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INTERPRETIVE SUMMARY 1 

Lactation responses to fat and protein supplementation in the dry period. By Jaurena et al.  2 

Dairy cow nutrition during the dry period (DP) can be critical to dairy enterprise profitability. We 3 

hypothesized that supplementing grass silage with extra protein (Pr) or fat (F) during the DP would 4 

improve subsequent milk production or composition. Supplementation in the DP enhanced the cow´s 5 

body condition score and Pr supplementation increased the Longissimus dorsi depth, the calf birth weight 6 

and subsequent milk Pr concentration. Supplementation with F in the DP reduced milk casein 7 

concentration at wk 3 of lactation, but mature cows (parity ≥ 3) fed with F enriched-diets increased their 8 

backfat depth, milk volume and protein yields over 20 wk of lactation. 9 
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ABSTRACT 26 

An experiment was designed to study the effect of precalving supplementation with protein (Pr) 27 

and rumen-inert fat (F) on body composition, and subsequent milk production and composition. Forty 28 

Holstein-Friesian dairy cows were allocated to one of four dietary treatments in the dry period (DP) 29 

based on a first cut ryegrass silage, with 6 Mature (in their third or greater pregnancy) and 4 Young (in 30 

their second pregnancy) cows per treatment. These were: low Pr, low F (Ll): silage alone; low Pr, high 31 

F (Lh): silage with 10 % rumen-inert fat (mixed on a dry matter (DM) basis); high Pr, low F (Hl): silage 32 

with 5 % high protein corn gluten meal (CGM); high Pr, high F (Hh): silage with 5 % CGM and 10 % 33 

rumen-inert fat. All the diets were individually offered ad libitum and DM intake (DMI) was recorded 34 

daily during the DP. After calving all cows received ryegrass silage plus 8 kg/d of a commercial dairy 35 

concentrate. During the DP, DMI was higher for Mature than for Young cows. All animals recovered 36 

body condition score (BCS, 0.13 units/week, 1-5 scale) reaching a maximum BCS of 2.4 some days 37 

before calving. Precalving maximum muscle Longissimus dorsi (LD) depth was greater for Mature (47.5 38 

mm) than for Young cows (45.7 mm), and milk fat concentration was also higher for Mature than for 39 

Young cows (40.2 and 39.0 g/kg respectively). Supplementation with CGM increased maximum LD 40 

depth from 45.9 to 47.6 mm, calf birth weight (low Pr 43.2, high Pr = 46.3 kg), and milk crude protein 41 

concentration from 30.8 to 31.6 g/kg. Fat supplementation in the DP of the Mature cows increased 42 

maximum backfat depth (from 3.6 to 4.5 mm), milk yield (low fat = 26.3, high fat = 28.7 kg/day) and 43 

protein yields (low fat = 837, high fat = 899 g/day). Inclusion of F in the DP diets reduced casein 44 

concentration in milk at wk 3 of lactation from 26.3 to 24.5 g/kg. Milk CP yield was also increased by 45 

CGM supplementation when compared within cows receiving F supplemented silages (Lh = 832, Hh = 46 

877 g/day). It can be concluded that CGM supplementation in the DP increased subsequent milk protein 47 

concentration, but milk protein yield increased only in those animals also receiving F supplementation. 48 
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Dry period diet supplementation with F increased maximum backfat depth, milk and CP yields in the 49 

Mature cows, and led to more LD muscle mobilization during early lactation. Second calving cows had 50 

a lower DMI and milk fat concentration than Mature cows.  51 

 52 

(Key words: dry cow, milk production, milk quality, body composition) 53 

 54 

Abbreviation key: DP, dry period; F, dietary fat; Hh, High protein, high fat; Hl, High protein, low fat; 55 

LD, Longissimus dorsi; Lh, Low protein, high fat; Ll, Low protein, low fat; Pr, dietary protein; CGM, 56 

high protein corn gluten meal; TPr, milk true protein.  57 

58 
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INTRODUCTION 59 

The dry period (DP) of the dairy cow occurs during late gestation, when the highest nutrient 60 

demands from the conceptus and mammary tissue development occur (Prior and Laster, 1979; Bell et al., 61 

