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Abstract: Sulfation roasting, a common activation technique, is a potential method for cleaner
production of nickel from complex low-grade ores. In this study, nickel oxide–sulfide mixed ore
concentrate was roasted with the addition of ammonium sulfate under a static air atmosphere,
and the roasted products were leached by water, in order to evaluate the extraction of metals.
The ammonium sulfate activation roasting was investigated thoroughly and systematically by
thermogravimetry–di�erential scanning calorimetry, X-ray di�raction, and scanning electron
microscopy. Particularly, the interface sulfation behavior and path were studied by the density
functional theory (DFT) method. The results showed that a large amount of nonferrous metal sulfate
(70% Ni, 89% Co, and 90% Cu) was generated, while iron was almost entirely transformed into
iron oxide under appropriate roasting conditions of adding ammonium sulfate at a mass ratio of
200%, heating to 650 �C at 10 �C/min, and holding for 120 min. It was found that activation of
ammonium sulfate can take two di�erent paths: one in which ammonium sulfate directly reacts with
raw ores below 500 �C and the other in which the SO2 decomposed from sulfates (ammonium sulfate,
intermediate ammonium ferric sulfate, and ferric sulfate) reacts with the intermediate metal sulfides
(NiS and Cu2S). The interface sulfation mechanism of NiS and Cu2S was investigated deeply by DFT
method, which showed that there are two paths of sulfation for NiS or Cu2S, and both of them are
thermodynamically favored. Thus, a thorough and systematic investigation of ammonium sulfate
activation roasting of nickel oxide–sulfide mixed ore is provided; this might be a potential basis
for future industrial applications of ammonium sulfate activation roasting techniques in complex
mineral metallurgy.

Keywords: sulfation; roasting; nickel ore; ammonium sulfate; DFT; leaching

1. Introduction

Nickel is a significant strategic metal, and sulfide and oxide ores are the main sources of nickel
production around the world. Nickel sulfide minerals have comprised more than half of the resources
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for nickel metallurgy for decades. With the gradual consumption of high-grade nickel sulfide mineral
resources, oxide ore (laterite) and low-grade nickel oxide–sulfide mixed ore are becoming more and
more important in nickel metallurgy [1]. Highly e�cient separation of nickel and iron is essential
and di�cult for the extractive metallurgy of either nickel laterite or nickel-oxide-sulfide mixed ore
(NOSMO) [2]. The conventional matte smelting technique, which is famous for its high e�ciency
in sulfide ore metallurgy, can produce di�culties when processing oxide-based ores [3]. NOSMO is
becoming a vitally important mineral resource for nickel production in China [4]. The specific features
of nickel ore predetermine the necessity to develop novel pyro- or hydro-metallurgical techniques
as alternatives.

To date, researchers have made e�orts to develop new metallurgical processes to treat
laterite or oxide–sulfide mixed ore; these mainly include selective reduction [5–12] and selective
leaching [1,2,13–19]. The selective reduction technique is more suitable for the treatment of nickel
laterite, while selective leaching is a more appropriate process for NOSMO. The fundamental concept
of selective leaching is to transform nickel oxides or nickel sulfides into water- or acid-soluble phases,
while iron and other impurities remain in solid slag [20,21]. In order to obtain higher extraction rates of
valuable nonferrous metals, di�erent kinds of chemical additives have been used for activated roasting
pretreatment before the selective leaching process [22–24]. Compared to strong corrosive additive media
(such as H2SO4, Cl2, and SO2), salt solid additives (sulfate and chloride) are more environmentally
friendly, which might result in potentially cleaner nickel production by using the roasting–leaching
technique [21,25,26]. Because the sulfation roasting technique has a unique advantage in the process of
nonferrous metal mineral, it has been studied by many researches [27–30]. Several kinds of salt solid
additives have been reported as an e�ective sulfating agent during the roasting of polymetallic sulfide
ore, such as sulfide [31], sodium sulfate [32], ferric sulfate [33], and ammonium sulfate [34].

