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Abstract. Relative displacement of ―far points‖ is used in the Hertzian contact mechanics 

as a measure of contact compliance. However, to be legitimate, it should be almost 

insensitive to the exact choice of the ―far points‖, and this is not always the case. The 

present work aims at examination of legitimacy of this concept, on specific examples of 

one-dimensional problem of a long rod, 2-D problem of heavy disk and 3-D problem of a 

sphere resting on a smooth rigid foundation. It is found that, whereas in the 1-D problem 

this concept may well become inadequate, in the considered 2-D and 3-D problems, the 

parameter controlling the legitimacy of this concept are identified and, in the vast 

majority of cases of practical interest, the concept is indeed legitimate. Note that the 

mentioned 2-D and 3-D problems are quite challenging and the presented solutions may 

be of interest of their own.  
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1. Introduction 

A small contact area between two elastic bodies creates a highly compliant zone in the 

vicinity of the contact: when the bodies are pressed against one another, most of the 

overall deformation comes from this zone. The contact zone compliance is usually 

characterized by approach of two ―remote points‖ – points on two sides of the contact 

that are sufficiently far from the zone (Hertz, 1881; Johnson, 1985). Relative 

displacement (approach) of ―far points‖ on two sides of a contact is one of the quantities 

of interest in Hertzian contact problems. It is used, for example, as a measure of the 

contact compliance, the underlying idea being that the dominant contribution to this 

displacement comes from the contact zone, and the contribution of remaining parts of the 

contacting bodies is negligible.  

 For the approach of ―far points‖ to be a legitimate measure of contact compliance, it 

should be almost insensitive to the exact choice of these points. This is not immediately 

obvious, and an example can be easily given where the concept fails. If one, or both, of 

the contacting bodies have elongated shapes in the direction normal to the contact plane, 

displacements accumulated in them may be comparable to the contribution of the contact 

zone. The following simple problem illustrates this statement. Consider a long elastic rod 

with rounded end, of length L2  and cross-section radius r , pressed against a rigid wall 

by force P  applied at the opposite end; the contact with the wall is circular, of radius a 

(Fig. 1).  

 

Figure 1. A long elastic rod forming contact of radius a  with a rigid wall.  

 

According to the Hertzian theory, a contribution to the approach of the rod’s center (point 

A ) towards the wall generated by the convex contact zone equals to P
a


4

1 , where 

  and   are the shear modulus and Poisson’s ratio, respectively. We now compare   

with the displacement Lu  accumulated in the rod at the distance L  from the contact due 
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to the longitudinal deformation of the rod. For an approximate estimate, we assume, 

using the Saint-Venant’s principle, that, somewhat away from the contact, the rod 

experiences uniform compression; then P
Er

L
uL 2
 , where E  is Young’s modulus. For 

the inequality Lu <<  to hold, the length L  should not be too large, namely, we must 

have  

 
L

r
c

r

a
)(                                                               (1.1) 

where 2/)1()( 2 c  is a constant, which changes between 1.75 and 1.18 for   

varying from 0 to 0.5. 

 For example, if the aspect ratio of the rod rL /  is 10, then 10/ra  , i.e., practically 

speaking, r  should be of the order of 10a or grater. Otherwise, the displacement from the 

deformation of the rod accumulated at distance L  is non-negligible compared to the 

displacement generated by the contact zone, so that the displacement Lu  at the point A  

cannot be used as a measure of contact compliance in the Hertzian contact theory. 

Observe also that Ra  , and therefore, with increasing radius R  of the end-rounding, 

the contribution from the longitudinal deformation increases as well. Note that if the 

―pencil-like‖ body is positioned vertically and is pressed against a rigid floor by 

gravitational forces, we have the same inequality (1.1), with somewhat different constant, 

of 3/)1()( 2 c .  

 In the above example, the failure of the concept of ―far points’ is related to the 

elongated geometry of the elastic body. However, the mentioned insensitivity to the 

choice of ―remote points‖ may, possibly, be violated even for solids of non-elongated 

shapes. In the text to follow, we examine this issue on two example problems: a heavy 2-

D disk and 3-D sphere resting on a rigid frictionless foundation that deforming under 

their own weight. We show that, although in most cases of practical interest the 

insensitivity does hold, for certain combinations of the elastic modulus and the specific 

weight it may be violated; these combinations will be identified in the solution obtained 

in the text to follow.  
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 In a general setting, we consider two contacting bodies, and choose two points, A  

and A  belonging to the first one (Fig. 2) that are sufficiently far from the contact plane 

and thus can be regarded as ―far points‖. Here ―sufficiently far‖ means that the distance 

from the point to the contact plane is much greater than the characteristic size of the 

contact area. Point A  is substantially farther away from the contact plane than A  (the 

distance between them, in the direction normal to the plane, is comparable to the size of 

the contacting body). The concept of ―far points‖ can be considered legitimate if 

displacements of these points in the direction towards the contact plane obey the 

inequality 

 
   
  1

Au

AuAu
                 (1.2) 

Similar inequality must hold for points B  and B  of the second contacting body.  