1995). Many authors have suggested the importance of the DP on the subsequent lactation performance 62 

of dairy cows (Grummer, 1998, Drackley, 1999), but many dairy producers still tend to think of the dry 63 

cow as having relatively low energy and protein requirements. The metabolic, physiological and 64 

behavioral changes associated with this relatively short period of the lactation cycle suggest a phase of 65 

high metabolic activity and producers should consider the DP as a linking-phase between successive 66 

lactations, when management aims to prepare the cow to cope with the next lactation. The aim of DP 67 

management should be to avoid subsequent metabolic disorders, to support fetal calf growth and 68 

mammary gland development, and optimize subsequent milk production and composition without 69 

compromising reproductive performance. 70 

Many cows start the dry period underconditioned, leading to cows calving below the optimum 71 

body condition score, and thereby becoming more susceptible to a variety of health problems (NRC, 72 

2001). Although the need to improve the body condition of underconditioned cows at drying off has been 73 

noted by some authors (Van Saun and Sniffen, 1996), achievement of a moderate amount of body 74 

reserves throughout the late pregnancy period is acknowledged as a key factor to maximise dairy cow 75 

productive performance in the subsequent lactation (Van Saun and Sniffen, 1996; Studer, 1998; NRC, 76 

2001).  Cows that begin lactation with a BCS of less than 2.8 (on a 0-5 scale) may not be capable of 77 

mobilizing enough energy to support maximal milk production (Otto et al., 1991), and may have sub-78 

optimal reproductive capabilities (Crowe, 2008). Previous experiments have highlighted the effects of 79 

body weight gain during the DP, focusing particularly on the consequences of overconditioning (Fronk 80 

et al., 1980), but little attention has been paid to recovery of body reserves by thin cows. Grum et al. 81 
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(1996) indicated that replenishment of the energy reserves of underconditioned cows during the DP could 82 

increase milk production and decrease the incidence of metabolic disorders during early lactation, but 83 

further research of the same group suggested that recovering BW during the entire DP could bring about 84 

peripartum health problems and impaired postpartum performance, even when animals did not become 85 

overconditioned (Douglas et al., 2006).  86 

Nutrition of dairy cows during the final stages of gestation is further complicated because any 87 

nutritional imbalance is exacerbated by a typical DMI reduction (Ingvartsen et al., 2000; NRC, 2001), 88 

and the fact that overfeeding can promote fetal overgrowth, which can lead to dystocia and other health 89 

problems in the cow (Mee, 2008). At the same time increasing fetal nutrient demands can bring about 90 

important maternal body tissue remobilization with undesirable consequences on the cow´s postpartum 91 

performance (Beever, 2006; Crowe, 2008).  92 

In underconditioned cows (BCS typically < 2), supplying large quantities of dietary energy as 93 

carbohydrate (grain) during the DP to improve BCS can lead to risk problems such as fatty liver (Grum 94 

et al., 1996).  However, supplying energy in the form of fat reduces this risk, because the liver is not a 95 

lipid depot during positive energy balance (NRC, 2001). In addition to this, feeds with a high 96 

concentrations of fat constrain energy supply to the fetus due to low conceptus access to NEFA and 97 

ketoacids (Bell, 1993), and it has been speculated that feeding fat to dry cows could lead to increased FA 98 

oxidation and reduced FA esterification in liver metabolism (Grum et al., 1996b). According to Grummer 99 

(1993), dietary fat could minimise the risk of fatty liver, ketosis or both by: (a) reducing FA mobilisation 100 

from adipose tissue, (b) alleviating the shortage of FA precursors for mammary triglyceride synthesis, 101 

and (c) by sparing glucose oxidation by reducing the requirement of NADPH for mammary FA synthesis.  102 

In other dietary considerations, supplementation with by-pass protein during the DP has shown 103 
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improvements in milk production and composition (Van Saun et al., 1993, Moorby et al., 1996, Moorby 104 

et al., 2002a, b), apparently mediated by replenishment of the labile body protein pool. 105 

The leading hypothesis in this study was that increasing the fat and protein supply to the dairy 106 

cow during the late DP would improve body fat reserves and labile body protein, hence supporting milk 107 

production and composition during the early phase of the subsequent lactation. The objective of this 108 

study was to examine the effect of precalving dietary protein and rumen-inert fat supply on body 109 

composition, and subsequent milk production and composition of under-conditioned dry dairy cows.  110 

