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Discrete rearranging disordered patterns: Prediction of elastic and plastic behavior,
and application to two-dimensional foams
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We study the elasto-plastic behavior of materials made of individual �discrete� objects such as a liquid foam
made of bubbles. The evolution of positions and mutual arrangements of individual objects is taken into
account through statistical quantities such as the elastic strain of the structure, the yield strain, and the yield
function. The past history of the sample plays no explicit role except through its effect on these statistical
quantities. They sufÞce to relate the discrete scale with the collective global scale. At this global scale, the
material behaves as a continuous medium; it is described with tensors such as elastic strain, stress, and velocity
gradient. We write the differential equations which predict their elastic and plastic behavior in both the general
case and the case of simple shear. An overshoot in the shear strain or shear stress is interpreted as a rotation of
the deformed structure, which is a purely tensorial effect that exists only if the yield strain is at least of order
0.3. We suggest practical applications including the following: when to choose a scalar formalism rather than
a tensorial one; how to relax trapped stresses; and how to model materials with a low, or a high, yield strain.
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I. INTRODUCTION

Discrete rearranging patterns include cellular patterns, for
instance, liquid foams, biological tissues, and grains in poly-
crystals; assemblies of particles such as beads, granular ma-
terials, colloids, molecules, and atoms; and interconnected
networks �1�. Many of these disordered materials display
elastic and plastic properties, so that the stress tensor can
rotate and is not necessarily aligned with the strain rate ten-
sor; in models this effect is included in objective derivatives
�2�.

Use of simpliÞed geometries, e.g., in a rheometer, allows
a Þrst characterization of the material through measurements
of shear stress. An overshoot in the shear stress is seen dur-
ing the Þrst loading in materials such as polymers �3�, granu-
lar materials �4�, and emulsions �5�. For liquid foams this
effect has been observed in a plate-plate rheometer �6� and in
simulations �7,8�. It is unclear whether this is due to a change

in the materialÕs structure or a tensorial effect of shear; but
nevertheless the overshoot is an essential ingredient in a re-
cent model �9� of the strain-rate discontinuity in the cylindri-
cal Couette foam ßow experiments of Ref. �10�. Such an
overshoot results in mechanical bistability: two different val-
ues of strain correspond to the same value of stress between
the plateau and the maximum and can thus coexist. Here, we
investigate the elastic regime and elasto-plastic transition in
a fully tensorial model. To describe the mechanical behavior
we use a formalism adapted for discrete rearranging disor-
dered patterns which enables us to quantify rotational effects
and to test the relevant parameters �1�.

We use as an example a sheared liquid foam �11—18�.
Although a liquid foam consists only of gas bubbles sur-
rounded by liquid walls, it exhibits a complex mechanical
behavior. It is elastic for small strains, plastic for large
strains, and ßows at large strain rates �19—21�. This behavior
is useful for numerous applications such as ore separation,
oil extraction, foods, and cosmetics. The individual objects,
namely, the bubbles, are easily identiÞed, which makes a
liquid foam �or alternatively an emulsion, made of droplets�
a model for the study of other complex ßuids.

This paper is organized as follows. In Sec. II, we simulate
the quasistatic two-dimensional �2D� ßow of a foam in a
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Couette shear geometry; we explain how we perform and
represent the measurements. In Sec. III, we present our equa-
tions and discuss the speciÞc effects due to the use of tensors
such as the overshoot. Section IV compares the model and
the simulation and extracts the relevant information. Section
V presents applications to practical situations, i.e., how and
when to use the model. Section VI summarizes our Þndings.
The Appendix explains the notation and provides the detailed
equations.

II. SIMULATIONS

We simulate numerically a 2D foam ßowing in a linear
Couette shear geometry. Simulations of dry foams offer sev-
eral advantages: �i� the parameters are homogeneous �liquid
fraction, bubble area� and controlled �no diffusion-driven
coarsening or Þlm rupture�; �ii� the yield strain is of order
0.3, which is large enough to observe a full tensorial elastic
regime while small enough that plastic effects can be easily
observed; �iii� all physical quantities can be easily measured.

A. Methods

Several ideal two-dimensional dry foams �19� are simu-
lated �Fig. 1 and Table I�. We use the SURFACE EVOLVER �23�
in a mode in which each Þlm is represented as a circular arc.
The value of surface tension is taken equal to 1 throughout,
without loss of generality. A realistic foam structure is found
by minimizing the total Þlm length subject to the constraint
of Þxed bubble areas prescribed at the beginning of the simu-
lation. The simulations are quasistatic, which means that the
system has time to relax between successive time steps �in-
crements in applied strain�. Relaxation effects are thus ne-
glected and viscosity does not need to be included. The be-
havior is expected to be elasto-plastic.

The simulation procedure is as follows. A Voronoi con-
struction of randomly distributed points �24� �not shown� is
Þrst used to generate a fully periodic tessellation of the
plane. To create a conÞned foam, bubbles at the top and
bottom are sequentially deleted until the required number of
bubbles remains. In each case, the structure is imported into
the SURFACE EVOLVER and target bubble areas prescribed,
either all the same �monodisperse, � A /A=0�, a small random
variation of up to 20% about monodisperse �� A /A=0.025�,
or equal to the areas given by the Voronoi construction
�� A /A=0.66�.

The initial foam conÞguration for each simulation �e.g.,
label �1� in Fig. 1� is found by reducing the total Þlm length
to a local minimum. During this minimization, neighbor
swappings �so-called ÒT1sÓ �19�� are triggered by deleting
each Þlm that shrinks below a certain critical length lc and
allowing a new Þlm to form to complete the process. The
critical length lc deÞnes and measures an effective liquid
fraction, � eff �22�, here chosen to be very dry �Table I�.

One geometry consists of a unit cell of 400 bubbles with
fully periodic boundary conditions to eliminate any artifacts
due to small sample sizes. The second geometry mimics
more closely a real experiment and consists of 296 bubbles
with two parallel bars �about 15 bubble diameters apart� con-

Þning the foam and with periodicity in one direction only.
To shear the foams, two different procedures are required.

For the periodic foams, one off-diagonal component of the
matrix describing the periodicity of the unit cell is adjusted

TABLE I. Characteristics of simulated foams. The different col-
umns correspond to the symbols used in Figs. 8 and 10, effective
liquid fraction �22�, area dispersity, boundary conditions, and maxi-
mal amplitude of the cycles.

� or �

� or �

€ or �
� or �

Symbol � eff � A/A Geometry � max

� or � 9.7� 10�5 0 Fully periodic � 2
or 3.9� 10�4 0 Fully periodic � 2

3.9� 10�4 0.025 Fully periodic � 2
3.9� 10�4 0.66 Fully periodic � 2
3.5� 10�4 0 Con�ned � 2.5
3.5� 10�4 0.66 Con�ned � 2.5

× +

(2)(1)

(3) (4)

(5)

FIG. 1. Example of 2D foam simulation. Pictures are successive
snapshots of a quasistatically sheared, fully periodic foam. Numbers
correspond to those of Figs. 2 and 5. Bubbles with six neighbors are
displayed in white, otherwise in gray.
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