A fuzzy-XCS classifier system with linguistic hedges
Marin-Blázquez, Javier; Shen, Qiang

Published in:
Journal of Computational Intelligence Research (IJCIR)

Publication date:
2008

Citation for published version (APA):
A Fuzzy-XCS Classifier System with Linguistic Hedges

Javier G. Marín-Blázquez and Qiang Shen

1Departamento de Ingeniería de la Información y las Comunicaciones
Facultad de Informática, Universidad de Murcia, Spain
jgmarin@um.es

2Department of Computer Science
Aberystwyth University, Wales, UK
qqs@aber.ac.uk

Abstract:
Many real-world problems require the development and application of algorithms that automatically generate human interpretable knowledge from historical data. Most existing algorithms for rule induction from imprecise data have followed the precise approach, where definitions of the fuzzy sets that are intended to capture certain vague concepts are allowed to be modified such that they fit the data. These approaches typically destroy the original semantics or meaning of the given fuzzy sets, which often leads to loss of transparency in the resulting model or models. In order to overcome this fundamental limitation, a descriptive approach has been proposed in which human defined fuzzy sets are not allowed to be modified. However, as the fuzzy set definitions cannot be modified, and only a small number of them are normally available, only a limited number of possible rules are derivable. Such rules are not very flexible and in many cases, will not necessarily fit the data well. To address this important issue, at least partially, linguistic hedges have been introduced to provide a more adaptable means of learning from data, thereby offering more flexibility in domain knowledge representation and extraction. Following this approach, this paper presents a novel rule induction mechanism which extends a classifier system (XCS) by employing linguistic hedges. The resultant fuzzy XCS classifier with linguistic hedges is evaluated against a real-world forensic glass classification problem. The results demonstrate that the inclusion of hedges to support finer granularity in linguistic fuzzy modelling improves the accuracy of the resulting classifiers, whilst simultaneously preserving the interpretability of the learned models. This approach not only offers the user rules to decide on classes, but also rules to decide which classes to discard. It also inherits from XCS, the ability to deal with data that involves imbalanced classes.

I. Introduction

Amongst the contributions of Fuzzy Logic, perhaps one of the most fundamental is “computing with words” [34]. Despite the fact that there are considerable mathematical computations involved, the use of fuzzy rules allows the expression of imprecise dependencies with words in a very human-like manner. In terms of transparency, a fuzzy rule-based system is unrivalled by other approaches. A fuzzy set can be defined, and labelled, by humans, such that it describes their particular and subjective understanding of concepts of a particular domain. By employing such human defined and labelled sets embedded in simple production (aka. IF-THEN) rules, a powerful and clear form of knowledge representation can be achieved. Human experts can be the source of these rules, obtaining such expertise however has become an obstacle to building knowledge based systems, whether fuzzy or not.

Given the general increase in data available for many application problems, the development of algorithms that automatically generate, transparent, human readable knowledge from data is therefore highly desirable. In the past however, many of the proposed algorithms for fuzzy rule induction from data have followed the so-called precise approach. Interpretability is often sacrificed with such approaches, in exchange for a perceived increase in precision. In many cases the original fuzzy set definitions are modified in order to fit the data better. This modification comes at the cost of ruining the original meaning of the fuzzy sets and the loss of transparency of the resulting model. In other cases the algorithms generate the fuzzy sets, and present them to the user. The user must then interpret these sets and the rules which employ them. Furthermore, in some extreme cases, each rule may have its own fuzzy set definition for every condition, thereby generating many different sets in a modest rule base. The greatest
disadvantage of the precise approaches lies in the fact that the resulting sets and rules are difficult to match with the human interpretation of the relevant concepts.

As an alternative to the precise approach, there exist proposals that follow the linguistic (or descriptive) approach. In such an approach no changes are made to the human defined fuzzy sets. The rules must use the (fuzzy) words provided by the user without modifying them in any way. One of the main difficulties with this type of approach is that, as the fuzzy sets can not be modified, and only a small number of them are typically available, the possible rules available are predetermined, equivalently speaking. Although there can be many of these rules they are not very flexible and in many cases they may not necessarily fit the data well. In order to address this problem, or at least partially, linguistic hedges can be employed.

The concept of hedges has been proposed quite early-on in fuzzy set research and were introduced in [33]. A linguistic hedge produces a new fuzzy set by changing the original fuzzy set, in a predefined and interpretable manner. The interpretation of the resultant set emanates from the original fuzzy set and a specific transformation that the hedge suggests. The original fuzzy sets are not changed, but the hedged fuzzy sets provide modifiable means of modelling a given problem, and therefore more freedom in representing knowledge in the domain.

In previous research genetic algorithms have been applied to obtaining compact sets of linguistically hedged fuzzy rules from data, by translating precise models [20] into linguistic ones. In this work a classifier system (XCS [31]) will be used for fuzzy rule extraction. XCS is an extension of the Michigan style classifier systems [10] that has some very interesting features. A standard Michigan style classifier system is based on a single rule set, with each rule represented in the form; condition—action. The learning mechanism works by adjusting certain values associated with each rule based on the feedback given by the environment. XCS extends these classifier systems to provide complete maps (which can produce an estimation of reward for each of the possible outputs with respect to any given input). The classifiers (i.e. rules) will be of the form; condition+action—+reward. In addition, XCS includes a method, called covering, which ensures that each possible input has a rule with a matching condition for each available action. These two factors mean that such an XCS classifier system will always provide, for any input, an estimation of rewards to be obtained for choosing and executing any of the outputs. This provides additional insight into the relationships between the input data and all the possible classes, thereby offering a better understanding of the underlying problem which is being modelled.

This paper demonstrates the results of adapting XCS to create linguistically hedged fuzzy classifier systems. The fuzzy XCS with linguistic hedges, denoted as LF-XCS, is tested on a real world problem domain; identification of glass type (a forensic dataset obtained from the Forensic Research Institute, Krakow, Poland). The results of this experimental study are also discussed.