MATERIALS AND METHODS 111 

General design and management 112 

In order to investigate the interactive effects of fat and protein in precalving diets, diets based on 113 

first cut ryegrass silage supplemented with a rumen-inert fat source and a rumen by-pass protein source 114 

were fed.  The fat source was Megalac® (Volac International Ltd, Royston UK), a calcium soap of long 115 

chain fatty acids from palm oil, containing 772 g/kg acid hydrolysis ether extract and, according to 116 

manufacturer label specifications, supplied 48% C16:0, 5% C18:0, 36% C18:1 and 9% C18:2. The rumen 117 

by-pass protein source was corn gluten meal.  118 

Forty Holstein-Friesian dairy cows at the Institute of Grassland and Environmental Research 119 

Trawsgoed Research Farm (Wales, UK) were allocated to one of four diets in a factorial treatment 120 

arrangement of rumen-inert fat (F) and protein (Pr). The experimental diets were all based on first cut 121 

ryegrass silage and were: low-Pr, low-F (Ll), the ryegrass silage only; low-Pr, high-F (Lh): the same 122 

silage with 10 % rumen-inert fat (mixed on a DM basis); high-Pr, low-F (Hl): the same silage with 5 % 123 

high protein corn gluten meal (CGM); high Pr, high-Fat (Hh): the same silage with 5 % CGM and 10 % 124 

rumen-inert fat. Animals were balanced for parity across treatments, with 6 Mature (in their third or 125 

greater pregnancy) and 4 Young (in their second pregnancy) cows per treatment.  The average age of the 126 
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16 Young cows at the start of the experiment was 36 (± 3.6) mo. In the MATURE group, there were 11 127 

cows in their third pregnancy (46 ± 0.7 mo old), 8 cows in their fourth pregnancy (58 ± 0.8 mo old) and 128 

5 cows in their fifth pregnancy (71 ± 1.5 mo old). 129 

Animals were adapted to the housing and were trained to use Calan gates over a 2-wk period prior 130 

to the start of the experiment. Experimental diets were offered from 6 wk before the expected calving 131 

date and cow measurements were collected from then until wk 20 of lactation. Rations were offered ad 132 

libitum (to approximately 10 % refusals) as TMR at approximately 9 a.m. each day. Fresh water was 133 

available throughout the day and mineral and vitamins were added to all TMR according to manufacturer 134 

(Richard Keenan UK Ltd., Kenilworth, UK) specifications.  135 

When cows were judged by dairy staff to be about to calve (by changes in behavior and udder 136 

volume), they were moved to individual straw pens where they were introduced to the lactation diet. This 137 

comprised ad libitum access to ryegrass silage with 4 kg (fresh matter)/d of a dairy concentrate.  The 138 

composition of the concentrate, per kg freeze DM, was: 13.5 MJ of ME, 225 g CP, 225 g NDF, 111 g 139 

ADF, 237 g starch, 54 g acid hydrolysis ether extract. After calving all cows received ad libitum access 140 

to the same ryegrass silage together with a daily allocation of concentrate feed.  Immediately after calving 141 

the fresh matter quantity of concentrate offered to the cows was increased in steps (4, 5, 6, 7 and 8 kg/d 142 

respectively for days 0 to 1, 2 to 3, 4 to 5, 6 to 7 and 8 d of lactation), and after the first 8 d of lactation, 143 

all cows were offered 8 kg/d for the remainder of the experiment.  144 

Feed sampling and analysis 145 

The silage was prepared from a first cut ryegrass-dominated sward ensiled using a silage 146 

inoculant (Ecosyl Bio-products Ltd., UK) in two adjacent bunkers. Representative samples of all feeds 147 

(silage, CGM, Megalac, TMR and concentrates) were collected weekly, and pooled to provide 2 samples 148 

per month and stored frozen until analyzed. Fresh (thawed) samples of silage were analyzed for DM (by 149 
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freeze drying to constant weight), pH, ammonia, lactic, acetic, propionic and butyric acids. All other 150 

analyses of silage or concentrate samples were conducted on freeze-dried material.  151 

Aqueous extracts of silage samples were prepared by mixing 20 g of thawed silage with 100 mL 152 

of distilled water, and kept at 4ºC overnight; pH was measured in the solution after allowing it to 153 

equilibrate with room temperature for 30 min. Samples were then filtered through fast flow filter paper 154 

and aliquots of the filtrate were pipetted into microcentrifuge tubes and frozen for later analysis. Volatile 155 

fatty acid concentrations were determined by gas chromatography (Zhu et al., 1996). Lactic acid 156 

concentration was determined by a spectrophotometric technique using a kit specific for L-lactic acid 157 

