.88 7.69 

3 0.19 1.32 1.63 2.75 3.26 10.09 

4 0.16 1.40 1.74 2.91 3.47 10.92 

5 0.10 1.28 1.56 2.65 3.12 7.88 

6 0.47 1.21 1.48 2.51 2.95 8.17 

8 0.15 1.31 1.60 2.72 3.20 9.79 

10 0.11 1.33 1.61 2.76 3.23 8.67 

11 0.25 1.28 1.58 2.67 3.17 8.68 

12 0.34 1.36 1.66 2.83 3.33 10.68 

13 0.07 1.25 1.53 2.61 3.06 8.50 

16 0.15 1.39 1.71 2.89 3.42 10.71 

17 0.23 1.26 1.54 2.63 3.08 9.64 

19 0.21 1.33 1.62 2.76 3.24 10.76 

20 0.10 1.39 1.71 2.88 3.41 10.66 

21 0.08 1.33 1.63 2.77 3.27 8.48 

22 0.08 1.33 1.64 2.77 3.29 10.73 

23 0.14 1.29 1.59 2.69 3.19 8.68 

24 0.19 1.27 1.56 2.64 3.11 8.26 

26 0.02 1.47 1.80 3.05 3.61 10.82 

27 0.42 1.24 1.52 2.59 3.04 8.63 

28 0.16 1.41 1.72 2.93 3.45 10.90 

29 0.04 1.41 1.74 2.94 3.47 15.19 

30 0.34 1.23 1.51 2.57 3.01 7.39 

32 0.25 1.40 1.72 2.90 3.44 11.03 

34 0.10 1.27 1.55 2.64 3.11 10.61 

Mean 0.19 1.32 1.62 2.74 3.23 9.74 

SE 0.02 0.01 0.02 0.03 0.04 0.33 

SD 0.12 0.07 0.09 0.15 0.18 1.66 
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Hedgerow treatment 

Table 20. Mean horizontal accuracies of each of the 25 standardised GPS receivers 

sampled at 30 s intervals in hedgerow treatment 

 

  

GPS 

receiver 

Minimum 

(0%) 

CEP 

(50%) 

1 Sigma 

(68%) 

R95 

(95%) 

2 Sigma 

(98%) 

Maximum 

(100%) 

2 0.06 1.49 1.83 3.09 3.66 11.56 

3 0.10 1.65 2.09 3.43 4.18 13.44 

4 0.03 1.64 2.05 3.42 4.10 13.40 

5 0.12 2.10 2.83 4.37 5.67 34.10 

6 0.04 1.72 2.20 3.57 4.40 24.39 

8 0.08 2.22 2.91 4.61 5.81 31.92 

10 0.10 1.58 1.95 3.29 3.89 13.38 

11 0.03 1.51 1.87 3.14 3.74 19.26 

12 0.11 1.35 1.70 2.82 3.41 15.13 

13 0.24 1.99 2.53 4.15 5.06 39.79 

16 0.10 1.74 2.22 3.61 4.44 27.38 

17 0.05 1.49 1.89 3.09 3.78 7.64 

19 0.06 1.41 1.77 2.93 3.54 8.47 

20 0.10 1.65 2.06 3.42 4.12 20.07 

21 0.07 1.50 1.89 3.12 3.77 9.47 

22 0.07 1.49 1.86 3.10 3.72 10.51 

23 0.19 1.75 2.21 3.64 4.42 21.11 

24 0.06 1.59 2.00 3.32 4.01 10.02 

26 0.16 1.38 1.69 2.87 3.38 7.24 

27 0.07 1.33 1.66 2.78 3.32 9.27 

28 0.31 1.47 1.82 3.06 3.64 10.60 

29 0.20 1.86 2.40 3.87 4.80 17.90 

30 0.07 1.41 1.74 2.93 3.48 12.59 

32 0.04 1.68 2.11 3.49 4.21 17.38 

34 0.17 1.37 1.71 2.86 3.41 8.41 

Mean 0.11 1.62 2.04 3.36 4.08 16.58 

SE 0.01 0.05 0.07 0.10 0.13 1.78 

SD 0.07 0.23 0.34 0.48 0.67 8.88 
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Table 21. Mean horizontal accuracies of each of the 25 standardised GPS receivers 

sampled at 10 s intervals in hedgerow treatment 

 

  

GPS 

receiver 

Minimum 

(0%) 

CEP 

(50%) 