 

 

Figure 2. Two elastic bodies in contact 

  

 We examine the criterion (1.2) on two examples, a 2-D heavy elastic disk and a 3-D 

heavy elastic sphere that rest on a rigid frictionless foundation. Note that these problems 

do not seem to have been solved in literature, and may be of interest of their own. We 

construct, by employing the method of matched asymptotic expansions, the 

approximations to the displacement fields away from the contact zone. We identify the 

parameter that controls legitimacy of the far-points concept, which implicitly assumes 

that the choice of the ―remote points‖ is unimportant, as long as they are sufficiently far 

from the contact, i.e. that their approach is relatively insensitive to the choice. 

 In particular, it will be shown that, if the points A  and A  are chosen as the center of 

the considered body and the point at the top of it, then the following inequalities hold: 
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   
  MAu

AuAu

ln26.1

76.0





  (2-D case)              (1.3) 

and  

 
   
  730

330
31 .M

.

Au

AuAu

/ 



  (3-D case)              (1.4) 

where the numerical factors are chosen in such a way as to cover the entire interval 

 500 .,  of variation of Poisson’s ratio. Here,  gRM 0  is a dimensionless 

parameter, R  is a characteristic size (radius of the disk or sphere), 0  is the material 

density, g  is the acceleration of gravity.  

 We use the method of matched asymptotic expansions (see, for example, van Dyke, 

1964; Il’in, 1989; van Dyke,1994) and construct the leading asymptotic terms of the 

solution. Note that this method has been applied earlier by Schwartz and Harper (1971) to 

the mathematically somewhat similar problem of compression of a circular disk by a pair 

of rigid circular pinches (where, however, the issue of far-points – that is of interest here 

– has not been examined).  

In the two-dimensional problem of an elastic body compressed by two rigid bodies 

(punches) solved by Schwartz and Harper (1971) (this problem is also discussed in the 

book by Johnson (1985)), the approach of the punches serves as a straightforward 

measure of the local contact deformations, which from a general perspective was 

considered by Argatov (2001). From the point of view of mechanical work, the pair 

contact force/contact approach should be regarded the pair generalized force/generalized 

displacement. When the punches compress an elastic body, the contact force (being 

applied directly to one of the punches, while another is fixed) performs mechanical work 

on the displacement of the moving punch. In the Hertzian problem of local contact 

between two elastic bodies, the contact force is realized as the total of the contact 

pressures, which are caused by somehow applied external loading. Therefore, the 

question of the corresponding generalized displacement (contact approach) leads to the 

nontrivial problem of correct choice of the ―far points‖, which is simplified if this choice 

is insensitive to their positions (that is the case when the local contact deformation 

dominates the global deformation of the two contacting elastic bodies). 
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 In Sections 2 and 3, we study respectively the 2-D (heavy disk) and the 3-D (heavy 

sphere) problems. Note that the conditions of validity of the ―far-points‖ concept are 

substantially different in 2-D and 3-D formulations, and this justifies analysis of both 

problems. Mathematically, the 2-D and 3-D problems require different asymptotic 

constructions as well. In the text to follow, we focus on basics of the mathematical 

approach referring a reader to Appendices for details.  

 

2. Heavy two-dimensional disk resting on a rigid foundation 

We consider the plane strain problem of heavy elastic disk   of radius R  that rests on a 

flat rigid foundation (Fig. 3) and assume that the contact is frictionless. We aim at 

comparing displacements of two points far from the contact zone, one of them being the 

disk center and another – the point at the top of the disk.  

 

 2.1. Formulation of the contact problem  

We denote by c  the contact interval ),(1 lly   that is not known a priori. The gap 

between the contacting surfaces )y( 1  in the undeformed state is given by the equation 

2
1

2
2 yRRy   that can be locally approximated by the parabola 

    
R

y
ywhere)y(Oyy

2

2
1

1
4
112                                                       (2.1) 

with the Hooke’s law 

 2211
1

2
2 


 


 ijijijσ                                                                               (2.2) 

and equilibrium equations 

002 

 




i

i

x

σ
                         (2.3) 

(repeated Greek symbols indicate summation from 1 to 2) to be satisfied where g00    

is the specific 2-D weight of the disk material.  
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Figure 3. Heavy circular elastic disk on a rigid frictionless foundation:  

a) Undeformed configuration; b) Loaded configuration  

 

The following conditions must be satisfied in the (yet unknown) contact interval 

 lly ,1  :  

 nu  (non-penetration)                                   (2.4) 

 0n   (the normal traction is compressive)                         (2.5) 

   0 nnu   (at least one of the multipliers must be zero)                           (2.6) 

 0t   (no friction)                   (2.7) 

We introduce parameter 
0  by the relation 

  00                              (2.8) 

where 0  is a small parameter. 