As a potentially more economic and green metallurgical process, ammonium sulfate activation
roasting has shown good applicability and has been widely investigated recently [19,20,26,30,35–38].
In particular, Mu et al. developed a low-temperature roasting-water leaching technique to treat
complex low-grade nickel ore and achieved high extraction rates of nonferrous metals from raw
minerals [19,20,39]. It was found that the gas products generated from ammonium sulfate thermal
decomposition include NH3, SO2, N2, and H2O [40,41]. Therefore, the roasting reaction mechanism
might be quite complex due to the variety of reactants. However, most researchers agree that the direct
reactions between ammonium sulfate and minerals (metal oxides or sulfides) are mainly responsible
for the e�ective sulfation of metals during the roasting process [2,19,42]. Clearly, there may be some
truth to this, but it may be not the whole story of ammonium sulfate during the roasting process.
Previous studies showed that the sulfation of nickel remained at a relatively low level after roasting
with ammonium sulfate additive alone, but if other chemical media (sodium sulfate, sulfuric acid, etc.)
were added, the sulfation yield of nickel reached 90% or more [19,20,39]. Additionally, similar studies
have shown that incomplete sulfation of nickel is still exhibited during the roasting process, even after
increasing the dosage of ammonium sulfate [2]. Therefore, there remain some ambiguities regarding
the reaction mechanism of ammonium sulfate activation roasting of nickel ore, and there is a bottleneck
to higher sulfation of nickel. It is necessary to clarify the situation and gain insight into the nature of
ammonium sulfate’s action in the sulfation of nickel ores.

Recently, density functional theory (DFT) calculations were applied to explore the oxidation of
sulfide minerals, which is important for mineral processing and valuable metal extraction [43,44].
In our previous work, DFT calculations were performed successfully to investigate the oxidation
mechanisms of chalcopyrite (CuFeS2) and pentlandite (Fe4.5Ni4.5S8) [45,46]. The computational results
were in good agreement with our experimental observations [47]. Because the sulfation roasting of
sulfides is a controllable oxidation process, DFT might be a suitable and powerful technique to study
the behavior and mechanism of ammonium sulfate additives during the roasting process.

As the content of main valuable mineral (pentlandite, chalcopyrite, etc.) in NOSMO is too low to
be detected by XRD and other characterizations, a floatation concentrate of NOSMO was used as the
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raw materials in this study. The ammonium sulfate activation roasting of NOSMO concentrate was
performed on a thermogravimetry–di�erential scanning calorimeter (TG–DSC) in an air atmosphere.
The sulfation roasting-water leaching process is discussed with the evaluation of several parameters,
including the roasting temperature, dosage of ammonium sulfate, heating rate, and holding time.
The transformation behaviors of the microstructure and crystal phase were characterized by X-ray
di�raction (XRD) and scanning electron microscopy (SEM), respectively. Furthermore, we used DFT to
explain the sulfation mechanism for NiS and Cu2S. Considering the atmosphere involved during the
experiment, O2 and SO2 adsorption were both considered to elucidate the detailed reaction process.

2. Materials and Methods

2.1. Materials

The NOSMO concentrate sample used in this study originated from Jinchuan Group Co.,
Ltd. (Jinchang, Gansu, China). The concentrate sample was dried at 100 �C for 12 h and then
passed through 200 mesh prior to experimentation. Semiquantitative estimation of all elements
in this powder sample was investigated by X-ray fluorescence technique (XRF), and accurate
quantitative analysis of elements, except O and S, was measured by inductively coupled plasma
mass spectrometry (ICP-AES). The results of the chemical analysis of this powder sample are shown
in Table 1. The nickel, cobalt, copper, and iron contents were 8.93%, 0.24%, 6.51%, and 28.26%,
respectively. The main minerals, which were identified from the X-ray di�raction (XRD) pattern
(Figure 1), were pentlandite [(FeNi)9S8, PDF#73-0515], chalcopyrite (CuFeS2, PDF#83-0983), magnetite
(Fe3O4, PDF#72-2303), pyrrhotite 4M (Fe7S8, PDF#29-0723), pyrite (FeS2, PDF#71-1680), quartz (SiO2,
PDF#79-1912), willemseite [(Ni,Mg)3(Si2O5)2(OH)2, PDF#22-0711], and nepouite [(Ni,Mg)3Si2O5(OH)4,
PDF#25-0524]. Ammonium sulfate (analytical grade) was purchased from Sinopharm Group Co. Ltd.,
Shanghai, China, and ground into particles that were passing through 200 mesh before use.