The rest of the paper is organized as follows. Section II summarises the two main approaches to fuzzy modeling - precise and linguistic. Next, section III presents the basic XCS classifier learning system and the modifications proposed to transform it into LF-XCS. In section IV the dataset for forensic glass identification is examined, including a brief description of how the data was obtained. Section V shows the experiments performed and the parameters used. The results of the experiments are analysed in section VI. The paper is concluded in section VII, with a short discussion of future work.

II. Precise and Linguistic Fuzzy Modeling

In the first generation of fuzzy systems, inference rules were provided by human experts. The domains of the input variables were subjectively partitioned using fuzzy sets. The definitions of such fuzzy sets - to be used later in the rules - were also generated by experts. The domain partitions were required to satisfy certain properties, which made these early systems completely transparent. These properties included distinguishability, completeness, etc. [29]. Such an initial approach quickly developed into fuzzy grid partitions and was often used in implementing logic controllers.

One of the main disadvantages of this early approach was that the knowledge acquisition process of obtaining the required expertise became very difficult. This of course has led to a bottleneck in the development of such systems. Furthermore, not all knowledge obtained from experts was optimal, accurate or even necessarily consistent. However, in the digital era, the amount of data available about typical applications has been growing considerably in many problem domains. A logical step was to apply machine learning algorithms to automatically optimise existing systems, or even to create them from scratch using the data. Most of these algorithms were based on supervised learning techniques [1, 2, 3, 13, 27, 30]. Many of these learning systems (mostly for logic controllers) used fuzzy grids. This had the advantage of full covering of the input space and offered a simple table-like way of providing the rule base. Yet this approach can only be used when the dimensionality of the input space is small. As dimensionality increases the total number of possible rules explodes exponentially, rendering the system impractical.

Another problem associated with such learning systems is that the available data usually clusters only in certain areas, with most of the input space empty. In these sparsely populated systems the use of a full grid is a waste of resources, where the full grid is the cartesian product of all fuzzy sets defined on each input variable for each possible output. This is because many of the rules will cover empty areas of the input space. Therefore, an initial potential optimisation would be to remove these empty-covering
rules. This optimisation would assist in obtaining a (hope-
fully small) subset of the grid cells. These possible outputs
are either a singleton fuzzy set defined in the domain of the
output variable, or a compound value from these fuzzy sets.
A very basic algorithm would enumerate all of these rules
and select those that fulfill some (possibly error based) cri-
teria as in [16]. Unfortunately the potential number of rules in
high dimensional problems again makes this approach imprac-
tical. Other algorithms, e.g. the widely known Wang
and Mendel method [30], would instead use the available in-
put examples to locate useful rules. With strong partitions
(namely, each example can only belong to, at most, two dif-
ferent sets and the sum of all membership values is equal
to one) the maximum number of rules that cover one exam-
ple is \(2^L\) with \(L\) being the number of input variables. This
partially alleviates the problem of testing the \(\prod_{i=1}^{L} D_{i}\) different
rules (with \(D_{i}\) being the number of fuzzy sets defined in
the input variable \(i\)) of any exhaustive methods, at least for
moderately-sized problem domains.

Other methods have been proposed to deal with situations
where the potential number of rules made exhaustive enu-
meration difficult. In particular, evolutionary techniques
have been the most successful [9]. However, such fuzzy
systems raise the problem of coverage. Undefined or unde-
cidable areas have been dealt with using default values or
using fuzzy sets with infinite tails (such as sigmoid or gaus-
sian). Here, the undecidability is caused by the fact that cer-
tain algorithms may accept rules only when the error over
the training set is below a prescribed threshold. A simple
case is one potential rule covering two incompatible exam-
ple sets. The learning system may decide to correctly classify
just one (while incorrectly classifying the other), to average
both outputs, or to declare the zone undecidable and hence
not to include the rule in the learned system.

Approaches which employ fuzzy grids showed that severe
limitations were placed upon the granularity of the input
space. In light of this, optimisation algorithms were intro-
duced which allowed a relaxation, such that the subjectively
deefined fuzzy sets were allowed to be fine tuned. In par-
ticular, expert or user predefined fuzzy sets were allowed to
change in order to best fit the data. Unfortunately this often
severely disrupts the linguistic interpretation, - even destroy-
ing it in many cases. Following this approach, not only are
the sets modified, but also the original grid may be discarded,
while creating fuzzy sets for the exclusive use of possibly just
one single rule. That is, each rule would have its own fuzzy
sets which are not shared with other rules, known as scattered
fuzzy partitions [11]. This forms what is termed precise (aka.
approximative) fuzzy modeling. The resulting systems sac-
rifice interpretation for accuracy.

There are alternative proposals that do not follow the approx-
imative approach. Such work, following the original linguis-
tic (or descriptive) fuzzy modelling, is mostly concerned with
the development of fuzzy systems where the fuzzy set defini-
tions are human-defined and not allowed to be modified. Of
course, this gives rise to the issue of granularity, regarding the
actual fuzzy partition of the problem domain, which must be
taken into consideration. Given that humans seem to be able
to handle with ease only around 7±2 different aspects for a
concept [21], the cardinality of each domain partition should
remain close to this figure. This means that the number of
descriptive fuzzy sets available for use in the rules is rather
small. Furthermore, as mentioned previously the definitions
of the fuzzy sets are generated by the human user and can not
be modified to better fit the training data (because it may
otherwise destroy its interpretation). This imposes a de facto,
fixed grid in the input space.

It is highly unlikely that the data will fit in a convenient man-
ner in such a crudely fixed grid. In fact, great rooms usu-
ally exist for a given grid to be changed to accommodate the
data. This is precisely what would have led to the precise
modelling approach in the first place. So, is there a mecha-
nism that can provide finer or modified granularity of the grid
while retaining the linguistic fuzzy sets exactly as defined
by humans? One way in which this can be achieved, whilst
simultaneously allowing for better precision is to maintain
the set definitions, and to employ linguistic hedges [33]. A
linguistic hedge produces a new fuzzy set by altering (in a
predefined and interpretable manner), another fuzzy set. The
interpretation of the resultant set emanates from the origi-
nal fuzzy set and the specific transformation that the hedge
suggests. The original fuzzy sets remain unaltered, but the
heded fuzzy set provides another option to the system, and
therefore more flexibility in representing the knowledge of
the domain.