 

 2.2. Far-field asymptotics  

In order to construct the far-field asymptotic approximation  xv  for the displacement 

field  xu , we consider an auxiliary problem where the distributed normal traction in the 

contact zone is replaced by a unit point force and the center of the disk is fixed. Though 

the influence of the contact zone is modelled by the action of a concentrated reaction 

force, the far-field in the actual problem is approximated in the leading-order by the far-

field in the auxiliary problem. Its solution (singular at the point of application of the 

force) is denoted by )( xG ; it is subject to the condition   
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  0OG                                                                                                   (2.9) 

and is given by the following formulas (see, for example, Barber, 2002):  

          2sin
2

sin212sin212)(4
2

2

111
R

r

R

r
G x  

      2sin21
2

cos21cos2ln214)(4 2

2

2

1
2

1

2  
R

r

R

r

r

R
G x    (2.10) 

where  

 ,)xR(xr,xxr 2
2

2
11

2
2

2
1    

r

x1sin  , 
r

x2cos  ,

 
2

2
2
1

1
1

)(
arcsin

xRx

x


  

Taking asymptotics of (2.10) near point C yields the following expansion (see, for 

example, Argatov, 2001):  

   |)y(|OA)Ry(  20eSxG  ,  0|y|            (2.11) 

Here,  S  is the solution of Flamant’s problem for the half-plane 02   loaded by unit 

point force in the 2  direction, i.e. 

 
2

1

2

21
1 arctan)1(2

2
)(4





 S ,   

2

2
2

2

2
ln)1(4)(4


 S   (2.12) 

with ),( 21    being dimensionless coordinates along the 1x , 2x  axes normalized to 

the radius R , and  

     
)1(8

45
0 



A ,  




4

1                 (2.13) 

Note that, for an arbitrary positive constant A , function  S  has the following property:  

      
2

ln1
eSS


 A

A
                 (2.14) 

 Having in view the original contact problem, we focus on the far-field asymptotics of 

the displacement field in the form of solution to the auxiliary problem of an elastic disk 

equilibrated by a point force (Fig. 4), that is  

    2exGxv  P                   (2.15) 
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Here,   is the (unknown yet) vertical displacement of the disk center (note that its value 

cannot be found from the 2D Hertzian theory), P  is the contact force that is found from 

the following equilibrium condition: 

sP 0                     (2.16)  

 ( 2Rs   is the disk area). With the account of (2.8), we rewrite the above formula as  

  PP                     (2.17) 

where sP *
0

 . It is later shown that the force scaling (2.17) implies the following 

scaling for the relative approach:  

                      (2.18) 

 

Figure 4. Heavy elastic disk equilibrated by a concentrated force  

 

 2.3. The boundary layer approximation 

We introduce ―stretched‖ coordinates ),( 21 η  as follows:  

ii y21                        (2.19) 

where the stretching factor 21  is chosen in such a way that the size of the contact 

region predicted by the Hertzian theory (see formulas (2.31) and (2.33) to follow), as 

expressed in coordinates ),( 21 η , does not depend on parameter  . In these 

coordinates, the gap (2.1) has the form  

  4
1

2
2
1

2
 O

R
                        (2.20) 
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and endpoints of the arc c  are shifted on distance l21  from point C . This allows one 

to reformulate the problem of the near-field asymptotic approximation )( ηw  of the 

displacement )( xu  as a boundary-layer problem for a semi-infinite domain with the 

parabolic boundary defined by the following equation containing small parameter 21  

(see (2.1) and (2.20)):  

),(,
R

 1

2
121

2
2

                  (2.21) 

 According to the method of matched asymptotic expansions, formulas (2.11) and 

(2.15) determine behavior of the vector function )( ηw  at infinity. Thus, letting ||η  

and ignoring terms  )||O η21  in (2.11), we obtain  

 ηw )|(|])([ 1
220

21   ηeeηS OARP           (2.22) 

where the normalization relations (2.17) and (2.18) are used.  

 Utilizing conditions (2.22) and (2.14), the vector-function  ηw  that satisfies the 

homogeneous equilibrium equations (no body force), can be written in the form 

 )( ηw    20 ln)( eηW
   AP                (2.23) 

that involves new vector-function  ηW  satisfying the asymptotic condition at infinity 

 )|(|)()( 1  ηηSηW ORP , ||η             (2.24) 

and, in view of (2.12), possesses the logarithmic behavior at infinity.  

 Finally, we derive boundary conditions for )( ηW  in the stretched coordinate system. 

Substituting expressions (2.19), (2.20) and (2.23) into the boundary conditions of 

unilateral frictionless contact (2.4)–(2.7), we obtain  

)()0,( 112  
W ,    00122 ,, W ,     00,,)()0,( 122112     WW   (2.25) 

  00121 ,, W ,  ),( 1                 (2.26) 

where it is denoted 

 )( 1     
ln

2
0

2
1 AP
R

               (2.27) 
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Relations (2.24) – (2.26) plus the homogeneous elasticity equations in half-plane 02   

constitute the boundary-layer problem of unilateral contact for the vector-function 

)( ηW . 

 

 2.4. Near-field asymptotics 

We represent vector-function )( ηW  in the form (see, for example, Johnson, 1985 or 

Muskhelishvili, 1963):  

 
d)(p

R
,

R
)(

l

l















  21SηW               (2.28) 

where ll   is the half-length of the (unknown yet) contact interval in the stretched 

coordinates (Fig. 5) and )(p 1
  is pressure in the contact region given by 

2

2
1

1 1
2




 

ll

P
)(p




                   (2.29) 

 

Figure 5. Elastic half-plane loaded with the Hertzian contact pressure 

 

The vector-function (2.28) satisfies the asymptotic condition (2.24), the boundary 

condition (2.26) of frictionless contact, and the following ones: 

   ,,, 00122  W    l1   













2

12
ln)0,(

2

2
1

12
l

R

l
PW

 ,   l1             (2.30) 
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Substituting the boundary values (2.30) and the expression for )( 1
  from (2.27) into 

the displacement compatibility equation )0,( 12 W )( 1
  at  l1 , we arrive, after 

some algebra, at the following system of non-linear algebraic equations for l  and  :   

   RPl 22                   (2.31) 





 









 


 0

2

12
ln A

l

R
P                 (2.32) 

Returning from the stretched scale to the original one, in accordance with (2.19), we 

obtain the actual half-length of the contact interval:  ll . The meaning of parameter 

  is clarified in the text to follow. 

 

 2.5. Analysis of the “far-points” displacements  

Returning to the original coordinates and eliminating the auxiliary parameter   we 

obtain, with the account of results given above, the contact pressure 

 
2

2
1

1 1
2

l

y

l

P
)y(p 


,  where     RPl 22             (2.33) 

The constant   entering the far-field expression (2.12) is given by  

 





  0

2

12
ln A

l

R
P                     (2.34) 

with the contact force P  determined from Eq. (2.16).    

 Having considered the far-field asymptotics, we now focus on the main issue – the 

approach of the disk towards the support plane. We examine the sensitivity of the said 

approach to a particular choice of the far point, by comparing results for two different far 

points. We choose the two points to be quite far apart: one of them is the disk center and 

another one – the point at the top of the disk.  

 For the center of the disk, we obtain, with the account of the normalization condition 

(2.9) and relations (2.34),  

  





  022

2

12
ln)( A

l

R
POPGOu              (2.35) 

For the point at the top of the disk, we obtain, making use of formulas (2.10) and (2.34),  
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        KPOuKA
l

R
PCPGCu 






   2022

2

12
ln       (2.36) 

where the following constant is introduced:  

  



18

23
2lnK                      (2.37) 

Thus, we arrive at the following key result:  

 
   

      441)1/(8lnln

2

2

22







M

K

Ou

OuCu
                                       (2.38) 

The above quantity is controlled by the following dimensionless parameter:  

 
R

M
0


                                                                                           (2.39) 

For the ratio (2.38) to be small – and hence for the notion of ―far points‖ to be legitimate 

– the value of M  must be sufficiently large. For example, at 30.  (the sensitivity to   

is relatively low), for the ratio to be smaller than 101  we must have   120 R . For 

  and 0  typical for metals, this means that the disk radius should not exceed a very 

large value, of the order of kilometers – this limitation is irrelevant for typical 

engineering problems. However, for materials that are very soft elastically, this value 

may be orders of magnitude smaller, and this limitation may be relevant.  

 

 3. Three-dimensional problem of a heavy sphere resting on a rigid foundation 

We now examine the validity of the far-points concept in the 3-D setting, aiming at 

obtaining a 3-D counterpart of the relation (2.38).  

 

 3.1. Formulation of the problem 

In the spherical coordinate system  ,,  centered at the sphere center, the support 

plane is defined by the equation  

 



cos

R                                                               (3.1) 
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(R is the radius of the sphere). The point of contact C  in the undeformed state is taken as 

the origin of the local coordinate system 21 xy  , 12 xy  , 33 xRy   (Fig. 6). The 

density of the body force is 30e , where g00    and 0  is the material density.  

 

Figure 6. Heavy elastic sphere on a rigid frictionless support:  

a) Undeformed configuration; b) Loaded configuration 

 We denote by c  a part (not known a priori) of the boundary   that comes in 

contact during the deformation. Near point C , the surface c  can be approximated by 

the paraboloid  

R

yy
y

2

2
2

2
1

3

                      (3.2) 

The displacement vector )u,u,u( 321u  must satisfy Lamé equations in  , the traction 

free boundary condition in the remainder of  , and boundary conditions (2.4)–(2.7) on 

c  where n  is the unit outward normal to the sphere  , n  is the normal stress, and 

tσ  is the shear stress vector. In accordance with formulas (3.1) and (3.2), the gap is  

 
R

yy
R

yyR

R
yy

2
),(

2
2

2
1

2
2

2
1

2

2

21





            (3.3)  

Similarly to the 2-D problem, we introduce a small positive parameter  , set  00   

(see formula (2.8) and make use of the method of matched asymptotic expansions.  

 

 3.2. Far-field asymptotics 
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We introduce the auxiliary problem (similar to the one considered in the 2-D setting): a 

unit point force 3e  applied at contact point C  is equilibrated by a distributed gravity 

force 3
1
e

V  (where 334 R)/(V   is the sphere volume), and denote by  xG  the 

displacement field in this problem assuming that  

  0OG                                                                                                    (3.4) 

Using the results of Sternberg and Rosenthal (1952), the following asymptotic expansion 

was obtained by Argatov (2006): 

  ROA ||ln||2)()()( 30 yyeytyTxG   , 0||y               (3.5) 

Here,  yT  is the solution of Boussinesq’s problem of loading of an elastic half-space by 

a unit point force, 2
3

2
2

2
1 yyy y  and the elastic constant   is defined by (2.13). As 

far as the constant 0A  (that, in the 3-D case, has the dimension of length) is concerned, 

its value cannot be readily determined using the results of Sternberg and Rosenthal 

(1952) for an elastic sphere under point forces. Instead, its value can found using results 

of Bondareva (1969) for a heavy elastic sphere equilibrated by a point force. However, 

for our purposes, it is simpler to use the asymptotic solution of the contact problem 

constructed by Argatov (2005) using Bondareva’s integral equation representation (see 

Appendix A). 

 In the cylindrical coordinate system 2
2

2
1 yyr  , 3yz  , Boussinesq’s solution 

takes the form  

   
22

22

2322
21

)(
),(4

zrr

zzr

zr

rz
zrTr






               (3.6) 

  
 

2322

2

22 )(

12
),(4

zr

z

zr
zrTz 




              (3.7) 

The second term in the asymptotic expansion (3.5) accounts for curvature of the sphere 

and has the logarithmic behavior as 0||y :  

    zzrzr

rz

zzr

r
zrt

R
r







 222222
212),(

21

4 



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 
R

zzr

zr

z
zrt

R
z

2
ln21),(

21

4 22

22











          (3.8) 

 We now return to the original problem, of a heavy sphere on a rigid half-space. The 

far-field asymptotics of the displacement field has the form   

3)()( exGxv  P                  (3.9) 

where   is the vertical displacement of the sphere center. The contact force P  must 

satisfy the equilibrium condition  

VP 0                     (3.10) 

In accordance with the normalization condition (2.8), we have  

 PP                      (3.11) 

The Hertzian theory predicts that P ~ 3/2 . Thus, in view of (3.11), we set 

  32 .                    (3.12) 

 

 3.3. Boundary layer formulation near the contact  

Motivated by relations (3.11) and (3.12) we use the stretched coordinates, with the 

stretching factor 31  as follows: 

 ηy
31 ,  ),,( 321 η              (3.13) 

With the account of relations (3.10) and (3.14), we have  

   )ln(||2)()()( 330 ROAP yyeeytyTxv                 (3.14) 

where vectors )( yT  and )( yt  are defined by Eqs. (3.6) – (3.8). Formulating (3.14) in 

the stretched coordinates and taking into account (3.11) and (3.12), we obtain:  

 
    ROACP

P

ηηiηt

iηTxv ηy

3134
30

3
32

ln)(2)(

)()( 31

















                        (3.15) 

where 3i  is the unit vector of the 3  axis and 31112 ln)1()21( 
 RC . 

 The near-field asymptotics of the displacement field in the vicinity of the contact will 

be denoted by )( ηw . The condition of matching the vector-function )( ηw  with the far-

field, )( xv , according to the leading terms in (3.15), implies the following matching 

condition: 



 

 17 

 

)( ηw   )||()( 2
3

32   ηiηT OP  ,      η               (3.16) 

Hence the vector-function )( ηw  can be represented in the form   

)( ηw 3
3232

iηW
  )(                (3.17) 

where, in view of (3.16), the vector )( ηW  satisfies the following condition at infinity: 

)( ηW )||(O)(P 2  ηηT ,   η             (3.18) 

Finally, the boundary conditions of unilateral contact for )( ηW , written in the stretched 

coordinates, have the form   

   ),,(W 0213 ,   002133 ,,;  W ,     000 2133213   ,,;),,(W  W  

    000 21322131  ,,;,,;  WW                                                       (3.19) 

in the entire plane ),( 21  . Here, in view of (3.3) and (3.12), we denoted  

R
),(

2

2
2

2
1

21

                      

The unilateral boundary conditions (3.19), the asymptotic condition (3.18), and Lamé 

equations constitute the boundary-layer problem for the vector-function )( ηW  that 

determines the near-field (3.17).  

 

 3.4. Near-field asymptotics. The leading order approximation  

We represent the boundary-layer function )( ηW  in the form 

  212132211

2
2

2
1




dd),(p,,)(

a








 TηW              

where, in accordance with the Hertzian theory, the contact pressure is  

 
2

2
2

2
1

021 1



 
a

p,p
                   

Its integration over the contact area yields the contact force 

2
0

3

2


  apP                                                                        (3.20) 

The contact radius a  and the contact approach   are determined as follows: 
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31

2

3






 

 RPa                    (3.21) 

31
2222

4

9

















R

)P(

R

a                                                                                   (3.22) 

 Returning now to the original coordinates, we obtain, with the account of Eqs. (3.10), 

(3.11), and (3.20)–(3.22), that 

32

0
2

1







  R
)( 


                 (3.23) 

Formula (3.23) represents the displacement of the disk center (point O ) – one of the two 

―distant‖ points in the considered problem. However, this is the Hertzian approximation 

only (that is the leading asymptotic solution), and, evidently, it does not depend on the 

shape of elastic body outside the region of local perturbations. In other words, the 

displacement of the point C  – another of the two ―distant‖ points – coincides with that 

given by formula (3.23). 

 3.5. Relative approach of the sphere — an asymptotic model 

 Observe that formula (3.23) follows from the Hertzian formula (3.22) and the 

equilibrium equation (3.10). Therefore, to obtain a correction to formula (3.23), it is 

necessary to refine formula (3.22) by taking into account the influence from the far-field. 

 In Appendix A, we formulate the contact problem under consideration in the form of 

an integral equation, and derive the first-order correction to the Hertzian equations. In 

particular, the following approximate formula for the vertical displacement of the center 

of the sphere as a function of the applied load holds:   


R



















0

2
2

2

32

2 12
ln

3

2

82

3
C

P

R

R

P
P

R 





          (3.24) 

where  

0C






1

21

2

3
21

6

19
2 2

0 )(c                                                                    

 Alternatively, we can express P  in terms of   as follows:  
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
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




















 C

R

R

R
P








       (3.25) 

 For small values of the ratio  R0 , the Hertzian result (3.22) is recovered from 

Eq.(3.25) by neglecting the second term in the braces.  

 We now focus on the quantity of central interest — the difference between vertical 

displacements of points O  (the center of the sphere) and C   (the top point). Formulas 

(3.4), (3.9), and (3.24) yield  

  )O(PG)O(u 33  

 
















0

2
2

32

12
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2

82

3
C

P

R

R

P
P

R 





            (3.26) 

 Taking into account (A.2), (A.3) and (3.24), we obtain  

  )C(PG)C(u 33  

 













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
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P
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R
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3

2

82

3





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         (3.27) 

where  

 













m

m
AK r

3

2
Re

)1(2

21
)1(2


   

From Eqs. (3.10) and (3.26), (3.27), we finally arrive at 

 
)O(u

)O(u)C(u

3

33

  












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
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2313231
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)1(4
ln

3

2
)1(23




    (3.28) 

 Note that, similarly to the 2-D problem for a heavy elastic disk, the key role here is 

played by the dimensionless parameter )R/(M 0 . For the ratio (3.28) to be small – 

and the concept of ―far point‖ to be legitimate – the parameter M  should be sufficiently 

large. As seen from comparison of (3.28) with the similar relation (2.38) in the 2-D case, 

this condition is substantially different mathematically. The values of constants K   and 

KC 0  for several values of Poisson’s ratio and other results are given in Table 1. The 

dimensional quantity 0 /  is given in Table 2 for several materials.  
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 4. Discussion and conclusions 

 Fig. 7 shows the relative displacements ratio as a function of M/1  for both cases. It 

is seen that, as a rule, the ratio is, indeed, quite small. We add, however, that the ratio is 

much larger in the 2-D problem, so that one has to be careful in using the concept of far 

points. This observation appears to be consistent with the fact that, in the 1-D problem of 

a long rod (considered in Section 1), the concept of ―far points‖ may become inadequate 

quite easily.  

 

 

Figure 7. The dependence of the ratio for the relative displacements       OuOuCu nnn / , 

3,2n , as a function of M/1  in the 2-D and 3-D cases, respectively, obtained for different Poisson’s 

ratios.  

 

 An interesting observation is that, as seen from Fig. 8, the mentioned ratio has 

different dependencies on Poisson’s ratio in the 2-D and 3-D problems.  
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Figure 8. The dependence of the ratio       Ou/OuCu nnn  , 3,2n  on Poisson’s ratio 

 

Observe that the discriminating parameter  gRM 0  is composed of two 

material characteristics,   and 0 , one geometrical parameter, R , which represents both 

the local curvature at the contact and the body size in the normal direction, and one 

environmental force field parameter, g , (for Earth conditions 81.9g  
2s/m ). 

Therefore, by increasing the parameter g  (by means of accelerating the support or by 

superimposing a static field, e.g., magnetic field), one can easily decrease the value of 

M . This simple consideration shows that the effect of choice of ―far points‖ will be more 

essential in the Hertzian theory of quasi-static impact than in the equilibrium problem 

involving self-weight.  
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Figure 9. Elastic bodies pressed against a rigid frictionless foundation (the same total-force loading): (a) 

Elastic sphere of radius R ; (b) Axisymmetric elastic body with local curvature radius R .  

 

 The above-developed approach can be applied to other contact configurations as well. 

For instance, let us consider an elastic sphere of radius R  pressed against frictionless 

rigid foundation by an axisymmetric system of surface tractions (Fig. 9a), generating 

circular contact area of radius a ; the sphere center obtains vertical displacement  . 

Hertzian theory, having local character, will predict the same contact parameters a  and 

  for any other axisymmetric elastic body with the same local curvature radius R  (Fig. 

9b) under the condition that the two bodies have the same elastic constant   and the total 

applied force P  is the same: 

31
2222

4

9










R

P

R

a   

In light of our results, relating the value of   to the discussed ratio will require 

knowledge of Green’s function )( xG  for the new considered configuration (Fig. 10). 

Note also that the applicability of the Hertz theory to non-small contact areas was 

considered by Zhupanska (2011) on the example of contact problem for elastic spheres 

subjected to the concentrated forces applied in their centers. 
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Figure 10. Axisymmetric elastic body, with an applied external loading equilibrated by the point force 

reaction generated by the support 

 

The level of the stress state around the Hertzian contact spot is governed by the value 

of the maximum contact pressure, 0p . In the two-dimensional case, according to the 

known solution (Johnson, 1985), we have 

R

PE
p





0  

Taking into account the relations )1/(2  E  and 
2

0 RP  , we readily get 

M

p

)1(

20

 
  

The maximum principal shear stress is given by 0max1 30.0)( p , so that the 

corresponding maximum shear strain will be M)1(/42.0)( max1   . Thus, max1)(  

is inversely proportional to M , and for materials that are very soft elastically, the 

values of local strains may overcome the level of small deformations. For instance, by 

assuming that 05.0)( max1  , we get an estimate )1/(72 M . By substituting the 

obtained lower bound into the right-hand side of (2.38), we get that the quantity 

   
  %100

2

22 

Ou

OuCu
 decreases from 10% for 0  to 5% for 5.0 . Thus, this 

conservative estimate shows that the ―far points‖ effect may exhibit itself even in the 
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range of relatively small deformations. The analogous considerations can be also carried 

out in the three-dimensional case to show that in the 3D case the ―far points‖ effect is 

weaker in the special case under consideration (of a heavy sphere on a rigid support). 

The presented analysis is related to elastic bodies of finite sizes, whereas the 

sensitivity to the choice of the ―far points‖ dramatically increases as the body size 

increases in the normal direction to the plane of contact (see Figs. 1 and 2) so that 

     AuAuAu   as the distance between the points A  and A  increases, and the 

difference becomes dependent on the imposed longitudinal deformation. In the limit case 

of semi-infinite bodies with wavy surfaces in contact (see for example, Argatov, 2012; 

Dundurs et al., 1973; Johnson et al., 1985), instead of the pair force/displacement, 

namely, the pair pressure/strain plays the key role. In other words, for a normal pressure 

imposed at infinity, the choice of the ―far points‖ will be insensitive with respect to the 

level of normal strain, provided they are taken a few wave lengths away in the normal 

direction from the contact site. Finally note that this special case represents an interest for 

identifying the contact approach in the problem of rough contact (see, e.g., Barber, 2003; 

Jones, 2004; Kuzkina and Kachanov, 2015). 

With regard to numerical analysis of contact interaction, the concept of ―far points‖ 

implies their specific choice, because as it was shown above, a not arbitrary extension of 

the body domains (for a fixed pair of ―far points‖) can be introduced without careful 

examination. In the spirit of the theory of local contact by H. Hertz, the approach of the 

―far points‖ represents the measure of the local contact deformation, since the global 

deformations of the contacting bodies are neglected in the Hertzian theory. Therefore, 

while solving the problem of local contact by numerical methods, the global 

deformations should be estimated as well. 

Thus, the concept of ―remote points‖ is, as a rule, legitimate in the class of 

considered problems, although for certain combinations of elastic constants and the 

specific weight it may become questionable (particularly in 1-D and 2-D problems).   
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Appendix A. Integral equation for the contact pressure density in 3-D case  

We denote by  p ,  0 , the contact pressure density. The equilibrium equation 

has the form  

 



0

2 cossin)(2 PdpR                     (A.1) 

where P  is the resultant force of the body forces (see Eq.(3.15)). In accordance with the 

solution of the axially symmetric problem of loading of an elastic sphere by a unit point 

force balanced by the uniformly distributed body forces (Bondareva, 1969), the radial 

displacement of the surface points is given by the integral 
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Function ),,y(U  is expressed in terms of the complete elliptic integral of the first kind 

)k(K  and has the form: 
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Constants rA  and m  depend solely on Poisson’s ratio: 
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Substituting the expression (A.2) into the contact condition 

 


  0,
cos

)( R
R

ur  

we obtain the integral equation (Bondareva, 1971): 
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vdpH
R

r   ,        0              (A.4) 

with the kernel (A.3) and the right-hand side  
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The asymptotic solution of Eq.(A.4) was obtained by Bondareva (1971) using 

Aleksandrov’s method (see the book of Aleksandrov and Pozharskii, 2001), and the 

asymptotically exact approximate solution of Eq.(A.4) was given by Argatov (2005). 

 Introducing a small parameter 
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We also introduce the following notation: 
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Making the change of variables (A.6), we rewrite Eq.(A.4) in the form 
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and the equilibrium equation (A.1) takes the form 





2

1

0

2/322

22

2

2)1(

)1(
)(

R

P
dt

t

tt
tq 




                       (A.9) 



 

 29 

 

Thus, the integral operator corresponding to the axisymmetric contact problem for an 

elastic half-space is identified explicitly (see the left-hand side of Eq.(A.8)). 

Now, we rewrite Eq.(A.8) in the form 
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and function x(w  is defined by Eqs. (A.5) and (A.7)2. 