Table 1. Chemical composition of the NOSMO concentrate sample (wt.%).

Fe O S Ni Mg Cu Si Ca Al Co

28.26 22.43 19.61 8.93 6.66 6.51 6.45 0.52 0.39 0.24
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Figure 1. XRD pattern of the NOSMO concentrate sample.

2.2. Experimental Procedure

A quantity of 5 g of the NOSMO concentrate sample was weighed and finely powdered in an
agate mortar, and the fine powder of the NOSMO sample mixed well with a desired amount of ground
ammonium sulfate (100–200 mesh) in each experiment by using an agate mortar. Then the mixture was
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added to a silica crucible. The sample was introduced into the cold furnace and then heated up to target
temperature with a certain rate. Sulfation roasting experiments were performed by using a mu�e
furnace. The roasted products were cooled inside the furnace to room temperature and then leached
with hot deionized water (80 �C) with a liquid-to-solid ratio of 4:1 mL/g for 30 min. The leaching
slurry was then filtered with a Buchner funnel. The e�ects of roasting temperature, ammonium sulfate
dosage, heating rate, and holding time were studied via the flowsheet shown in Figure 2.
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2.3. Characterization Methods

Thermogravimetry–di�erential scanning calorimetry (TG–DSC) analyses (NETZSCH STA 44 F3
Jupiter, Alden, German) were performed on the NOSMO concentrate sample, ammonium sulfate,
and their mixture (mass ratio of 1:2) from 100 to 1000 �C, at a heating rate of 10 �C/min under an air
atmosphere (a flow rate of 40 mL/min). A quantity of 20 mg of fine-powder sample was weighed
for each TG–DSC test. The ion concentrations of Fe, Co, Ni, and Cu in the leachate were analyzed,
using a inductively coupled plasma–atomic emission spectrometer (ICP-AES) (7300 DV, Perkin Elmer,
Waltham, MA, USA). The microstructure of the calcine was observed by using a tungsten filament
scanning electron microscope (TF-SEM) (SU-1500, HITACHI, Tokyo, Japan). The XRD patterns were
measured on an X-ray di�ractometer (D8 Advance, Bruker, Billerica, MA, USA), using Cu K� radiation
with a 2� range of 5�–90�, a step size of 0.02�, and a step time of 1 s.

2.4. Computational Details

DFT calculations were performed as described previously [46,47]. The space group of NiS
(millerite) is R3m, and its optimized cell parameters of a = b = 9.564 Å and c = 3.126 Å are consistent
with the experimental data (a = b = 9.607 Å, c = 3.143 Å) [48]. The p (1 � 2) supercell of the NiS (100)
slab containing 24 atoms and including a vacuum layer of 10 Å was employed, where the bottom three
of the six atomic layers were fixed. Cu2S has an orthorhombic cell with space group Abm2 [49]. The p
(1 � 2) supercell of the (001) surface for Cu2S contains six layers with the bottom three fixed.
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3. Results and Discussion

3.1. Thermal Analysis of the Roasting Process

The typical thermal analysis curves for NOSMO concentrate mixed with ammonium sulfate,
as well as the blank contrast samples (ammonium sulfate and NOSMO concentrate, respectively),
are shown in Figure 3. There was no marked change up to 285 �C in the mixture of ammonium sulfate
and NOSMO concentrate during the roasting process (Figure 3a). Two well-defined endothermic
peaks at 325 and 365 �C, respectively, were observed, and the simultaneous losses in mass were also
marked as 25% (named Step 1) and 6% (named Step 2), respectively. This phenomenon is largely
attributable to the thermal decomposition of ammonium sulfate, as shown in Figure 3b. However,
with the increase in temperature, a small exothermic peak was first observed at 425 �C. This was
accompanied by a corresponding increase of mass (7%) in the TG curve. This step (named Step 3) was
mainly the combination of the early oxidation of NOSMO concentrate and the further decomposition
of ammonium sulfate. The further sulfation reactions (named Step 4) resulted in a mass gain of 2%
and exothermal peaks (460 and 530 �C) in the temperature range 450–600 �C. This simultaneous stage
also occurred for the nickel concentrate sample shown in Figure 3c, which confirms the formation
of metal sulfates. Above 600 �C (named Step 5), a drastic mass loss, as well as endothermic peaks,
was observed, as shown in Figure 3a,c. This might be attributed to the decomposition of metal sulfates.
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3.2. E�ect of Roasting Temperature