For simplicity, and ease to use, linear piece-wise fuzzy sets
have been used extensively. This work also adopts such fuzzy
sets. In particular, this research makes use of trapezoidal and
shouldered sets. Note that the definition of traditional hedges
does not produce substantial changes in these types of fuzzy
sets. To address this issue, a new definition of hedges has
been proposed in [19, 20]. This new approach produces bet-
ter results when applied to linear piece-wise sets. This paper
uses the exact same definition of such hedges in implementa-
tion. Therefore, detailed hedge definitions are omitted herein
but can be found in [19, 20].

III. XCS Learning Classifier System

As stated previously, Michigan style classifier sys-
tems [10] are based on a single rule set in the form of condi-
tion→action. The learning mechanism works by ad-
justing certain variable values associated with each rule,
based on feedback about the action errors, as well as dis-
covering new and better rules. Discovery of new rules is ob-
tained by mating or by mutating old rules in a manner em-
ployed by Genetic Algorithms (GAs). Rule conditions usu-
ally include a “don’t care” state in depicting many variables,
allowing for generality.

The XCS learning Classifier System [31] is an extended clas-
ifier system. A distinct feature is that it produces a complete map \((X \times A \longrightarrow P\) with \(X\) being the input space, \(A\) the action, or classification if the task is such, and \(P\) the prediction space about the rewards). This map extends the dimensionality of a given problem, including both the input variables and the output variables (the actions). What XCS produces is a prediction of expected rewards for each action. Normal classifier systems [12] usually use a map \(X \longrightarrow A\) that maps inputs onto actions. This difference adds extra complexity to the problem, but it adheres more closely to the philosophy of reinforcement learning (that is the base of its learning mechanism) [24, 28]. Such learning aims to obtain estimations of the consequences of every possible action to be performed in a given situation.

XCS has mechanisms to promote generality in the learned classifiers. It has a preference for having many “don’t cares” in the condition part; such variables are not considered in the firing of the rule. XCS can learn non-sequential tasks, including classification, which is the focus of this paper. However, it can also learn sequential tasks, that is, sequences of actions to obtain rewards. A brief outline of how XCS works is given below. For a detailed treatment of XCS and discussions of its features see [15]. A description of the standard algorithm is also available in [6].

A. XCS working procedure

The basic procedure of XCS is as follows. The current object is matched with the patterns of the condition part of the classifiers, with each such classifier forming a classification rule. Classifiers that are matched constitute the match set and are grouped into subsets that each share the very same action (output). Classifiers in the same subset combine their predictions weighted by each classifier’s precision and, in the case of linguistic fuzzy-XCS, its degree of matching (see equation 1 in section III-E). So, an estimation of the reward is obtained for each possible action, forming what is known as the prediction matrix. If a particular action has no matched classifier a new classifier is created that matches the example and advocates for that action (this is called “covering”) so that every action has always an estimation of reward. Note that in reinforcement learning the training phase is carried out (i.e. the class is decided for a classification problem) and a reward of the effect of performing such an action (or the success or failure in classification) is obtained. This reward is fed back to updating the values of the prediction, fitness and error of the classifiers within the action set itself.

B. Rule discovery in XCS

New rules are discovered in XCS by: (1) ensuring coverage and (2) exploiting a GA.

1) Covering method

As indicated previously, the covering mechanism works by following the rule that given an example, if there is an action that has no matched classifiers then a new classifier is created. The condition part of this new classifier has to match the current input. In particular, certain parts of the condition will have a given probability \(P_{\#}\) of being “don’t care”, and the rest are to be chosen in a way that matches the current input. The output of the classifier is the uncovered action. This new classifier is included in the current population of the GA (that is to be briefly introduced next) and in the match set, providing a prediction for the previously uncovered class (although being random). If more than one action is not covered the “covering” procedure is repeated for each. Note that this is just one of the main mechanisms to obtain complete maps. Quite often XCS starts with an empty population that grows with the examination of the training examples until the employed GA is able to activate and support the creation of new classifiers.

2) GA exploitation

XCS uses a niche GA, that is, only a group of classifiers are candidates for being parents. Earlier versions of XCS [31] used the match set as the parent niche, but later the action set was employed. The GA is activated using a frequency method. If the average time since the last activation of the GA for the classifiers in the action set is greater than a given threshold \(\theta_{GA}\), then the GA is started. There are two genetic operators in XCS. A standard two point crossover with probability \(P_{c}\), and mutation. The mutation is special in the sense that any offspring that undercarries mutation has yet to match the current input. It works by changing each condition with probability \(P_{m}\). Mutation can be applied to the action part also. Of course, there is no need to enforce matching in the crossover as any crosses of two matching conditions are matching conditions.

C. Removal of rules

XCS conducts an optimisation procedure called numerosity. It allows several copies of the same classifier to remain in the population, with the same values for prediction and fitness. These are called “macro-classifiers”. When these classifiers
are activated their effects are weighted using this numerosity figure. Therefore, an XCS system usually has an actual number of classifiers (the total of those classifiers that are really different from one another) and an operative number of classifiers (the sum of all classifiers).

XCS has a pre-defined maximum population size (including the numerosity of macro-classifiers). If this number is exceeded then some rules will be discarded to make room for new rules. Selection for deletion is performed over the whole population (note that, for breeding, selection is made over the action set only). The likelihood of a rule being discarded relies on two factors. The first is the average size of the action set of a classifier. This is intuitive, in the sense that, if a rule usually fires along with many other rules (that have the same output) then there is a possibility that the rule is not required. The other rules would cover the same examples. The other factor is classifier fitness, that is, its quality. If the fitness is less than (a fraction δ of) the average fitness of the population, the chance of being deleted grows substantially. Note that, as rules need time to accurately assess their true fitness younger rules (i.e. those with low experience) do not apply this latter factor. Clearly, if the numerosity of a certain macro-classifier reaches zero then this classifier is completely removed from the system.