 Making use of the previously obtained general solution (see, e.g., Alexandrov and 

Pozharskii, 2001), we represent the solution )x(q  of Eq.(A.10) in the form: 
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with )x(u  given by (A.11). From the condition that the contact pressure vanishes on the 

boundary of the contact area, we have 01 )(F , i.e., 
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As implied by the equality (A.14), formula (A.12) can be rewritten as 
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 Substituting expression (A.15) into formula (A.9) and integrating by parts in the 

internal integral, we obtain 
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From Eq.(A.15), we derive the following expression for the maximum of the contact 

pressures (at the pole of the sphere): 

 ds
s

)s(F
)(q 




1

0

1
0


                                     (A.17) 

 We now construct the two-term (leading term and first correction) asymptotic 

solution of Eq. (A.12) as 0 . The following asymptotic expansion can be established 

(Bondareva, 1971): 
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Note that 22rARe  where  21 , while the last integral can be expressed in 

terms of the harmonic number function  
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 It also follows, from results above (in particular, formula (A.7)), that  
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According to the Hertzian theory, contact pressure is given by  
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 We consider the expression (A.20) as a first approximation, which can be refined by 

constructing the two-term asymptotic approximation for the coefficient 0q . The 

substitution of (3.37) into the integral equation (A.17) yields an approximate equation for 

0q . Applying the asymptotic formula (A.18) we obtain  
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Performing the integrations, substituting into formula (A.13) and accounting for the 

asymptotic expansion (A.19) we find 
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where  211 /)(  . Taking the limit as 01x , we obtain 
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and neglecting terms of the order of 2  in the integrand of (A.16) we finally arrive at 
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Using (A.21), we obtain 
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Using again (A.21), in conjunction with Eq. (A.17) yields 
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With the account of the condition 01 )(F  ensuring that the contact pressure does not 

have a singularity at the contact boundary, we have 
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 The last three equations interrelate the three unknown quantities  ,  , and 0q . After 

some algebra we obtain formula (3.30) for the vertical displacement of the center of the 

sphere, as a function of the applied load.  
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Appendix B. Integral equation for the contact pressure density in 2-D case  

In accordance with the solution );( 
xxG  of the problem of loading the elastic disk   

by a unit point force )sin(cos 21 ee    applied at the point )sinR,cosR(  x  and 

balanced by the uniformly distributed body forces )sin(cosS 21
1

ee   , we can 

represent the solution )( xu  of the original contact problem in the form  
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where )(p  , ),(   , is the contact pressure density. The contact force is  









 dRpP cos)(                                        (B.2) 

Note that P  must satisfy the equilibrium equation for the disk   (see Eq.(2.14)). 

 In accordance with formulas (2.10) and (B.1), the radial displacements of the surface 

points are represented by the integral 
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where )sin,cos(  RRx ,  while the kernel function is given by  
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Substituting the expression (B.3) into the contact condition (see formula (2.4)) 
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we obtain the following integral equation: 
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To construct an asymptotic solution to Eq.(B.5) in the case of local contact when 1 , 

we replace the kernel (B.4) of Eq.(B.5) by the following asymptotic representation: 

|)(|O||ln)()(gr   45188                          (B.6) 

 Using (B.6), Eq.(B.5) takes the form 
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Now, in view of (B.2), Eq.(B.7) can be rewritten as 
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Substituting the Hertzian density 
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into Eq.(B.8), we arrive at the equation 
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From Eq.(B.10), it follows that 
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We note that, in view of the relation Rl  , Eqs. (B.9) and (B.11) coincide with Eqs. 

(2.32), respectively.  

 

 

 



 

 34 

 

Table 1. The constants appearing in formula (3.50) for several typical values of Poisson’s ratio  . 

 

  0.0 0.1 0.2 0.3 0.4 0.5 

K   0.5 0.9564 1.305 1.5379 1.6486 1.6316 

KC 0  0.691 0.7708  1.9431  2.8169  3.3967  3.7129  

 

 

Table 2. The dimensional quantity 0 / . 

Material Shear Modulus,  , 

(GPa) 
Density, 0 , 

(×1000 kg/m³) 

Parameter )/( 0g  

(×10
6
 m) 

Aluminum [Al] 26 2.71 0.979 

Aluminum Alloy 26 – 30 2.64 – 2.8 1.005 – 1.093 

Brass 36 – 41 8.4 – 8.75 0.437 – 0.478 

Bronze; Regular 36 – 44 7.8 – 8.8 0.471 – 0.51 

Copper [Cu] 40 – 47 8.94 0.457 – 0.536 

Glass 19 – 24 2.4 – 2.8 0.808 – 0.875 

Iron (Cast) 32 – 69 7 – 7.4 0.466 – 0.951 

Magnesium Alloy 17 1.77 0.98 

Monel (67% Ni, 30% Cu) 66 8.84 0.762 

Nickel [Ni] 80 8.89 0.918 

Nylon; Polyamide 0.75-1 1.1 0.07 – 0.093 

Rubber 4102   – 310  0.96 – 1.3 510126.2   

– 510849.7   

Steel 75 – 80 7.85 0.975 – 1.04 

Titanium [Ti] 40 4.54 0.899 

Titanium Alloy 39 – 44 4.51 0.882 – 0.996 

Gold [Au] 28.819 19.32 0.152 

Silicon [Si] 79.9 2.33 3.499 

Silver [Ag] 30 10.49 0.292 

Tin [Sn] 15.44 7.310 0.216 

 