The e�ect of the sulfation roasting temperature on the recovery of metal species by water leaching
was first investigated. For each test, a mixture of 5 g of NOSMO concentrate sample and 10 g of
ammonium sulfate was heated to di�erent temperatures at 20 �C/min and maintained for 2 h in
static air. The water-leaching results of the roasted products are presented in Figure 4. As can be seen,
the leaching yields of nonferrous metals (Cu, Ni, and Co) increased substantially with a rise in the
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roasting temperature, peaked at around 650 �C, and then decreased sharply when the temperature
continued to rise. This is because a higher temperature may facilitate sulfation reactions between
nonferrous metal sulfides and ammonium sulfate in the range 300–650 �C, under an air atmosphere.
The decomposition of these sulfates (CuSO4, NiSO4, and CoSO4) contributes mainly to the descent of
the nonferrous metal extraction. Similarly, the iron leaching recovery slightly increased at first and
then decreased with the rising temperature. When the temperature reached 600 �C, the extraction of
Fe gradually approached zero. As revealed in Figure 4, there was an optimum roasting temperature
in the range 600–650 �C, at which we can achieve considerable extraction of nonferrous metals (~9%
Cu, ~79% Co, and 59% Ni) and complete iron separation (~0.1% Fe); thus, this process may be used to
separate and extract nonferrous metals from NOSMO.
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3.3. E�ect of the Addition of Ammonium Sulfate

As an essential factor, the dosage of ammonium sulfate was investigated for its e�ect on the
sulfation of valuable metals. A mixture of 5 g of NOSMO concentrate sample and a selected amount
of ammonium sulfate was heated to 650 �C at 20 �C/min and held for 2 h in static air. The leaching
e�ciency is plotted against the weight percentage of ammonium sulfate to NOSMO concentrate in
Figure 5. It can be seen that the dosage of ammonium sulfate had a significant e�ect on nonferrous
metals. The extraction of Ni was substantially promoted from 30% to 60%, with increasing ammonium
sulfate addition. The extraction of Cu and Co were also improved to a certain degree. However,
because iron sulfates cannot stay stable at around 650 �C, the dosage of ammonium sulfate had little or
no influence over the leaching e�ciency of iron. Therefore, the optimum dosage of ammonium sulfate
would be double the mass of NOSMO concentrate, and this dosage was consequently chosen for the
subsequent experiments.
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3.4. E�ect of Heating Rate

Roasting experiments were conducted under di�erent heating rates, in order to understand
the e�ect of the heating process on the sulfation of the nonferrous metals. In these experiments, a
mixture of 5 g NOSMO concentrate sample and 10 g ammonium sulfate was heated to 650 �C and
held for 2 h under an air atmosphere. The hot-water extraction of valuable metals (Fe, Co, Ni, and Cu)
is shown in Figure 6. The heating rate significantly influenced the leaching yields of nonferrous
metals. As demonstrated in Figure 6, the recovery of nonferrous metals showed slight increases
with the increasing heating rate in the range from 1 to 10 �C/min. However, the leaching yields
started to decline sharply when the heating rate reached 10 �C/min. It is obvious that an overly rapid
heating rate may inhibit the sulfation of nonferrous metals and result in low leaching e�ciency of
nonferrous metals. Indeed, this is due to incomplete sulfation reactions, which are attributed to the
rapid decomposition of ammonium sulfate. Our previous work also reported that the heating rate
significantly influenced the sulfation of nickel sulfides [21]. Additionally, with the increasing heating
rate, the amount of appreciable dissolution of iron decreased gradually from 4% to almost zero. As a
result, the optimum sulfation roasting heating rate was 10 �C/min in this experiment, which was
adopted for further investigations.
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3.5. E�ect of Holding Time