D. Promotion of generality in XCS

Generality is achieved in XCS through several mechanisms. Two particular methods are the **GA Subsumption** and the **Action Set Subsumption**. Subsumption is a mechanism which replaces classifiers with more general versions. GA subsumption is activated when the GA generates new offspring. If the new classifier is completely covered by the parent (that is, the parent is more general), and this parent has a high precision and a minimum experience, then the child classifier is discarded and the numerosity of the parent increased by one. Action set subsumption happens for every GA cycle. In each action set the most general classifier is found (usually the one with most “don’t care” states). If such a general classifier has a high precision and is experienced (namely, its precision estimation is reliable) then all classifiers in the action set that are completely covered by the most general are deleted. For each classifier deleted the numerosity of the most general classifier is increased by one. This latter subsumption may be activated more often than GA subsumption and thus may be used more often. However, it is worth remembering that this will only happen if an experienced general classifier with a high fitness exists in the niche.

There are other mechanisms that also promote generality, albeit in a more indirect fashion, when compared with the previous methods. One is to apply mutation pressure. Mutation can be biased to generate more “don’t care” states in the condition part, thereby creating more general classifiers than simple random mutation [5].

Another mechanism is the one known as set pressure, as identified in the so-called generalisation hypothesis [31], which indicates that XCS has a natural tendency to evolve accurate and maximally general classifiers. This set pressure arises as a consequence of the aforementioned fact that the GA selects parents in the action set only, but deletion of classifiers is applied to the whole population. The rationale for this is as follows: if a rule is quite general it will fire more often than those that are less general. Firing a rule more often also means that the rule will appear in the action set more often than rules with a more specific antecedent. Of course, if it appears more often in the action set this means that they will act more often as parents to reproduce new offspring. Therefore, the parents of the new classifiers tend to be more general than the average classifier in the population. Offspring of more general parents tend to be more general than the average classifier in the population too. As a result, the offspring created by the GA tend to be more general than the average classifier. However, deletion takes place on the whole population so the classifier to be replaced is usually less general than the new classifier. Thus, there is a pressure to replace those less general classifiers with more general classifiers.

There are other factors involved in the set pressure but this factor provides substantial pressure toward general rules. A theoretical formulation and empirical test of generalisation issues in XCS can be found in [5].

E. From XCS to a linguistic Fuzzy XCS

Several changes have been introduced to adapt XCS for a linguistically hedged fuzzy environment. While extending the XCS classifiers to represent linguistically hedged fuzzy rules the resulting learning mechanism is expected to inherit the underlying approach that traditional XCS algorithm possesses. Indeed, the basic XCS algorithm remains unchanged in this work. Only the interpretation of some of its components is extended to entail the use of fuzzy representation.

For instance, the concept of matching a current observation with the classifiers is changed to allow for a partial match. Accordingly, the mathematical expressions employed to calculate predictions are extended by the introduction of degrees of matching. Also, the concept of subsumption is reframed as full inclusion of the fuzzy spaces defined by the rule antecedents. However, these changes do not affect the learning procedure of the XCS at all, they simply modify parts of the computational details. Such modifications are briefly summarised as follows.

1) **Representation**

Classic classifier systems were designed for boolean environments. The original alphabet was ternary (the third state being the “don’t care”). This has been extended to real [26, 32], or fuzzy [4, 7] environments, including the proposal for variable alphabets for different variables [17, 18]. These extensions allow for different types of data to be represented covering variables that are qualitative, quantitative (discrete and continuous) as well as linguistically fuzzified (with hedges).
Extension for qualitative or nominal data, which involves no order relations amongst different values, is performed in a similar way as in boolean environments. The alphabet for such variables is the qualitative terms of the given domain plus a “don’t care” symbol. An illustrative example of this type of data can be found in [17]. There, the KDD dataset includes a variable that is the protocol used for internet connection. The alphabet for that variable included “don’t care”, http, udp, tcp, etc.

In quantitative data non fuzzified non-sorted intervals are used. Note that intervals are regarded to be “sorted” if the pair of values \([a,b]\) that define an interval are set such that \(a < b\). In the present work, non-sorted representation is used as it avoids some biases, as argued by [26].

Fuzzified variables also include a “don’t care” value. When used in a rule, such a value is equivalent to state that the corresponding variable may be of any value of the domain of that variable or a missing value. This implies that such a rule antecedent is always completely true whatever the variable may be. As rule antecedents used in LF-XCS are conjunctively linked (that is, they only use the \(AND\) connective), these “don’t care” values can be safely removed from the antecedent expression owing to the boundary property \(T(x, 1) = T(1, x) = x\) of any \(T\)-Norm that may be used to implement the \(AND\) operator [23]. Therefore, rules are built using only antecedents whose values are different from “don’t care”.

Note that the number of hedges allowed is variable but more than two per fuzzy set severely reduces the interpretability. For this reason the maximum number of hedges is two (though this may be retrieved if needed). Reduced numbers of hedges reduces the degree of freedom of the model, making it harder to fit the data, of course.

2) Prediction and learning updates

For classification tasks the output is a crisp value, namely the identified class. In classical XCS the evidence for each class is obtained by aggregating the reward prediction of matched classifiers of that class weighted by its fitness. The class with the highest expected reward is the winner. With fuzzy classifiers a partial (fuzzy) match is then possible. The contribution of those classifiers that partially match is therefore weighted by the degree of the corresponding matching as well.

The original expression of XCS for obtaining the reward prediction is shown in equation 1, with \(P(a_i)\) denoting the predicted reward when action \(a_i\) is taken (or class \(a_i\) is chosen when addressing classification problems), \(F_c\) is the fitness of classifier \(c\) (it has to be in the match set for that class, that is, \(c \in [M]_{a_i}\)), and \(p_c\) is the reward prediction of that classifier. The modified expression for the proposed linguistically hedged fuzzy XCS is shown in equation 2. In this equation \(S_c\) is the matching strength of the condition. The matching (or firing) strength is calculated as a \(T\)-norm (in the experiments that follow it was implemented with the minimum operator) of the membership values. The membership values are those that each input variable (of the current data item) has with regard to the hedged fuzzy set condition (for the respective variable) of the classifier. The mathematical expression of the matching strength can be seen in equation 3, where \(\mu_{H_i}(x)\) is the membership value of the \(i\)th component of data item \(x\) with respect to the hedged fuzzy set \(H_i\), that is the \(i\)th condition of the classifier \(c\).

\[
P(a_i) = \frac{\sum_{c \in [M]_{a_i}} F_c \cdot p_c}{\sum_{c \in [M]_{a_i}} F_c} \tag{1}
\]

\[
P(a_i) = \frac{\sum_{c \in [M]_{a_i}} F_c \cdot p_c \cdot S_c}{\sum_{c \in [M]_{a_i}} F_c \cdot S_c} \tag{2}
\]

\[
S_c = T_i(\mu_{H_i}(x_i)) \tag{3}
\]

During the learning process of XCS the updating expressions for both fitness and reward prediction are modified in a very similar way and are therefore omitted here. They also use the firing strength of the classifier as an extra weighting factor.