1 Sigma 

(68%) 

R95 

(95%) 

2 Sigma 

(98%) 

Maximum 

(100%) 

2 0.06 1.58 1.96 3.29 3.91 18.87 

3 0.13 1.54 1.94 3.21 3.89 12.89 

4 0.03 1.64 2.06 3.42 4.12 12.86 

5 0.12 1.50 1.89 3.12 3.77 24.67 

6 0.04 1.57 1.95 3.26 3.90 17.13 

8 0.08 1.75 2.18 3.64 4.36 8.37 

10 0.04 1.66 2.04 3.45 4.07 14.78 

11 0.03 1.48 1.81 3.09 3.62 18.71 

12 0.11 1.37 1.73 2.85 3.45 14.14 

13 0.03 1.94 2.45 4.03 4.90 46.11 

16 0.10 1.58 1.94 3.28 3.88 11.46 

17 0.05 1.71 2.14 3.55 4.27 16.27 

19 0.06 1.68 2.08 3.50 4.16 10.68 

20 0.10 1.61 1.96 3.34 3.93 10.80 

21 0.04 1.66 2.05 3.45 4.10 8.34 

22 0.07 1.56 1.97 3.25 3.95 14.99 

23 0.17 1.60 1.98 3.33 3.97 9.80 

 24 0.06 1.58 1.98 3.28 3.97 9.13 

26 0.02 1.39 1.73 2.89 3.46 8.14 

27 0.06 1.43 1.77 2.97 3.55 9.12 

28 0.27 1.40 1.73 2.91 3.45 11.48 

29 0.11 1.63 2.01 3.39 4.02 20.12 

30 0.07 1.57 1.91 3.28 3.83 10.57 

32 0.04 1.75 2.22 3.64 4.45 19.33 

34 0.17 1.36 1.68 2.82 3.36 8.19 

36 0.36 1.44 1.81 2.99 3.62 15.13 

Mean 0.09 1.58 1.96 3.28 3.92 14.70 

SE 0.02 0.03 0.03 0.06 0.07 1.55 

SD 0.08 0.13 0.17 0.28 0.35 7.76 
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Table 22. Mean horizontal accuracies of each of the 25 standardised GPS receivers 

sampled at 5 s intervals in hedgerow treatment 

 

GPS 

receiver 

Minimum 

(0%) 

CEP 

(50%) 

1 Sigma 

(68%) 

R95 

(95%) 

2 Sigma 

(98%) 

Maximum 

(100%) 

2 0.06 1.83 2.28 3.82 4.56 10.07 

3 0.07 1.52 1.89 3.17 3.78 11.68 

4 0.03 1.57 1.93 3.26 3.86 8.47 

5 0.12 1.94 2.43 4.03 4.86 35.09 

6 0.04 1.40 1.73 2.91 3.47 17.39 

8 0.08 1.90 2.38 3.95 4.75 10.94 

10 0.13 1.54 1.91 3.20 3.82 14.38 

11 0.03 1.34 1.63 2.80 3.25 9.65 

12 0.11 1.48 1.87 3.08 3.75 16.01 

13 0.15 2.32 2.97 4.82 5.94 55.11 

16 0.10 1.70 2.09 3.54 4.18 17.40 

17 0.05 1.71 2.12 3.56 4.23 8.82 

19 0.06 2.01 2.47 4.19 4.94 10.50 

20 0.10 1.91 2.39 3.97 4.78 13.67 

21 0.04 1.78 2.20 3.69 4.40 9.46 

22 0.11 1.72 2.13 3.59 4.26 12.42 

23 0.17 1.58 1.92 3.29 3.85 11.24 

24 0.13 1.92 2.31 3.99 4.62 11.62 

26 0.02 1.31 1.63 2.73 3.27 7.41 

27 0.06 1.71 2.07 3.56 4.13 10.21 

28 0.07 1.40 1.73 2.91 3.47 13.57 

29 0.11 2.54 3.33 5.29 6.66 27.66 

30 0.07 1.75 2.17 3.64 4.33 17.13 

32 0.04 1.86 2.40 3.88 4.81 29.33 

34 0.17 1.45 1.80 3.01 3.61 9.01 

Mean 0.08 1.73 2.15 3.59 4.30 15.93 

SE 0.01 0.06 0.08 0.12 0.16 2.14 

SD 0.04 0.29 0.40 0.61 0.79 10.68 