To study the e�ect of holding time on the sulfation of NOSMO concentrate, mixtures of 5 g NOSMO
samples and 10 g of ammonium sulfate were heated to 650 �C at 10 �C/min and held for 30 to 180 min.
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The results of the hot-water extraction of valuable metals (Fe, Co, Ni, and Cu) are plotted in Figure 7.
With the increasing holding time, the leaching yields of Ni, Co, and Cu gradually increased and then
remained at a certain level at 120 min. More specifically, the extraction of Ni, Co, and Cu reached 70%,
89%, and 90%, respectively, while the extraction of Fe was about 2%. Thus, under appropriate roasting
conditions (added ammonium sulfate with a mass ratio of 200%, heated to 650 �C at 10 �C/min and
held for 120 min), a large amount of nonferrous metal sulfate was formed, while the iron was almost
completely turned into iron oxide. Thus, excellent separation of the nonferrous metals and iron was
achieved by the water leaching process.
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3.6. The Transformation Behaviors of the Crystal Phase and Microstructure of Roasting Products

Recently, studies of the sulfation roasting of nickel sulfides in air revealed strong
additive-dependent behavior [19,21,39]. In order to gain insight into the sulfation roasting process,
the microscopic morphology and crystal structure of the roasting products were investigated thoroughly
and systematically by XRD (Figure 8) and SEM (Figure 9), respectively, which was conducive to
analysis of the behavior of ammonium sulfate and to deducing the reaction mechanism of ammonium
sulfate roasting.

As shown in Figure 8a, the product roasted at 450 �C mainly consisted of NH4Fe(SO4)2, Fe2(SO4)3,
CuSO4, NiSO4, MgSO4, CuFeS2, Cu2S, NiS, Ni3S4, (Ni,Mg)3(Si2O5)2(OH)2, and SiO2. First, ammonium
sulfate was gradually decomposed into a gas mixture (SO2, NH3, N2, SO2, and H2O). The thermal
decomposition stages can be represented by Equations (1)–(3) [41]:

(NH4)2SO4 = NH4HSO4 + NH3 (1)

2NH4HSO4 = (NH4)2S2O7 + H2O (2)

3(NH4)2S2O7 = 2NH3 + 2N2 + 6SO2 + 9H2O (3)

Meanwhile, ammonium sulfate reacted with metal sulfides in the presence of O2.
The corresponding chemical reactions can be summarized as follows [20]:

4Fe7S8 + 54(NH4)2SO4 + 69O2 = 28(NH4)3Fe(SO4)3 + 24NH3 + 14H2O + 2SO2 (4)

4CuFeS2 + 22(NH4)2SO4 + 17O2 = 4(NH4)3Fe(SO4)3 + 4CuSO4 + 4NH3 + 2H2O (5)

8(Ni,Fe)9S8 + 112(NH4)2SO4 + 93O2 = 36NiSO4 + 36(NH4)3Fe(SO4)3 + 58NH3 + 29H2O (6)

2FeS2 + 3(NH4)2SO4 + 7O2 = 2(NH4)3Fe(SO4)3 + 2SO2 (7)
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As shown in Equations (4) and (7), ammonium sulfate can react with iron sulfides to produce SO2

gas, and the intermediate ammonium ferric sulfate ((NH4)3Fe(SO4)3) can be decomposed further to
generate SO3 gas by Equation (8) [40]:

2(NH4)3Fe(SO4)3 = Fe2(SO4)3 + 4NH3 + 2SO3 + 3H2O (8)
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Additionally, polymetallic sulfides can be decomposed into monometallic sulfides, for instance,
Cu2S, NiS, and Ni3S4. This has been systematically studied and proved by previous work [47], and the
reaction equations were deduced and shown as follows:

2CuFeS2 + 6O2 = Cu2S + Fe2(SO4)3 (9)

8(Ni,Fe)9S8 + 51O2 + 38SO3 = 12Ni3S4 + 18Fe2(SO4)3 (10)

Ni3S4 + O2 = 3NiS + SO2 (11)

Particularly, the (Ni,Mg)3Si2O5(OH)4 disappeared at 450 �C, while (Ni,Mg)3(Si2O5)2(OH)2

remained. It is suggested that (Ni,Mg)3Si2O5(OH)4 may have reacted with (NH4)3Fe(SO4)3,
as illustrated by Equation (12):