(procedure 826-UV; Sigma-Aldrich Co. Ltd., Dorset, UK), followed by a second determination on the 158 

same sample using the specific D-lactic acid dehydrogenase (Sigma-Aldrich product L-9636). Ammonia-159 

N concentration of silage was determined by the reaction of ammonia with salicylate and 160 

dichloroisocyanurate in alkaline solution to produce a substituted indophenol blue. The color was read 161 

in a ChemLab system 4 colorimeter (ChemLab Instruments Ltd., Great Dunmow, Essex, UK) linked to 162 

a continuous flow analysis system. Analysis of feed concentrations of organic matter, CP, NDF, ADF, 163 

water soluble carbohydrates, ether extract, and acid hydrolysis ether extract were completed as described 164 

by Dewhurst et al. (2000).  Feed starch concentrations were determined as described by Moorby et al. 165 

(2016). 166 

Measurements and sample collection on animals  167 

Cows were individually offered their allocated diets on a daily basis throughout the experiment 168 

using Calan gates. Feed refusals were removed and weighed on Mondays, Wednesdays and Fridays to 169 

estimate DMI on a daily basis. Dry matter intake was initially calculated on an oven DM basis (drying 170 

at 100ºC overnight) and later corrected to a freeze DM basis (freeze drying to a constant weight).  171 
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Animal BW, BCS, and depths of Longissimus dorsi  (LD) and backfat  were measured after morning 172 

milking from 6 wk before anticipated calving (i.e., wk –6) until wk 20 of lactation. Body condition score, 173 

LD and backfat were assessed weekly from wk –6 to wk 8 of lactation, and once every 4 wk from wk 9 174 

of lactation until the end of the experiment at wk 20 of lactation. Around calving (-10 to +10 days of 175 

parturition) all these measurements were performed more frequently, on each Monday, Wednesday and 176 

Friday. After calving, BW was automatically recorded daily after each morning milking and averaged 177 

on a weekly basis. Body condition score was assessed by the same operator throughout the experiment 178 

using a 0 to 5 scale (0-5 scale, Mulvany, 1977). Longissimus dorsi and backfat depths were measured 179 

perpendicular to the skin using real-time ultrasound imaging at the fifth lumbar process (Concept\MCV 180 

Ultrasound scanner, Dynamic Imaging Ltd., Livingstone, UK). Udder volume was estimated assuming 181 

the udder to be spherical (volume, cm3 = 4/3 × π × r3) as described in Jaurena (2003). 182 

Milk yields were measured and recorded automatically at each milking and samples were taken 183 

until wk 20 of lactation: milk samples were collected from each cow at two consecutive milkings weekly 184 

and analyzed for fat, protein and lactose by infrared milk analysis (National Milk Records Central 185 

Laboratory, Somerset, UK). Gross energy of the milk samples was estimated by the formulae of Tyrrell 186 

and Reid (1965; quoted by AFRC, 1993) using milk fat, protein and lactose contents for the current 187 

lactation data, and the formulae based on milk fat and protein contents for the previous lactation data.  188 

At wk 3 and 8 of lactation, an extra sample of milk was taken and analyzed for milk CP fractions. Milk 189 

CP (total N × 6.38) was estimated in duplicate by Kjeldahl analysis, and milk protein fractions were 190 

separated according to the International Dairy Federation Standard (FIL-IDF, 1964) into true protein 191 

(TPr), casein N (CN), non-protein N (NPN), and whey proteins by difference. Milk urea concentration 192 

was estimated by a Sigma kit for urea-N determination (No. 640), and read spectrophotometrically at 193 

570 nm. 194 
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Statistical analysis 195 

Preliminary analysis of results showed an important interaction of the dietary factors under study 196 

with animal maturity (Young versus Mature cows). Consequently, data was analyzed in a factorial 197 

arrangement (2 × 2 × 2) of maturity, Pr and F supplementation in a complete randomized design. 198 

Statistical analyses were carried out using GenStat (5th edition; Genstat Committee, 2000), and unless 199 

otherwise stated fitted to the following model: 200 

Yijk = µ + Cov + M + Pr + F + M × Pr + M × F + Pr × F + M × Pr × F + ε 

Where: µ is the grand mean; Cov, covariable; M, Maturity; Pr, Protein; F, Fat; and ε is the random error 201 

estimated by the residual of the model.  202 

The DMI data from the DP were fitted to an exponential model (y = a + b × [1-bk×days]) using the 203 

Genstat Standard Curves procedure (GenStat Committee, 2000). Starting BW measurements and BW 204 

measured at the first wk of lactation were used as covariates for intake data for pre- and post-calving 205 

periods were respectively to allow for differences in cow body size. Pre- and post-calving weekly DMI 206 

means were studied by linear correlation analysis. 207 

Maximum values before calving, and minimum values after calving for BW, BCS, backfat and 208 

LD were analyzed by analysis of covariance using the first measurement of each variable in the DP as 209 

the covariate. Analysis of the time (in wk) between maximum precalving BCS, BW, LD and backfat 210 

records and calving was carried out using a complete randomised block design (blocking by cow). A 211 

similar analysis was completed for the interval between calving and minimum record postpartum. 212 

Calf birth weights were analyzed by using calf sex as an additional factor in the model. Milk 213 

composition and yield (volume and components) were analyzed using each animal’s previous lactation 214 

records as covariates. Milk protein fraction concentrations and yields at wk 3 and 8 of lactation were 215 

analyzed by a model including previous lactation CP concentrations or yields as covariates.  216 
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Health events were analyzed by logistic regression (GenStat Committee, 2000). Health events 217 

including retained placenta, reproductive tract infections, cystic ovary, postpartum anestrus and hormone 218 

treatment to resume reproductive cycling were grouped together and analyzed as “reproduction 219 

problems”. Incidents of general lameness, sole ulcers and interdigital dermatitis were grouped and 220 

analyzed as “feet problems”. 221 

RESULTS 222 

All cows were dried off 8 wk before their expected calving date, and calved between 1 September 223 

and 19 October 1999. The average time on precalving treatment was 39 to 44 d.  224 

Five cows were diagnosed and successfully treated for mastitis within the first wk of calving, one 225 

cow was treated for milk fever and successfully recovered after calving. Crude protein fraction data 226 

collected from the mastitic cows (which were on treatments Ll: 1, Lh: 2, Hl: 1 and Hh: 1) were excluded 227 

from subsequent statistical analyses. One cow in the Mature-Hl treatment group calved twins. One cow 228 

(treatment Lh) did not adapt to using the Calan gates, and could not be replaced with a suitable animal, 229 

therefore only the remaining 39 animals were used for the final analyses.   230 

Although the study of health problems was beyond the scope of this work due to the limited 231 

number of animals, a higher incidence of reproductive problems was detected in those cows receiving F 232 

supplementation (P ≤ 0.05; Ll = 1, Hl = 1; Lh = 6; Hh = 3). Furthermore, an F × Pr interaction (P ≤ 0.05) 233 

occurred for total health incidents (Ll = 2; Hl = 4; Lh = 8; Hh = 7). No differences were detected for the 234 

incidence of calving problems, mastitis or milk fever. 235 

Feed characteristics and intake 236 

Feed characteristics were homogeneous throughout the experiment (Table 1 and 2). Although the 237 

CP concentration of Hh ration was significantly (Tukey test, P < 0.05) higher than that of diet Lh, 238 

inclusion of CGM with ryegrass silage did not lead to a statistically significant difference (Tukey test, P 239 
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> 0.05; Hl vs. Ll ration). Ether extract concentrations were similar for Ll and Hl rations, and were 240 

considerably lower than concentrations in Lh and Hh rations.  241 

Analysis of intake data showed that Mature cows ate more than their younger counterparts (means 242 

of 13.2 and 11.1 kg/d respectively, SEM = 0.27, P < 0.001) in correspondence with their BW, but when 243 

adjusted for initial BW, DMI increased from 11.8 to 13.3 kg/d within the high F treatments in association 244 

with CGM supplementation (PFt×Pr < 0.05; Table 3), this increase was particularly large for the Mature 245 

cows offered the high F rations (Mature-Hh; PM×F×Pr < 0.05), as they ate 26% more than those offered 246 

the Lh treatment (P ≤ 0.05). During the DP, DMI tended to decrease between 3 and 17 d before calving 247 

(Figure 1). In addition to this reduction, analysis of DMI measurements made before the animals were 248 

dried off (data not shown) indicated that the DMI of 60 % (23) of the animals had started to decrease 249 

before the dry period started, and this is seen in the overall intake patterns of groups Young-Lh, Mature-250 

Hl and Mature-Hh in Figure 1.  251 

After calving, Mature cows consumed more DM (mean of 18.2 kg/d) than the Young cows (16.7 252 

kg/d; P < 0.001, model without covariate), but there were no differences in covariate-adjusted DMI, with 253 

grand means for the first 20 wk of lactation for total DMI, silage DMI and proportion of concentrate of 254 

17.6 kg/d, 10.6 kg/d and 40 % respectively.  255 

Body composition characteristics 256 

Cows started the experiment with mean actual BCS of 1.6 (SEM = 0.10) and 2.0 (SEM = 0.08), 257 

and BW of 593 kg (SEM = 10.2) and 686 kg (SEM = 12.5), for Young and Mature groups respectively 258 

(P < 0.01; model without covariable; Table 3). Mean maximum LD depth was greater for the Mature 259 

group (46.4 mm) than for the Young group (45.6 mm; P = 0.047), and increased with CGM 260 

supplementation from 45.6 to 47.4 mm (SEM = 0.64; P = 0.06). Supplementation with F increased 261 

maximum backfat thickness only in the Mature animals (Mature-low F = 3.6, Mature-high F = 4.5 mm; 262 
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SEM = 0.20, PF < 0.05), and reduced the time from maximum BCS (PF = 0.039) and backfat (PF = 263 

0.024) to calving. Body tissue mobilization started before calving as shown by Figures 2 and 3, and time 264 

between the maximum BCS, BW, LD and backfat and calving were presented in Table 3. The maxima 265 

of the various variables differed in time: backfat (3.45a wk) > LD (2.87a wk) > BCS (1.63b wk) > BW 266 

(1.29b wk; numbers with differing superscript differed significantly, P < 0.05).  267 

The minimum LD was recorded at 5.5 wk postcalving (grand mean for all treatments; Table 4), 268 

despite differences due to maturity (Mature > Young cows; PM < 0.05), protein inclusion (high Pr > low 269 

Pr; P = 0.045), and F supplementation (low F > high F; PF = 0.007). Postpartum LD loss was greater for 270 

those cows receiving rations with F during the DP (P = 0.042). There were also significant differences 271 

in the time between calving and minima of the different variables studied (i.e. BW, 4.2c; LD, 5.6b; BCS, 272 

6.1b; and backfat, 11.1a wk; P < 0.001).  No differences among treatments were observed in estimated 273 

udder volume at calving (grand mean = 38.5 L, SEM = 1.53; P > 0.10).  274 

Calf birth weights, milk composition and yield  275 

Male calf birth weights were higher than those of females calves (47.0 and 42.6 kg respectively; 276 

SEM = 1.25 kg, P = 0.014), and cows receiving Pr supplementation delivered heavier calves than their 277 

non-supplemented counterparts (low Pr = 43.2, high Pr = 46.3, SEM = 1.10 kg, P = 0.048). There was 278 

no difference in birth weights of calves from Young and Mature cows. Colostrum CP concentration 279 

averaged 141 g/kg and did not show any differences among treatments (P > 0.05). 280 

Cow maturity was associated with higher milk fat concentrations (Mature cows = 40.2; Young 281 

cows = 39.0, SEM = 0.49 g/kg; PM = 0.09; Table 5), and milk (PM×F < 0.10) and protein yields (PM×F = 282 

0.01) of F supplemented cows. Inclusion of CGM in the DP diet tended to increase milk protein 283 

concentration (between 1 and 1.5 g CP/kg, PP = 0.086), particularly during the first month postpartum, 284 
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but milk protein yield only increased when CGM was included with the F-supplemented silages (P < 285 

0.07); within the low F DP treatments the average milk protein yield was 839 g/d (P > 0.10). 286 

Analysis of milk protein fractions showed lower CN at wk 3 of lactation after inclusion of F in 287 

the precalving diet (low F = 26.3, high F = 24.5 g/kg; PF = 0.002; Table 6); and a maturity × F interaction 288 

for milk NPN and urea (which was deemed meaningless due to the lack of difference when tested by 289 

least significant difference P = 0.05). At wk 8 of lactation, the only experimental effect on milk 290 

composition was on urea concentration (PM×Pr×F = 0.001) associated with CGM inclusion (0.33 g/kg for 291 

the Young-Hh group versus 0.27 g/kg for the Young-Lh group; P < 0.05) and within the Mature group 292 

(Mature-Ll = 0.25 g/kg, Mature-Hl = 0.30 g/kg; P < 0.05). Otherwise, the overall mean milk urea 293 

concentration for Young cows in low F diets was 0.30 g/kg, and for Mature cows in high F diets was 294 