3) Subsumption

The subsumption mechanism is essentially the same as in XCS without linguistic hedges. Subsumption means inclusion, i.e., the input space covered by the subsumed classifier is a subset of the input space covered by the subsumer. In practical terms a hedged fuzzy set is another fuzzy set modified from the original set or the union of several fuzzy sets, including the original. Therefore, given two hedged fuzzy sets, namely \(H_a\) and \(H_b\), it can be considered that \(H_a\) is subsumed in \(H_b\) if the former is included in the latter. That is, if \(H_a \subseteq H_b = H_a\).

4) Mutation operator

Mutation has been improved to allow it to modify hedges and fuzzy sets, or to change the whole condition to “don’t care”. Once a condition has been selected for mutation (with probability \(P_{\mu}\)) the procedure works as follows. With probability \(P_{\mu\text{add}}\) it changes a new hedge (or change one if the maximum number of hedges allowed is reached), with \(P_{\mu\text{del}}\) chance it removes a hedge (or add a new one if no hedge is present), and with \(P_{\mu\text{fix}}\) it changes the base set. After such changes are implemented, it is checked if the corresponding input variable value is still covered by the mutated hedged fuzzy set. If this is not the case the mutation is undone and the process repeated. If, after several tries, no mutated set is found that matches the input variable, then the mutation is discarded in that variable condition. Note that this check must be done as the mutated classifier has to match the current input condition.

Apart from the previously mentioned changes the XCS procedure is as described in [6]. During the training phase XCS usually uses a 50/50 exploration vs. exploitation scheme. It
is at this time that the covering mechanism must be activated. However, in order to test an emerging model this mechanism must be disabled. It is important to point this out since some work in the area does not disable covering while testing. If enabled, and if a particular test data item is not covered by all possible actions, the covering mechanism would create new classifiers (and possibly delete some to make space) thereby completely altering system behaviour. Note that disabling covering may produce “unknown” classifications. It is a matter of taste if such an “unknown” class is produced whenever a single action is not covered (but still having evidence in favour of other actions) or when all actions are not covered (no evidence for any action whatsoever). In this work the former approach is taken.

IV. An Application Problem

This section introduces the domain problem. The data is a forensic dataset, obtained from the Forensic Research Institute, Krakow, Poland. It contains information about various types of glass and their chemical and physical properties. The samples were obtained through the following procedure: One large piece of glass from each of 200 glass objects was selected. Each of these 200 pieces was wrapped in a sheet of grey paper and further fragmented. The fragments from each piece were placed in a plastic Petri dish. Four glass fragments, of linear dimension less than 0.5mm with surfaces as smooth and flat as possible, were selected for examination with the use of an SMXX Carl Zeiss (Jena, Germany) optical microscope (magnification 100×).

The four selected glass fragments were placed on self-adhesive carbon tabs on an aluminium stub and then carbon coated using an SCD sputter (Bal-Tech, Switzerland). The prepared stub was mounted in the sample chamber of a scanning electron microscope. Analysis of the elemental content of each glass fragment was carried out using a scanning electron microscope (JSM-5800 Jeol, Japan), with an energy dispersive X-ray spectrometer (Link ISIS 300, Oxford Instruments Ltd., United Kingdom).

Three replicate measurements were taken from different areas on each of the four fragments, making twelve measurements from each glass object, but only four independent measurements. The four means of the measurements were used for the analysis. The measurement conditions were accelerating voltages 20kV, life time 50s, magnification 1000 - 2000×, and the calibration element was cobalt. The SEMQuant option (part of the software LINK ISIS, Oxford Instruments Ltd., United Kingdom) was used in the process of determining the percentage of particular elements in a fragment. The option applied a ZAF correction procedure, which takes into account corrections for the effects of difference in the atomic number (Z), absorption (A) and X-ray fluorescence (F).

The selected analytical conditions allowed the determination of all elements except lithium (Li) and boron (B). However, only the concentrations of oxygen (O), sodium (Na), magnesium (Mg), aluminium (Al), silicon (Si), potassium (K), calcium (Ca) and iron (Fe) are considered further in this work as glass is essentially a silicon oxide with sodium and/or calcium added to create a commonly produced glass, and potassium, magnesium, aluminium and iron added to stabilise its structure and modify its physio-chemical properties. Histograms of the distributions of the data can be found in figure 1.

Table IV presents the data distribution by classes. It reflects the average number of examples in the training and testing folds. It also shows a severe class imbalance in the number of examples of each class. Some classes, such as car or building windows glass are much more represented than optical glass or glass containers. Note that this usually represents a significant challenge for most learning algorithms.

![Histograms of the distributions of the data can be found in figure 1.](image)

A. Data preparation

LF-XCS requires fuzzy sets to be defined for each of the input variables. In order to properly claim the approach is indeed transparent and purely linguistic such fuzzy sets should not be engineered to fit the data. That is, no information measure extracted from the data guides the fuzzy set definitions. For example, histograms shown above are included to illustrate the properties of the data but are not used in any way to define the fuzzy sets. The fuzzification was carried out proportionately with respect to the size of the universe of discourse of the individual variables. The distance between its maximum and minimum value within the data set is divided such that all fuzzy sets approximately cover an equal
range of the underlying real values, with soft boundaries of course. Generic labels namely, tiny, small, medium, large, and huge were attached to the sets in ascending order. Note that this does not necessarily correspond to what an expert would use, in fact each expert/user would define their own fuzzy definitions and labels accordingly. This fuzzification is used herein assuming that no expert-given labels are available. In real applications, the system will learn using the experts/user own words, rather than vice-versa.