2(Ni,Mg)3Si2O5(OH)4 + 6(NH4)2SO4 = 3NiSO4 + 3MgSO4 + 4SiO2 + 12NH3 + 10H2O (12)

Based on Equations (1)–(8), we conclude that the direct reaction between ammonium sulfate
and metal sulfides can result in the formation of intermediate ammonium ferric sulfate and SO2

gas. Because the decomposition temperature of (NH4)3Fe(SO4)3 might be higher than that of pure
ammonium sulfate, there may be a higher concentration of SO2/SO3 gas on further sulfation interface.
For that reason, the sulfation of nickel and copper can be improved by ammonium sulfate activation
roasting. In addition, the oxidation of metal sulfides could also occur in this process, and the reaction
paths were studied and presented in our previous work [39].

As the temperature increased to 550 �C, the roasting product mainly consisted of Fe2(SO4)3,
CuSO4, NiSO4, MgSO4, Cu2S, NiS, Fe3O4, Fe2O3, (Ni,Mg)3(Si2O5)2(OH)2, and SiO2 (Figure 8b).
The decomposition of (NH4)3Fe(SO4)3 and Fe2(SO4)3 during this process may result in increasing
Fe2O3 and SO2, and, thus, higher pressure of SO2 on the reaction interface could accelerate the sulfation
of nickel and copper sulfides. This shows good agreement with the water leaching results in Figure 4.
When the temperature increased to 650 �C (Figure 8c), the NiS was turned into NiSO4 and NiFe2O4 (or
NiO), while Cu2S was almost entirely transformed into CuSO4. This means that the sulfation of nickel
sulfide is more di�cult than that of copper sulfide. Meanwhile, the (Ni,Mg)3Si2O5(OH)4 disappeared
at 650 �C (Figure 8c). This finding can be explained by the possibility that Fe2(SO4)3 can react with
(Ni,Mg)3Si2O5(OH)4, as illustrated by Equation (13):

2(Ni,Mg)3Si2O5(OH)4 + 2Fe2(SO4)3 = 3NiSO4 + 3MgSO4 + 2Fe2O3 + 4SiO2 + 4H2O (13)

However, the peaks of NiSO4 and MgSO4 were not detected in Figure 8d when the roasting
temperature further increased to 750 �C. This may be attributed to the decomposition of sulfates at
a higher temperature. Combined with Figures 4 and 8d, it can be concluded that the sulfation of
nickel and copper sulfide can be suppressed by excessive temperature. For that reason, the sulfation
temperature should be kept at 650 �C or below.

As demonstrated in Figure 9, the SEM images of the roasted products show great diversity
among di�erent temperatures, ranging from 300 to 700 �C. The surface of the roasted product was
characterized by floccules at 300 �C, which is attributed to the decomposition of the ammonium sulfate
additive. When the roasting temperature increased to 500 �C, the flocculent-shaped surface appearance
gradually faded away. This result shows excellent agreement with the TG–DSC test in Figure 3. As the
roasting temperature rose to the range between 500 and 650 �C, the roasted products gradually became
loose and porous. This is owing to inner di�usion of O2 and outer release of SO2/SO3 during inner
oxidation of the sulfide ore particles. When the roasting temperature was above 700 �C, the surface
of the roasted products presented a characterization of a molten sintering state (Figure 9). It may be
that large amounts of eutectic sulfates (CuSO4 and NiSO4) formed at a higher roasting temperature
(�700 �C).
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3.7. The Sulfation Mechanism for the NiS and Cu2S Surfaces by DFT Studies

As mentioned, ammonium sulfate can promote the sulfation of nickel and copper by direct
reaction and SO2 gas decomposition. The indirect reaction plays a significant role in the sulfation
of NiS and Cu2S, both of which are the intermediate products during the NOSMO roasting process.
Thus, in an e�ort to increase our understanding of the sulfation route and behavior, DFT was used to
calculate the interaction between O2/SO2 and metal sulfide intermediates.

As shown in Figure 10, the (100) surface of NiS was adopted to investigate the sulfation mechanism.
The (100) slab of NiS contains five layers, with the bottom two layers fixed and the top three layers
relaxed. After the optimization of the clean surface, the oxygen dissociative adsorption on the NiS
(100) surface was studied, as shown in Figure 10c. The two oxygen atoms bind with two nickel atoms,
leading to an adsorption energy of �1.81 eV. The adsorbed oxygen atoms provide the sites for SO2

interaction. The interaction between SO2 and the NiS (100) surface via two paths was studied; these are
clearly shown in Figure 10c. In Path 1, SO2 binds with only one adsorbed oxygen atom with an
S–O bond length of 1.59 Å, resulting in a thermodynamically more stable structure with adsorption
energy of �0.75 eV. Based on the formed SO3

2�, the desorption of SO3 was further explored. The SO3

desorption leads the relative energy to be more positive by 1.26 eV, implying that this process is
exothermic. In addition, the adsorption energy of SO3 on the adsorbed oxygen atom of the NiS (100)
surface was predicted to be �3.23 eV, finally leading to the formation of SO2�

4 . In Path 2, SO2 directly
interacts with two oxygen atoms, leading to the formation of SO2�

4 directly.Metals 2019, 9, x FOR PEER REVIEW 11 of 15 
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and the bottom image represents the side view of the NiS (100) surface). (c) Sulfation mechanism for
the NiS (100) surface.

The sulfation mechanism of Cu2S was also investigated through O2 and SO2 adsorption on the
(001) surface of Cu2S. Figure 11b,c shows the top view and the side view of the (001) surface of Cu2S,
respectively, showing that the copper atoms of the first layer are all equivalent and the bottom three
layers are fixed. After the relaxation, oxygen dissociation on the (001) surface of Cu2S leads to an
adsorption energy of �1.09 eV with a Cu–O bond length of 1.81 Å. Similar to the sulfation process of
NiS, the sulfation mechanism of Cu2S was also elucidated in two paths. In Path 1, the SO2 interacts
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with the Cu2S surface through the adsorbed oxygen atom, leading to an adsorption energy drop of
�0.77 eV, with an S–O bond length of 1.58 Å. When the adsorbed species of SO2 and the adsorbed
oxygen atom desorb simultaneously from the Cu2S (001) surface, the adsorption energy becomes more
positive, indicating that this process is also exothermic. Eventually, the SO3 adsorption leads to the
formation of the SO2�

4 species on the Cu2S (001) surface. In Path 2, when the SO2 directly interacts
with the two adsorbed oxygen atoms, SO2�

4 can also be formed successfully.Metals 2019, 9, x FOR PEER REVIEW 12 of 15 
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Figure 11. (a) Bulk structure of Cu2S. (b) Top view and (c) side view of the (001) surface of Cu2S.
(d) Sulfation mechanism for the Cu2S (001) surface.

4. Conclusions

Ammonium sulfate activation roasting-water leaching was studied as a suitable and green
technique to extract nonferrous metals from NOSMO concentrate. The TG–DSC tests indicated that
the decomposition of ammonium sulfate and sulfation of NOSMO concentrate was consistent in
terms of the temperature range. The e�ects of several parameters, including the roasting temperature,
dosage of ammonium sulfate additive, heating rate, and holding time, were investigated by the control
variable method. The results demonstrated that 70% Ni, 89% Co, 90% Cu, and 2% Fe were recovered
under appropriate conditions (adding ammonium sulfate at a mass ratio of 200%, heating to 650 �C
at 10 �C/min, and holding for 120 min). It was found that ammonium sulfate cannot only directly
react with metal sulfides at a lower roasting temperature but can also promote the sulfation of metal
sulfides by increasing the interface partial pressure of SO2 at a higher temperature. This increase in
SO2 can be attributed to the decomposition of ammonium sulfate and intermediate ammonium ferric
sulfate. In addition, DFT calculations were performed, focusing on the respective detailed sulfation
mechanisms of NiS and Cu2S. Based on our calculation results, sulfation of both NiS and Cu2S can be
achieved by the interaction between O2 and SO2. When the SO2 directly interacts with two oxygen
atoms, sulfation can be achieved directly. Besides this, sulfation can also be promoted by the formation
of SO3 species. It is concluded that both paths can promote the sulfation of NiS and Cu2S, which are
both thermodynamically favored.
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