0.24 g/kg. The other protein fraction grand means were: CP = 32.9 g/kg; TPr = 30.1 g/kg; casein = 23.4 295 

g/kg and WP = 6.7 g/kg. 296 

Milk yield, CP, TPr, CN and NPN yields all increased in Mature cows with inclusion of dietary 297 

F in the DP (PM×F < 0.05; Table 7). The F×Pr interaction effect was significant for CP, TPr and CN 298 

yields. Within the low F treatments this difference was probably brought about by a depression in CN 299 

yields with Pr supplementation (Ll = 828, Hl = 717 g/d, P < 0.05). At wk 8 of lactation the inclusion of 300 

F in the DP diet led to increased milk yields only in the Mature animals (PM×F ≤ 0.01). Milk urea yields 301 

within the young animals (PM×Pr×F = 0.029) showed significant differences between Lh (6.9 g/d) and Hh 302 

(9.1 g/d; P < 0.05) DP groups.  303 

DISCUSSION 304 

The lowest incidence of health problems was associated with cows offered ryegrass silage alone 305 

in the DP (i.e. Ll). Although the number of animals was too small to draw definite conclusions, the higher 306 

incidence of reproductive and health problems among animals that received additional dietary fat during 307 
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the DP did not agree with the beneficial effects hypothesized by some authors (Kronfeld, 1982, 308 

Grummer, 1993, Grum et al., 1996), and would  support the concerns expressed by Douglas et al. (2006) 309 

about the potential detrimental effects of allowing ad libitum access to diets containing moderate to high 310 

energy densities throughout the entire DP. 311 

Feed characteristics and intake  312 

Both silages used pre- and postcalving showed acceptable fermentation characteristics and were 313 

within the range of values commonly found in the UK (Haigh, 1996a, b). The ash content of Megalac 314 

was higher than manufacturer specifications because the ashing procedure used (combustion at 550ºC) 315 

could have retained Ca as CaCO3 instead of CaO (Dedman and Owen, 1962). 316 

The greatest differences in DMI in the DP were between the two age groups as a reflection of 317 

BW differences, so that as a proportion of BW, DMI recorded at the beginning of the experiment agreed 318 

with other reports (Van Saun and Sniffen, 1996, Dewhurst et al., 2000). These results agree with studies 319 

that have shown that primigravid and even second-calving cows, as in this experiment, have lower DMI 320 

than multiparous cows (Grummer, 1998, Ingvartsen and Andersen, 2000), and thus should be considered 321 

separately from mature cows for diet formulation, as recognized by the NRC standard for dairy cattle 322 

(2001).  323 

Inclusion of fat in dairy cow rations, despite the potential improvements in energy intake, has 324 

often been found to induce a reduction in feed intake in lactating dairy cows (Choi and Palmquist, 1996, 325 

Staples et al., 1998).  In our study, a noticeable response in DMI during the DP was observed to CGM 326 

supplementation (which induced an increase in diet CP concentration from 143 to 170 g/kg DM) in the 327 

cows fed with high fat concentrations. This was particularly significant for the Mature cow group. In this 328 

experiment the Hh ration was 19% higher in CP concentration than the Lh ration, which could have 329 

brought about a positive response in microbial activity due to the release of dietary AA in the rumen 330 
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(Orskov, 1982, Dawson et al., 1988). Furthermore, voluntary intake increases could have been promoted 331 

by the increase in metabolizable protein supply, something that is not frequently reported but has 332 

previously been observed in lactating dairy cows (Allen, 2000, Faverdin et al., 2003). Precalving DMI 333 

(average of wk -5 to -1) of Young and Mature cows offered the low F rations was 1.9% of their BW, but 334 

within the Mature group offered the high F rations DMI increased from 1.8% (Mature-Lh) to 2.2% BW 335 

(Mature-Hh) in association to PM supplementation. The typical DMI reduction during the DP as calving 336 

approaches constitutes a restriction in energy and nutrient inputs during a period of particularly high 337 

nutrient demands. The pattern of intake reduction showed, as in other reports, the DMI decline before 338 

the DP (Ingvartsen and Andersen, 2000) and the final drop during the last 3 wk of gestation (Van Saun 339 

et al., 1993, NRC, 2001). 340 

Body composition characteristics 341 

All cows were in relatively poor condition at dry-off (about 1.8 on a 0-5 scale) in relation to 342 

targets reported in the literature, e.g., 2 to 3, Garnsworthy (1988) and Palmquist et al. (1993); 2.5 to 3 343 

(Van Saun and Sniffen, 1996); 3 (Mulvany, 1977, Moorby et al., 2002a). However, the cows in the 344 

current study recovered significant quantities of BCS after being dried off and achieved a maximum 345 

precalving BCS of 2.4 a few days before calving. The inclusion of fat in the precalving diet increased the 346 

maximum backfat thickness by a mean of about 1 mm in the Mature cows (a mean of 4.54 mm versus 347 

3.53 for Young cows, SEM = 0.247), and reduced the time interval between maximum BCS and backfat 348 

thickness, and calving. These results suggest that fat supplementation during the DP improved the energy 349 

balance of Mature cows and delayed the initiation of tissue mobilization before calving. 350 

The depth of LD at the loin was measured as an estimate of labile body protein (Moorby et al., 351 

2002a). All animals gained LD depth during the DP, and started mobilization of LD before calving, in 352 

agreement with Moorby et al. (2002b). Maximum LD muscle depth increased significantly with cow 353 



 

 17 

maturity and Pr supplementation, with both diet and maturity producing different patterns of LD 354 

mobilization over the course of the experiment. This indicates that labile body protein can be increased 355 

by the provision of a protein supplement during the DP, and this would increase BCS as well, particularly 356 

for cows in poor body condition (Jaurena et al., 2005).  357 

Cow maturity had widespread effects, as it was the significant main factor found to influence 358 

initial BCS and BW, maximum BCS, and maximum LD depth. Response differences have been noted 359 

due to age at first calving (2 versus 3 years old, Dewhurst et al., 2002) and parity on lactation performance 360 

(Waltner et al., 1992, Dewhurst et al., 2002) and pattern of change of BCS (Waltner et al., 1992). Animals 361 

that calve for the first time at about two years old are still growing during the first and second lactations, 362 

which was indicated in this study by differences in plasma somatotropin concentrations observed in this 363 

herd (data not shown), which could affect the partitioning of nutrients between fetal and maternal tissues. 364 

There can also be differences in the response to DP nutrition between first calving heifers and older cows 365 

(Robinson et al., 2004), which is probably a consequence of the same effect, and highlights the 366 

importance of managing young and older dry cows separately under commercial conditions.  367 

Postpartum mobilization of body tissues was apparent through losses in BW and BCS. Changes 368 

in backfat thickness and in plasma concentrations of NEFA and BOHB (data not shown) indicate the 369 

mobilization of body fat, and losses of LD depth indicate concomitant body protein mobilization.  370 

Supplementation of the DP diet with CGM reduced the amount of LD lost, and increased the minimum 371 

depth of LD measured during early lactation, agreeing with the results of Hutjens (1996) and Moorby et 372 

al. (2002b) respectively. Inclusion of fat in the DP ration did not affect the maximum LD depth before 373 

calving, but led to greater LD losses postpartum, particularly in the Mature animals. This likely due to 374 

the higher milk and protein yields observed from the Mature cows offered high fat DP rations, and agrees 375 

with the hypothesis of Moorby et al. (2002b) that the availability of body nutrients to support milk 376 
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production does not drive increased rate of milk synthesis. Further support for this is provided by changes 377 

in plasma prolactin concentrations among the animals in this study (data not shown). 378 

The developing udder and conceptus together constitute an increasing proportion of body weight 379 

gain as the animal approaches calving. No differences in udder volume were detected due to the 380 

experimental treatments, but a positive correlation was detected between udder volume and milk yield at 381 

wk 3 of lactation. The amount of secretory tissue is an important determinant of milk yield, and selection 382 

for output has resulted in a positive relationship between mammary gland size and milk yield (Tomar, 383 

1973). Although external non-invasive measurements associated with udder volume have proven to be 384 

effective in estimating udder weight (Dewhurst et al., 1993), it must be recognized that udder volume is 385 

a crude measurement of total tissue mass, and does not provide information on the relative proportion of 386 

secretory tissue or cisternal volume (Dewhurst and Knight, 1993). 387 

Calf birth weight, milk composition and milk yield  388 

Colostrum protein concentration was within the normal range (approximately 70 to 230 g/kg; 389 

Kehoe et al., 2007) expected for Holstein dairy cows, and as in previous reports (Tesfa et al., 1999, