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Abstract. A new fuzzy-rough nearest neighbour (FRNN) classification
algorithm is presented in this paper, as an alternative to Sarkar’s fuzzy-
rough ownership function (FRNN-O) approach. By contrast to the latter,
our method uses the nearest neighbours to construct lower and upper
approximations of decision classes, and classifies test instances based on
their membership to these approximations. In the experimental analysis,
we evaluate our approach with both classical fuzzy-rough approximations
(based on an implicator and a t-norm), as well as with the recently intro-
duced vaguely quantified rough sets. Preliminary results are very good,
and in general FRNN outperforms FRNN-O, as well as the traditional
fuzzy nearest neighbour (FNN) algorithm.

Keywords: Fuzzy-rough sets, nearest neighbour algorithms, classifica-
tion.

1 Introduction

Lately there has been great interest in developing methodologies which are ca-
pable of dealing with imprecision and uncertainty, and the resounding amount
of research currently being done in the areas related to fuzzy [30] and rough sets
[18] is representative of this. The success of rough set theory is due in part to
three aspects of the theory. Firstly, only the facts hidden in data are analysed.
Secondly, no additional information about the data is required for data analysis
such as thresholds or expert knowledge on a particular domain. Thirdly, it finds
a minimal knowledge representation for data. As rough set theory handles only
one type of imperfection found in data, it is complementary to other concepts
for the purpose, such as fuzzy set theory. The two fields may be considered anal-
ogous in the sense that both can tolerate inconsistency and uncertainty - the
difference being the type of uncertainty and their approach to it; fuzzy sets are
concerned with vagueness, rough sets are concerned with indiscernibility.

Many relationships have been established and more so, most of the recent
studies have concluded at this complementary nature of the two methodologies,
especially in the context of granular computing. Therefore, it is desirable to
extend and hybridize the underlying concepts to deal with additional aspects
of data imperfection. Such developments offer a high degree of flexibility and
provide robust solutions and advanced tools for data analysis.



The K-nearest neighbour (KNN) algorithm [9] is a well-known classification
technique that assigns a test object to the decision class most common among
its K nearest neighbours, i.e., the K training objects that are closest to the
test object. An extension of the KNN algorithm to fuzzy set theory (FNN)
was introduced in [17]. It allows partial membership of an object to different
classes, and also takes into account the relative importance (closeness) of each
neighbour w.r.t. the test instance. However, as Sarkar correctly argued in [22],
the FNN algorithm has problems dealing adequately with insufficient knowledge.
In particular, when every training pattern is far removed from the test object,
and hence there are no suitable neighbours, the algorithm is still forced to make
clear-cut predictions. This is because the predicted membership degrees to the
various decision classes always need to sum up to 1.

To address this problem, Sarkar [22] introduced a so-called fuzzy-rough own-
ership function that, when plugged into the conventional FNN algorithm, pro-
duces class confidence values that do not necessarily sum up to 1. However, this
method (called FRNN-O throughout this paper) does not refer to the main in-
gredients of rough set theory, i.e., lower and upper approximation. In this paper,
therefore, we present an alternative approach, which uses a test object’s near-
est neighbours to construct the lower and upper approximation of each decision
class, and then computes the membership of the test object to these approxi-
mations. The method is very flexible, as there are many options to define the
fuzzy-rough approximations, including the traditional implicator/t-norm based
model [21], as well as the vaguely quantified rough set (VQRS) model [6], which
is more robust in the presence of noisy data.

This paper is structured as follows. Section 2 provides necessary details for
fuzzy rough set theory, while Section 3 is concerned with the existing fuzzy
(-rough) NN approaches. Section 4 outlines our algorithm, while comparative
experimentation on a series of classification and prediction problems is provided
in Section 5. The paper is concluded in section 6.

2 Hybridization of Rough Sets and Fuzzy Sets

2.1 Rough Set Theory

Rough set theory (RST) [18] provides a tool by which knowledge may be ex-
tracted from a domain in a concise way; it is able to retain the information
content whilst reducing the amount of knowledge involved. Central to RST is
the concept of indiscernibility. Let (U,A) be an information system, where U
is a non-empty set of finite objects (the universe of discourse) and A is a non-
empty finite set of attributes such that a : U → Va for every a ∈ A. Va is the
set of values that attribute a may take. With any B ⊆ A there is an associated
equivalence relation RB :

RB = {(x, y) ∈ U2|∀a ∈ B, a(x) = a(y)} (1)

If (x, y) ∈ RB , then x and y are indiscernible by attributes from B. The equiv-
alence classes of the B-indiscernibility relation are denoted [x]B . Let A ⊆ U. A



can be approximated using the information contained within B by constructing
the B-lower and B-upper approximations of A:

RB↓A = {x ∈ U | [x]B ⊆ A} (2)
RB↑A = {x ∈ U | [x]B ∩A 6= ∅} (3)

The tuple 〈RB↓A,RB↑A〉 is called a rough set.
A decision system (X,A∪ {d}) is a special kind of information system, used

in the context of classification, in which d (d 6∈ A) is a designated attribute called
the decision attribute. Its equivalence classes [x]Rd

are called decision classes.
The set of decision classes is denoted C in this paper. Given B ⊆ A, the B-
positive region POSB contains those objects from X for which the values of B
allow to predict the decision class unequivocally:

POSB =
⋃
x∈X

RB↓[x]Rd
(4)

Indeed, if x ∈ POSB , it means that whenever an object has the same values
as x for the attributes in B, it will also belong to the same decision class as x.
The predictive ability w.r.t. d of the attributes in B is then measured by the
following value (degree of dependency of d on B):

γB =
|POSB |
|X|

(5)

(X,A ∪ {d}) is called consistent if γA = 1. A subset B of A is called a decision
reduct if it satisfies POSB = POSA, i.e., B preserves the decision making power
of A, and moreover it cannot be further reduced, i.e., there exists no proper
subset B′ of B such that POSB′ = POSA. If the latter constraint is lifted, i.e.,
B is not necessarily minimal, we call B a decision superreduct.

2.2 Fuzzy Set Theory

Fuzzy set theory [30] allows that objects belong to a set, or couples of objects
belong to a relation, to a given degree. Recall that a fuzzy set in X is an X →
[0, 1] mapping, while a fuzzy relation in X is a fuzzy set in X ×X. For all y in
X, the R-foreset of y is the fuzzy set Ry defined by

Ry(x) = R(x, y) (6)

for all x in X. If R is a reflexive and symmetric fuzzy relation, that is,

R(x, x) = 1 (7)
R(x, y) = R(y, x) (8)

hold for all x and y in X, then R is called a fuzzy tolerance relation. For a fuzzy
tolerance relation R, we call Ry the fuzzy tolerance class of y.



For fuzzy sets A and B in X, A ⊆ B ⇐⇒ (∀x ∈ X)(A(x) ≤ B(x)). If X is
finite, the cardinality of A is calculated by

|A| =
∑
x∈X

A(x). (9)

Fuzzy logic connectives play an important role in the development of fuzzy
rough set theory. We therefore recall some important definitions. A triangu-
lar norm (t-norm for short) T is any increasing, commutative and associative
[0, 1]2 → [0, 1] mapping satisfying T (1, x) = x, for all x in [0, 1]. In this paper, we
use TM and TL defined by TM (x, y) = min(x, y) and TL(x, y) = max(0, x+y−1)
( Lukasiewicz t-norm), for x, y in [0, 1]. On the other hand, an implicator is
any [0, 1]2 → [0, 1]-mapping I satisfying I(0, 0) = 1, I(1, x) = x, for all x in
[0, 1]. Moreover we require I to be decreasing in its first, and increasing in
its second component. The implicators used in this paper are IM and IL de-
fined by IM (x, y) = max(1 − x, y) (Kleene-Dienes implicator) and IL(x, y) =
min(1, 1− x+ y) ( Lukasiewicz implicator) for x, y in [0, 1].

2.3 Fuzzy-Rough Set Theory

The process described above can only operate effectively with datasets containing
discrete values. As most datasets contain real-valued attributes, it is necessary to
perform a discretization step beforehand. A more intuitive and flexible approach,
however, is to model the approximate equality between objects with continuous
attribute values by means of a fuzzy relation R in U, i.e., a U→ [0, 1] mapping
that assigns to each couple of objects their degree of similarity. In general, it is
assumed that R is at least a fuzzy tolerance relation, that is, R(x, x) = 1 and
R(x, y) = R(y, x) for x and y in U. Given y in U, its foreset Ry is defined by
Ry(x) = R(x, y) for every x in U.

Given a fuzzy tolerance relation R and a fuzzy set A in U, the lower and
upper approximation of A by R can be constructed in several ways. A general
definition [7, 21] is the following:

(R↓A)(x) = inf
y∈U
I(R(x, y), A(y)) (10)

(R↑A)(x) = sup
y∈U
T (R(x, y), A(y)) (11)

Here, I is an implicator and T a t-norm. When A is a crisp (classical) set and R
is an equivalence relation in U, the traditional lower and upper approximation
are recovered.

Just like their crisp counterparts, formulas (10) and (11) (henceforth called
the FRS approximations) are quite sensitive to noisy values. That is, a change
in a single object can result in drastic changes to the approximations (due to
the use of sup and inf, which generalize the existential and universal quantifier,
respectively). In the context of classification tasks, this behaviour may affect
accuracy adversely. Therefore, in [6], the concept of vaguely quantified rough sets



(VQRS) was introduced. It uses the linguistic quantifiers “most” and “some”,
as opposed to the traditionally used crisp quantifiers “all” and “at least one”, to
decide to what extent an object belongs to the lower and upper approximation.
Given a couple (Qu, Ql) of fuzzy quantifiers3 that model “most” and “some”,
the lower and upper approximation of A by R are defined by

(R↓QuA)(y) = Qu

(
|Ry ∩A|
|Ry|

)
= Qu


∑
x∈X

min(R(x, y), A(x))∑
x∈X

R(x, y)

 (12)

(R↑QlA)(y) = Ql

(
|Ry ∩A|
|Ry|

)
= Ql


∑
x∈X

min(R(x, y), A(x))∑
x∈X

R(x, y)

 (13)

where the fuzzy set intersection is defined by the min t-norm and the fuzzy set
cardinality by the sigma-count operation. As an important difference to (10)
and (11), the VQRS approximations do not extend the classical rough set ap-
proximations, in a sense that when A and R are crisp, the lower and upper
approximations may still be fuzzy.

2.4 Fuzzy-Rough Classification

Due to its recency, there have been very few attempts at developing fuzzy-rough
set theory for the purpose of classification. Previous work has focused on using
crisp rough set theory to generate fuzzy rulesets [14, 23] but mainly ignores the
direct use of fuzzy-rough concepts.

The induction of gradual decision rules, based on fuzzy-rough hybridization,
is given in [12]. For this approach, new definitions of fuzzy lower and upper
approximations are constructed that avoid the use of fuzzy logical connectives
altogether. Decision rules are induced from lower and upper approximations
defined for positive and negative relationships between credibility of premises and
conclusions. Only the ordinal properties of fuzzy membership degrees are used.
More recently, a fuzzy-rough approach to fuzzy rule induction was presented in
[27], where fuzzy reducts are employed to generate rules from data. This method
also employs a fuzzy-rough feature selection preprocessing step.

Also of interest is the use of fuzzy-rough concepts in building fuzzy decision
trees. Initial research is presented in [2] where a method for fuzzy decision tree
construction is given that employs the fuzzy-rough ownership function. This
is used to define both an index of fuzzy-roughness and a measure of fuzzy-
rough entropy as a node splitting criterion. Traditionally, fuzzy entropy (or its
extension) has been used for this purpose. In [16], a fuzzy decision tree algorithm
is proposed, based on fuzzy ID3, that incorporates the fuzzy-rough dependency
function as a splitting criterion. A fuzzy-rough rule induction method is proposed
in [13] for generating certain and possible rulesets from hierarchical data.
3 By a fuzzy quantifier, we mean an increasing [0, 1] → [0, 1] mapping such that
Q(0) = 0 and Q(1) = 1.



3 Fuzzy Nearest Neighbour Classification

The fuzzy K-nearest neighbour (FNN) algorithm [17] was introduced to classify
test objects based on their similarity to a given number K of neighbours (among
the training objects), and these neighbours’ membership degrees to (crisp or
fuzzy) class labels. For the purposes of FNN, the extent C ′(y) to which an
unclassified object y belongs to a class C is computed as:

C ′(y) =
∑
x∈N

R(x, y)C(x) (14)

where N is the set of object y’s K nearest neighbours, obtained by calculating
the fuzzy similarity between y and all training objects, and choosing the K
objects that have highest similarity degree. R(x, y) is the [0,1]-valued similarity
of x and y. In the traditional approach, this is defined in the following way:

R(x, y) =
||y − x||−2/(m−1)∑

j∈N
||y − j||−2/(m−1)

(15)

where || · || denotes the Euclidean norm, and m is a parameter that controls
the overall weighting of the similarity. Assuming crisp classes, Fig. 1 shows an
application of the FNN algorithm that classifies a test object y to the class
with the highest resulting membership. The idea behind this algorithm is that
the degree of closeness of neighbours should influence the impact that their
class membership has on deriving the class membership for the test object. The
complexity of this algorithm for the classification of one test pattern is O(|U|+
K · |C|).

FNN(U,C,y,K).
U, the training data; C, the set of decision classes;
y, the object to be classified; K, the number of nearest neighbours.

(1) N ← getNearestNeighbours(y,K);
(2) ∀C ∈ C
(3) C′(y) =

∑
x∈N

R(x, y)C(x)
(4) output arg max

C∈C
(C′(y))

Fig. 1. The fuzzy KNN algorithm

Initial attempts to combine the FNN algorithm with concepts from fuzzy
rough set theory were presented in [22, 26]. In these papers, a fuzzy-rough own-
ership function is constructed that attempts to handle both “fuzzy uncertainty”
(caused by overlapping classes) and “rough uncertainty” (caused by insufficient
knowledge, i.e., attributes, about the objects). The fuzzy-rough ownership func-
tion τC of class C was defined as, for an object y,



τC(y) =

∑
x∈U

R(x, y)C(x)

|U|
(16)

In this, the fuzzy relation R is determined by:

R(x, y) = exp

(
−
∑
a∈C

κa(a(y)− a(x))2/(m−1)

)
(17)

where m controls the weighting of the similarity (as in FNN) and κa is a param-
eter that decides the bandwidth of the membership, defined as

κa =
|U|

2
∑
x∈U
||a(y)− a(x)||2/(m−1)

(18)

τC(y) is interpreted as the confidence with which y can be classified to class C.
The corresponding crisp classification algorithm, called FRNN-O in this paper,
can be seen in Fig. 2. Initially, the parameter κa is calculated for each attribute
and all memberships of decision classes for test object y are set to 0. Next,
the weighted distance of y from all objects in the universe is computed and
used to update the class memberships of y via equation (16). Finally, when
all training objects have been considered, the algorithm outputs the class with
highest membership. The algorithm’s complexity is O(|C||U|+ |U| · (|C|+ |C|)).

By contrast to the FNN algorithm, the fuzzy-rough ownership function con-
siders all training objects rather than a limited set of neighbours, and hence
no decision is required as to the number of neighbours to consider. The rea-
soning behind this is that very distant training objects will not influence the
outcome (as opposed to the case of FNN). For comparison purposes, the K-
nearest neighbours version of this algorithm is obtained by replacing line (3)
with N ← getNearestNeighbours(y,K).

It should be noted that the algorithm does not use fuzzy lower or upper
approximations to determine class membership. A very preliminary attempt to
do so was described in [3]. However, the authors did not state how to use the
upper and lower approximations to derive classifications.

4 Fuzzy-Rough Nearest Neighbour (FRNN) Algorithm

Figure 3 outlines our proposed algorithm, combining fuzzy-rough approximations
with the ideas of the classical FNN approach. In what follows, FRNN-FRS and
FRNN-VQRS denote instances of the algorithm where traditional, and VQRS,
approximations are used, respectively. The rationale behind the algorithm is that
the lower and the upper approximation of a decision class, calculated by means
of the nearest neighbours of a test object y, provide good clues to predict the
membership of the test object to that class.

In particular, if (R↓C)(y) is high, it reflects that all (most) of y’s neighbours
belong to C, while a high value of (R↑C)(y) means that at least one (some)



FRNN-O(U,C,C,y).
U, the training data; C, the set of conditional features;
C, the set of decision classes; y, the object to be classified.

(1) ∀a ∈ C
(2) κa = |U|/2

∑
x∈U ||a(y)− a(x)||2/(m−1)

(3) N ← |U|
(4) ∀C ∈ C, τC(y) = 0
(5) ∀x ∈ N
(6) d =

∑
a∈C κa(a(y)− a(x))2

(7) ∀C ∈ C
(8) τC(y)+ = C(x)·exp(−d1/(m−1))

|N|
(9) output arg max

C∈C
τC(y)

Fig. 2. The fuzzy-rough ownership nearest neighbour algorithm

neighbour(s) belong(s) to that class, depending on whether the FRS or VQRS
approximations are used. A classification will always be determined for y due
to the initialisation of τ to zero in line (2). To perform crisp classification, the
algorithm outputs the decision class with the resulting best combined fuzzy
lower and upper approximation memberships, seen in line (4) of the algorithm.
This is only one way of utilising the information in the fuzzy lower and upper
approximations to determine class membership, other ways are possible but are
not investigated in this paper. The complexity of the algorithm is O(|C| · (2|U|)).

FRNN(U,C,y).
U, the training data; C, the set of decision classes;
y, the object to be classified.

(1) N ← getNearestNeighbors(y,K)
(2) τ ← 0, Class ← ∅
(3) ∀C ∈ C
(4) if (((R↓C)(y) + (R↑C)(y))/2 ≥ τ)
(5) Class ← C
(6) τ ← ((R↓C)(y) + (R↑C)(y))/2
(7) output Class

Fig. 3. The fuzzy-rough nearest neighbour algorithm - classification

Furthermore, the algorithm is dependent on the choice of the fuzzy toler-
ance relation R A general way of constructing R is as follows: given the set of
conditional attributes C, R is defined by

R(x, y) = min
a∈C

Ra(x, y) (19)



in which Ra(x, y) is the degree to which objects x and y are similar for attribute
a. Possible options include

R1
a(x, y) = exp

(
− (a(x)− a(y))2

2σa2

)
(20)

R2
a(x, y) = 1− |a(x)− a(y)|

|amax − amin|
(21)

where σa2 is the variance of attribute a, and amax and amin are the maximal and
minimal occurring value of that attribute.

When using FRNN-FRS, the use of K is not required in principle: as R(x, y)
gets smaller, x tends to have only have a minor influence on (R↓C)(y) and
(R↑C)(y). For FRNN-VQRS, this may generally not be true, because R(x, y)
appears in the numerator as well as the denominator of (12) and (13).

When dealing with real-valued decision features, the above algorithm can be
modified to that found in Fig. 4. This is a zero order Takagi-Sugeno controller,
with each neighbour acting as a rule. Here, the lower and upper approximations
are defined as:

(R↓Rdz)(x) = inf
y∈N
I(R(x, y), Rd(y, z)) (22)

(R↑Rdz)(x) = sup
y∈N
T (R(x, y), Rd(y, z)) (23)

where Rd is the fuzzy tolerance relation for the decision feature d. In this paper,
we use the same relation as that used for the conditional features. This need
not be the case in general; indeed, it is conceivable that there may be situations
where the use of a different similarity relation is sensible for the decision feature.

FRNN2(U,d,y).
U, the training data; d, the decision feature;
y, the object to be classified.

(1) N ← getNearestNeighbors(y,K)
(2) τ1 ← 0, τ2 ← 0
(3) ∀z ∈ N
(4) M ← ((R↓Rdz)(y) + (R↑Rdz)(y))/2
(5) τ1 ← τ1 +M ∗ d(y)
(6) τ2 ← τ2 +M
(7) output τ1/τ2

Fig. 4. The fuzzy-rough nearest neighbour algorithm - prediction

5 Experimentation

This section details the experimentation performed for the evaluation of the
proposed algorithms for both classification and prediction tasks.



5.1 Classification

To demonstrate the power of the proposed fuzzy-rough NN approach, two sets of
classification experiments were conducted. In the first set, the performance of the
fuzzy and fuzzy-rough NN approaches were compared. The second set of exper-
iments compared the proposed NN approaches (FRNN-FRS and FRNN-VQRS)
with a variety of leading classification algorithms. Both sets of experiments were
conducted over eight benchmark datasets from [4] and [22]. The details of the
datasets used can be found in table 1. All of them have a crisp decision attribute.

Table 1. Dataset details

Dataset Objects Attributes

Cleveland 297 14
Glass 214 10
Heart 270 14
Letter 3114 17
Olitos 120 26

Water 2 390 39
Water 3 390 39

Wine 178 14

Fuzzy NN approaches This section presents the initial experimental evalua-
tion of the classification methods FNN, FRNN-O, FRNN-FRS and FRNN-VQRS
for the task of pattern classification4.

For FNN and FRNN-O, m is set to 2. For the new approaches, the fuzzy
relation given in equation (21) was chosen. In the FRNN-FRS approach, we
used the min t-norm and the Kleene-Dienes implicator I defined by I(x, y) =
max(1−x, y). The FRNN-VQRS approach was implemented usingQl = Q(0.1,0.6)

and Qu = Q(0.2,1.0), according to the general formula

Q(α,β)(x) =


0, x ≤ α
2(x−α)2

(β−α)2 , α ≤ x ≤ α+β
2

1− 2(x−β)2

(β−α)2 ,
α+β

2 ≤ x ≤ β
1, β ≤ x

Initially, the impact of the number of neighbours K was investigated for the
nearest neighbour approaches. K was initialized to |U|, the number of objects in
the training dataset, and then decremented by 1/30th of |U| each time, resulting
in 30 experiments for each dataset. For each choice of parameter K, 2× 10-fold
cross-validation was performed. The results of this for two datasets can be seen
in Fig. 5 and Fig. 6.
4 These methods and many more have been integrated into the WEKA package [29]

and can be downloaded from: http://users.aber.ac.uk/rkj/book/programs.php



Fig. 5. Classification accuracy for the four methods and different values of K for the
Heart dataset

It can be seen that FRNN-FRS is indeed unaffected by the choice of K for
nominal-valued decision features. FRNN-O also appears to be relatively unaf-
fected by K. For the Letter dataset, FRNN-VQRS and FNN exhibit degrada-
tion in classification performance as the number of nearest neighbours increases
beyond 10. Therefore, for these methods the choice of K is an important con-
sideration, with a value of around 10 neighbours being a sensible choice.

Based on this, further experimentation was conducted on a range of datasets.
For this experimentation, each NN approach is run twice, the first time setting
K = 10 and the second time with K set to the full set of training objects. Again,
this is evaluated via 2×10-fold cross-validation.

The results of the experiments are shown in Table 2, where the average classi-
fication accuracy for the methods is recorded. For clarity, the method names have
been condensed in the table to: FRS (denoting FRNN-FRS), VQRS (denoting
FRNN-VQRS), FNN (the standard fuzzy nearest neighbours algorithm), and O
(denoting FRNN-O). A paired t-test was used to determine the statistical signif-
icance of the results at the 0.05 level when compared to FRNN-FRS. A ’v’ next
to a value indicates that the performance was statistically better than FRNN-
FRS, and a ’*’ indicates that the performance was worse statistically. This is
summarised by the final line in the table which shows the count of the number
of statistically better, equivalent and worse results for each method in compar-
ison to FRNN-FRS. For example (0/2/6) in the FNN column indicates that



Fig. 6. Classification accuracy for the four methods and different values of K for the
Letter dataset

this method performed better than FRNN-FRS in zero datasets, equivalently to
FRNN-FRS in two datasets, and worse than FRNN-FRS in six datasets.

For all datasets, either FRNN-FRS or FRNN-VQRS(10) yields the best re-
sults. Overall, FRNN-FRS produces the most consistent results. This is particu-
larly remarkable considering the inherent simplicity of the method. FRNN-VQRS
is best for heart and letter, which might be attributed to the comparative
presence of noise in those datasets.

It is also interesting to consider the influence of the number of nearest neigh-
bours. Both FRNN-FRS and FRNN-O remain relatively unaffected by changes
in K. This could be explained in that, for FRNN-FRS, an infimum and supre-
mum are used which can be thought of as a worst case and best case respectively.
When more neighbours are considered, R(x, y) values decrease as these neigh-
bours are less similar, hence I(R(x, y), C(x)) increases, and T (R(x, y), C(x))
decreases. In other words, the more distant a neighbour is, the more unlikely
it is to change the infimum and supremum value. For FRNN-O, again R(x, y)
decreases when more neighbours are added, and hence the value R(x, y)C(x)
that is added to the numerator is also small. Since each neighbour has the same
weight in the denominator, the ratios stay approximately the same when adding
new neighbours.

For FNN and FRNN-VQRS, increasingK can have a significant effect on clas-
sification accuracy. This is most clearly observed in the results for the olitos
data, where there is a clear downward trend. For FRNN-VQRS, the ratio |Ry ∩



Table 2. Nearest neighbour results

Dataset FRS(10) FRS VQRS(10) VQRS FNN(10) FNN O(10) O

Cleveland 53.21 53.21 59.41 53.89 50.19 53.89 47.50 47.50
Glass 73.13 73.13 69.36 38.06* 69.15 62.85* 71.22 71.22
Heart 76.30 76.30 82.04v 65.19* 66.11* 61.48* 66.48 66.30
Letter 95.76 95.76 96.69v 71.25* 94.25* 80.21* 95.45 95.26
Olitos 78.33 78.33 78.75 41.67* 63.75* 43.33* 65.83* 65.83*
Water 2 83.72 83.72 85.26 80.00 77.18* 80.00 79.62 79.62
Water 3 80.26 80.26 81.41 73.59* 74.49* 73.59* 73.08* 73.08*
Wine 98.02 98.02 97.75 63.79* 96.05 93.25* 95.78 95.78

Summary (v/ /*) (0/8/0) (2/6/0) (0/2/6) (0/3/5) (0/2/6) (0/6/2) (0/6/2)

C|/|Ry| has to be calculated. Each neighbour has a different weight in the de-
nominator, so the ratios can fluctuate considerably even when adding distant
neighbours.

Comparison with leading approaches In order to demonstrate the efficacy
of the proposed methods, further experimentation was conducted involving sev-
eral leading classifiers: IBk, JRip, PART, J48, SMO (a support vector-based
method) and NB (naive bayes). The same datasets as above were used and
2×10-fold cross validation was performed. For FRNN-FRS and FRNN-VQRS,
K was set to 10. The results can be seen in Table 3, with statistical comparisons
again between each method and FRNN-FRS.

IBk [1] is a simple (non-fuzzy) K-nearest neighbour classifier that uses Eu-
clidean distance to compute the closest neighbour (or neighbours if more than
one object has the closest distance) in the training data, and outputs this ob-
ject’s decision as its prediction. JRip [5] learns propositional rules by repeatedly
growing rules and pruning them. During the growth phase, features are added
greedily until a termination condition is satisfied. Features are then pruned in
the next phase subject to a pruning metric. Once the ruleset is generated, a
further optimization is performed where classification rules are evaluated and
deleted based on their performance on randomized data. PART [28, 29] gener-
ates rules by means of repeatedly creating partial decision trees from data. The
algorithm adopts a divide-and-conquer strategy such that it removes instances
covered by the current ruleset during processing. Essentially, a classification rule
is created by building a pruned tree for the current set of instances; the leaf
with the highest coverage is promoted to a rule. J48 [20] creates decision trees
by choosing the most informative features and recursively partitioning the data
into subtables based on their values. Each node in the tree represents a feature
with branches from a node representing the alternative values this feature can
take according to the current subtable. Partitioning stops when all data items in
the subtable have the same classification. A leaf node is then created, and this
classification assigned. SMO [24] implements a sequential minimal optimization



algorithm for training a support vector classifier. Pairwise classification is used
to solve multi-class problems.

Table 3. Comparison results

Dataset FRS VQRS IBk JRip PART J48 SMO NB

Cleveland 53.21 59.41 51.53 54.22 50.34 52.89 57.77 56.78
Glass 73.13 69.36 69.83 68.63 67.25 67.49 57.24* 49.99*
Heart 76.30 82.04v 76.11 80.93 74.26 78.52 84.07v 83.7v
Letter 95.76 96.69v 94.94 92.88* 93.82* 92.84* 89.05* 78.57*
Olitos 78.33 78.75 75.00 67.92* 63.33* 66.67* 87.5 76.67
Water 2 83.72 85.26 84.74 81.79 83.72 82.44 82.95 70.77*
Water 3 80.26 81.41 81.15 82.31 84.10 83.08 87.05v 85.51v
Wine 98.02 97.75 94.93 94.05 93.27 94.12 98.61 97.19

Summary (v/ /*) (2/6/0) (0/8/0) (0/6/2) (0/6/2) (0/6/2) (2/4/2) (2/3/3)

Both FRNN-FRS and FRNN-VQRS perform well. There are two datasets
(Water 3 and Heart) for which the methods are bettered by SMO and NB, but
for the remainder their performance is equivalent to or better than all classifiers.
This is interesting, given the comparative algorithmic simplicity of FRNN-FRS
and FRNN-VQRS.