All attributes are real-valued, that is, no discretization is performed. The number of descriptive fuzzy sets available for the system to use in the rules is relatively small. This is because, as already mentioned, the number of different concepts that a human seems to be able to handle is around 7±2 [21]. Empirically, it is normally the case that for five labelling terms, experts can easily find different words while, if asking for more, they tend to struggle to reach sensible words that they are content with.

V. Experiments

The principal aim of this research is to demonstrate that the effects of using hedges result in improved accuracy of the classification system, whilst simultaneously maintaining the interpretability of the XCS models. Two main experiments are therefore performed using the same learning algorithm, LF-XCS, including the same algorithmic parameters (see section V-B below). Two separate experiments are performed; in one experiment no hedges are allowed, while in the other up to two hedges may be used in learning the classifier conditions.

A. Experimental considerations

XCS generates maps that are complete. There are rules that suggest that an area of the input space belongs to a given class (classifiers that produce outputs with a high reward). Yet, at the same time, there are rules, covering parts of that same area, suggesting that the area is not of the other classes (classifiers that produce outputs with a low reward). Therefore it is not unusual to find rules with antecedents covering same areas but with different consequents. One of the rules may have a high reward and the rest a low reward. The former suggests the class of that area, with the latter confirming that such an area is not of the remaining classes. All these rules will have a high fitness (that is, of course, if the model is sound). This is quite different from most rule-based systems. Typical rule-based systems contain only one rule that suggests a particular classification and do not include other rules that would point to a “not this class” result. This means that XCS has more rules than systems built using traditional methods. It could be argued that this increase in the number of rules reduces transparency. However, it provides a more informed decision, as it shows the evidence for each possible outcome and not just for the overall winning result.

In order to assess how many rules XCS might have represented in a traditional form, where only rules concerning the type “is class X” (i.e. confirming a certain classification) are involved, the rules of a low reward are removed. This allows for the computation of classification accuracy in using just such rules. Although this assessment is carried out in a fairly crude way, it should allow the reader to have an idea of the resulting ruleset complexity, in terms of the number of rules, in comparison to systems that are possible alternative to the present approach.

It is worth reiterating that Michigan style systems [10] include a mix of well tested and high precision rules in the population and also new and recently created candidate rules that are still being evaluated. However, the Pittsburgh approach [25], which is also quite popular, works in a rather different way. In Pittsburgh style systems the members of a population are independent sets of rules. All the rules in such individual members are tested as a block, with a single fitness for all. These members are not modified afterward – they are either retained in the population as potential solutions (or potential parents of better solutions) or discarded. In so doing, Pittsburgh style systems usually produce very compact rule sets. This is because fitness tends to be badly influenced if all rules, or their synergic combination do not perform well. That is, only performance-wise useful rules are included in the sets. Many induction algorithms use the Pittsburgh approach so it is difficult to compare, in terms of number of rules, with systems which follow the Michigan approach. In order to provide an idea of the number of rules that are mainly responsible for the performance of LF-XCS (Michigan approach), an evaluation of the results after a simple removal of rules with low fitness is also presented. Note that these modification procedures are expected to degrade the system performance, as XCS is designed to include all of these removed rules, especially the “not this class” type classifiers. However, such rule removal will produce a figure which is easier to compare over the number of rules. The particular thresholds used in this work will be 10% of the maximum fitness allowed (if it is falls below such a value the classifier is removed) and 10% of the maximum reward. The former removes the new, insufficiently tested rules while the latter deletes the “not this class” classifiers. These thresholds seem reasonable in order to provide an acceptable estimation of the corresponding number of rules in a non-complete and Pittsburgh type of approach.

The method used to calculate the performance of the generated system is a 10-fold cross validation [8] with 20 runs for each fold. Each execution of XCS (one per fold of each run) has 25,000 training cycles C. Half are exploring cycles, and half exploiting. In non sequential tasks, such as classification, the exploiting cycles serve to evaluate the learning progress.
average generality of rules also degrades significantly.

Not only are the number of rules obviously reduced, but the results show that when the rules with low reward are removed, the average number of examples for each class in the testing folds. The last column indicates the percentage of correctly classified examples of the class as per the row (see table IV for details). Table 4 shows the confusion matrix of the average test results. Each cell shows the average number of examples that the system classifies as per the column while actually being examples of the class as per the row (see table IV for the average number of examples for each class in the testing folds).

The remaining classes. So given the current problem has 6 classes the removal of the “not class X” rules should produce a reduction, in the number of rules, around the ratio 5 to 1. Yet the experiment results show a reduction of barely 2.5 to 1.

The assumption of N – 1 to 1 reduction in the number of rules would be correct if both types of rules (high and low reward), would be equally general. However, as clearly demonstrated by this experimental evaluation, the rules that advocate for low reward (that is, for “not class X”) are more general than the average rule. This can be expected since a quite general rule can cover wide areas where there may be examples of several different classes as these classes are not that particular class “X”. Nevertheless, rules of type “is class Y” must cover specific areas where only class “Y” is present, and these rules tend, on average, to be much more specific. If the “not class X” type rules are removed, the remaining ones are, as demonstrated by the results, more specific. These effects occur for both hedged and non-hedged experiments, in similar proportions.

Note that while the number of conditions is an indirect way to measure specificity (even more so with the use of hedges), it correlates, in general, with the size of the area that the antecedent condition covers.

As \(P_{ly} \) is 0.5, and the number of variables of the problem is 8, the average size of the new rules created by XCS is therefore 4. However, the average rule size returned by LF-XCS is of 3.29 conditions per rule. Thus, the LF-XCS learning procedure is capable of selecting rules that are, on average, more general. This reduction in size of the average classifier at the end of the learning process shows the the effects of the pressure upon generality. Rules with few conditions are easier to interpret so this result shows a very positive outcome of utilising LF-XCS.

B. Analysis and comparison

Table 4 shows the confusion matrix of the average test results. Each cell shows the average number of examples that the system classifies as per the column while actually being examples of the class as per the row (see table IV for the average number of examples for each class in the testing folds). The last column indicates the percentage of correctly classified instances for each class. The last row shows the percentage, grouped by the class that the system predicted, of instances that the system classified as bulb glass are in error over all the experiments for the training folds, with the confidence intervals at 95% (which are calculated as \(\pm T_{V_{al995}}(n) \cdot \sigma/\sqrt{n} \), with \(n = 20 \), \(T_{V_{al995}}(20) = 2.09 \) and \(\sigma \) being the standard deviation). The Tst column presents the average error percentages for the testing folds. The next column, \# R gives the average numbers of macro-classifiers (different rules) of the final LF-XCS systems. Finally, the last column labeled as \# R lists the average number of the conditions in the antecedent part of the rules that are different from “don’t care”; such a number is also known as the size of the rule concerned.

A. Observations and discussions

The results associated with the row of LF-XCS in table 3 show the different values of the learned system prior to any rule pruning. There is a 4% increase in accuracy when hedges are used. This result is statistically significant. When the rules with low fitness are removed there is a drop of about 1% accuracy, whilst reducing the number of rules in the system by more than 200. Interestingly the remaining rules are, on average, slightly more general, as shown by a 0.2 decrease in average rule size. This rule size reduction is reverted when the rules with low rewards are also removed. The final number of rules, when most rules retained are those that only advocate for a particular classification, is about 50. These results show that when the rules with low reward are removed, not only are the number of rules obviously reduced, but the average generality of rules also degrades significantly.

B. XCS parameters

There are a moderate number of parameters which must be defined for the XCS. Most of them are set to values that have been suggested in the literature and not fine tuned for the present specific problem. In order to avoid an excessive pressure to generalisation, and as suggested in [22], the parameter \(\theta_{sub} \) (experience of a classifier to be considered as a subsumer) is set to 200. An extensive discussion of all parameters can be found in [15]. There are also a few additional parameters added for the linguistic fuzzy extension. The final values used in this work are listed in table 2.

Finally, the reward value for a correct class given to the classifiers in the action set is 1000. For an incorrect class the reward values is 0. These are typical values from the XCS literature for classification problems.

VI. Results

Experimental results for the given dataset are presented in table 3. The Trn column shows the average error percentage over all the experiments for the training folds, with the confidence intervals at 95% (which are calculated as \(\pm T_{V_{al995}}(n) \cdot \sigma/\sqrt{n} \), with \(n = 20 \), \(T_{V_{al995}}(20) = 2.09 \) and \(\sigma \) being the standard deviation). The Tst column presents the average error percentages for the testing folds. The next column, \# R gives the average numbers of macro-classifiers (different rules) of the final LF-XCS systems. Finally, the last column labeled as \# R lists the average number of the conditions in the antecedent part of the rules that are different from “don’t care”; such a number is also known as the size of the rule concerned.

Table 2: XCS parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>1000</td>
</tr>
<tr>
<td>(P_{ly})</td>
<td>0.5</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.1</td>
</tr>
<tr>
<td>(\theta_{sub})</td>
<td>200</td>
</tr>
<tr>
<td>(C)</td>
<td>25000</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.2</td>
</tr>
<tr>
<td>(\delta)</td>
<td>0.1</td>
</tr>
<tr>
<td>(\nu)</td>
<td>5</td>
</tr>
</tbody>
</table>

With regard to rule reduction a first, albeit incorrect, assumption may be the following: As the map is complete, if the problem being modelled has \(N \) different classes, then for each rule advocating a particular class there might be about \(N - 1 \) rules indicating that that rule does not lead to any of the remaining classes. So given the current problem has 6 classes the removal of the “not class X” rules should produce a reduction, in the number of rules, around the ratio 5 to 1. Yet the experiment results show a reduction of barely 2.5 to 1.

The assumption of \(N - 1 \) to 1 reduction in the number of rules would be correct if both types of rules (high and low reward), would be equally general. However, as clearly demonstrated by this experimental evaluation, the rules that advocate for low reward (that is, for “not class X”) are more general than the average rule. This can be expected since a quite general rule can cover wide areas where there may be examples of several different classes as these classes are not that particular class “X”. Nevertheless, rules of type “is class Y” must cover specific areas where only class “Y” is present, and these rules tend, on average, to be much more specific. If the “not class X” type rules are removed, the remaining ones are, as demonstrated by the results, more specific. These effects occur for both hedged and non-hedged experiments, in similar proportions.

Note that while the number of conditions is an indirect way to measure specificity (even more so with the use of hedges), it correlates, in general, with the size of the area that the antecedent condition covers.

As \(P_{ly} \) is 0.5, and the number of variables of the problem is 8, the average size of the new rules created by XCS is therefore 4. However, the average rule size returned by LF-XCS is of 3.29 conditions per rule. Thus, the LF-XCS learning procedure is capable of selecting rules that are, on average, more general. This reduction in size of the average classifier at the end of the learning process shows the the effects of the pressure upon generality. Rules with few conditions are easier to interpret so this result shows a very positive outcome of utilising LF-XCS.

The assumption of \(N - 1 \) to 1 reduction in the number of rules would be correct if both types of rules (high and low reward), would be equally general. However, as clearly demonstrated by this experimental evaluation, the rules that advocate for low reward (that is, for “not class X”) are more general than the average rule. This can be expected since a quite general rule can cover wide areas where there may be examples of several different classes as these classes are not that particular class “X”. Nevertheless, rules of type “is class Y” must cover specific areas where only class “Y” is present, and these rules tend, on average, to be much more specific. If the “not class X” type rules are removed, the remaining ones are, as demonstrated by the results, more specific. These effects occur for both hedged and non-hedged experiments, in similar proportions.

Note that while the number of conditions is an indirect way to measure specificity (even more so with the use of hedges), it correlates, in general, with the size of the area that the antecedent condition covers.

As \(P_{ly} \) is 0.5, and the number of variables of the problem is 8, the average size of the new rules created by XCS is therefore 4. However, the average rule size returned by LF-XCS is of 3.29 conditions per rule. Thus, the LF-XCS learning procedure is capable of selecting rules that are, on average, more general. This reduction in size of the average classifier at the end of the learning process shows the the effects of the pressure upon generality. Rules with few conditions are easier to interpret so this result shows a very positive outcome of utilising LF-XCS.
Table 3: Results for Polish Glass Dataset

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Trn</th>
<th>Tst</th>
<th># R</th>
<th>Rsz</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF-XCS</td>
<td>17.09 ± 0.36</td>
<td>19.95 ± 0.48</td>
<td>351.44 ± 1.60</td>
<td>3.29 ± 0.03</td>
</tr>
<tr>
<td>Removed Low Fitness</td>
<td>18.52 ± 0.42</td>
<td>21.55 ± 0.55</td>
<td>125.08 ± 0.90</td>
<td>3.08 ± 0.02</td>
</tr>
<tr>
<td>Removed Low Fitness and Low Reward</td>
<td>20.70 ± 0.50</td>
<td>23.91 ± 0.51</td>
<td>52.5 ± 1.00</td>
<td>3.75 ± 0.03</td>
</tr>
<tr>
<td>LF-XCS Not Using Hedges</td>
<td>22.15 ± 0.41</td>
<td>23.95 ± 0.46</td>
<td>347.58 ± 1.06</td>
<td>3.05 ± 0.02</td>
</tr>
<tr>
<td>Removed Low Fitness</td>
<td>23.03 ± 0.45</td>
<td>25.17 ± 0.57</td>
<td>130.83 ± 1.26</td>
<td>2.84 ± 0.02</td>
</tr>
<tr>
<td>Removed Low Fitness and Low Reward</td>
<td>25.23 ± 0.44</td>
<td>27.64 ± 0.57</td>
<td>50.26 ± 0.43</td>
<td>3.68 ± 0.02</td>
</tr>
</tbody>
</table>

rules have “Unknown” columns with values different from zero. Such results are considered as missclassification and counted as errors.

It is interesting to note that the bulb, headlamp and glass containers classes are correctly discriminated. Optical glass is a very specific class, the chemical composition is substantially different from the other classes and it is therefore easily classified. However, classes representing car and building window glass are usually confused about 25% of the time. This happens because of the similarities in the float glass manufacturing process. The methods by which building window and car window glass is created are basically the same (float glass).

A study of applying different fine-tuned, precise approach-based classification techniques to the present problem can be found in [35]. Although such work uses a glass dataset which is different from the one that is used in this research, the examples are obtained using the same technique as described in section IV. In that study car and window glass are considered in many experiments as a single class and experiments are carried out to distinguish between just these 2 classes (car window and building window). This gives an accuracy of a little over 80%, not far from the 75% of LF-XCS. This difference in performance becomes even less significant when one considers that LF-XCS is a linguistic approach and that the 25% misclassified examples for car and building also includes confusions (albeit small values) with the other classes. In particular, it is important to note that in the existing results of [35], the confusion between building and car window glass, the training was performed over just these 2 classes, and not for all 6 classes as in the current research.

Interestingly, the heavy class imbalance does not prevent LF-XCS from properly classifying the minority classes. These results conform to the observation in that XCS can be particularly resistant to the class imbalance problem, as revealed by the research reported in [22].

Looking at the confusion matrix again, when no hedges are allowed (table 5), the classification accuracy over the bulb, optical and glass containers classes are maintained. This seems to reveal the fact that most of these classes are separable from each other with outliers falling into grid areas of other classes. Outside the core of these classes, with a more restrictive grid, there are certain boundary areas that can not be as precisely delimited. Some examples of building windows fall into the the fixed cells that are classified as headlamp or glass containers. Similarly certain examples of headlamp are classified as glass containers or car windows. However, given a fixed grid, it is harder for the non-hedge approach to discriminate properly between car and building window glass which are more mixed, usually by misclassifying more car window glass as building glass.

C. Example of classifiers

In order to illustrate the ability of LF-XCS to retain model interpretability figure VI-C shows the first three classifiers of one run. Note that the second classifier has a reward of 0, meaning that it is a “not this class” type of classifier that means that if the content of Sodium is tiny then the sample can be discarded as being glass from a bulb. The other classifiers are self explanatory as they are pure linguistic expressions.

VII. Conclusions

This research has shown that the inclusion of hedges to facilitate finer granularity of linguistic fuzzy modelling improves the accuracy of the resulting systems. LF-XCS allows for a complete map to be modelled for a given problem. This offers the user not only rules to decide on classes but also rules to decide which classes to discard. In addition, this work provides additional insight into the relationships amongst the input data and the classes, thereby enabling a better understanding of the underlying problem which is being modelled. LF-XCS also leads to full linguistic classifiers, which are easily interpretable, and employ words defined by the user. Additionally, this approach inherits the capability from XCS of dealing with the issue of class imbalance, a very challenging practical matter for applications where classes may be underrepresented in the training data.

Whilst the initial results as reported herein are very promising, a number of important issues regarding the LF-XCS approach remain to be further investigated. These include how sensitive the work may be to the prescribed fuzzification, both in terms of the definition of original fuzzy set membership functions and of the number of these fuzzy sets, and how well it may cope with datasets of high dimensionality. For the former issue, more experiments are needed to evaluate the robustness property of the approach (over different datasets as well as varying the linguistic term set). For the latter, which would be rather difficult to resolve completely, simply by modifying the approach itself, a possible solution would be to include a data preprocessing procedure prior to the actual modelling process. Work on fuzzy feature selection [14] seems to provide a helpful start point for this.

Acknowledgements

This work has been developed while the first author was visiting Aberystwyth University thanks to the sponsorship of the Fundación Séneca, Murcia, Spain. The authors are grateful to the Sistemas Inteligentes Research Group of the Universidad de Murcia and the Advanced Reasoning Group of Aberystwyth University, and especially to Gregorio Martínez Pérez and Neil Mac Parthalain, for their support in this work, while taking full responsibility for the views expressed in this paper. Thanks also go to Dr. Grzegorz Zadora, of the Institute of Forensic Research in Krakow, Poland, for providing their helpful comments on this paper. For providing the real glass identification dataset, and to the reviewers for their helpful comments on this paper.

References