5.2 Prediction

For the task of prediction, eight datasets were chosen that possess real-valued
decision features (Table 4). The algae data sets5 are provided by ERUDIT [11]
and describe measurements of river samples for each of seven different species
of alga, including river size, flow rate and chemical concentrations. The decision
feature is the corresponding concentration of the particular alga. The housing
dataset is taken from the Machine Learning Repository.

Seven methods were compared, namely the four nearest neighbour methods,
IBk, SMOreg (support vector-based regression), LR (linear regression) and Pace.
For the nearest neighbour methods, K was set to 10. Again, 2×10-fold cross
validation was performed and the average root mean squared error (RMSE) was
recorded.

The linear regression model [10] is applicable for numeric classification and
prediction provided that the relationship between the input attributes and the
output attribute is almost linear. The relation is then assumed to be a linear
function of some parameters - the task being to estimate these parameters given
training data. This is often accomplished by the method of least squares, which
consists of finding the values that minimize the sum of squares of the residuals.
Once the parameters are established, the function can be used to estimate the

5 See http://archive.ics.uci.edu/ml/datasets/Coil+1999+Competition+Data



output values for unseen data. Projection adjustment by contribution estimation
(Pace) regression [25] is a recent approach to fitting linear models, based on con-
sidering competing models. Pace regression improves on classical ordinary least
squares regression by evaluating the effect of each variable and using a clustering
analysis to improve the statistical basis for estimating their contribution to the
overall regression. SMOreg is a sequential minimal optimization algorithm for
training a support vector regression using polynomial or Radial Basis Function
kernels [19, 24]. It reduces support vector machine training down to a series of
smaller quadratic programming subproblems that have an analytical solution.
This has been shown to be very efficient for prediction problems using linear
support vector machines and/or sparse data sets.

Table 4. Dataset details

Dataset Objects Attributes

Algae A→G 187 11
Housing 506 13

The results for the prediction experimentation can be seen in Table 5. It can
be seen that FRNN-O and IBk perform poorly, and the other methods perform
similarly to FRNN-FRS. The average RMSEs for FRNN-FRS and FRNN-VQRS
are generally lower than those obtained for the other algorithms.

Table 5. Prediction results (RMSE)

Dataset FRS VQRS FNN O IBk SMOreg LR Pace

Algae A 17.15 16.81 15.79 24.55* 24.28* 17.97 18.00 18.18
Algae B 10.77 10.57 10.68 13.04* 17.18* 10.08 10.30 10.06
Algae C 6.81 6.68 6.99 8.16* 9.07* 7.12 7.11 7.26
Algae D 2.91 2.88 3.04 3.47* 4.62* 2.99 3.86 3.95
Algae E 6.88 6.85 7.38 9.10* 9.02* 7.18 7.61 7.59
Algae F 10.40 10.33 11.24 12.60* 13.51* 10.09 10.33 9.65
Algae G 4.97 4.84 5.23 5.38 6.48 4.96 5.21 4.96
Housing 4.72 4.85 6.62* 24.27* 4.59 4.95 4.80 4.79

Summary (v/ /*) (0/8/0) (0/7/1) (0/1/7) (0/2/6) (0/8/0) (0/8/0) (0/8/0)

6 Conclusion and Future Work

This paper has presented two new techniques for fuzzy-rough classification based
on the use of lower and upper approximations w.r.t. fuzzy tolerance relations.
The difference between them is in the definition of the approximations: while



FRNN-FRS uses “traditional” operations based on a t-norm and an implica-
tor, FRNN-VQRS uses a fuzzy quantifier-based approach. The results show
that these methods are effective, and that they are very competitive with ex-
isting methods for both classification and prediction. Further investigation is
still needed to adequately explain the impact of the choice of fuzzy relations,
connectives and quantifiers. Of particular importance is the choice of relation
composition operator as this determines the overall similarity of objects based
on the full set of data features. The use of a t-norm for this operation is sensi-
ble from a theoretical viewpoint, but may introduce problems from a practical
perspective as the overall similarity of a pair of objects will be zero if these ob-
jects have zero similarity for just one of their features. Therefore, an alternative
method of combining relations is desirable.

Also, the impact of a feature selection preprocessing step upon classification
accuracy needs to be investigated. It is expected that feature selectors that incor-
porate fuzzy relations expressing closeness of objects (see e.g. [8, 15]) should be
able to further improve the effectiveness of the classification methods presented
here.
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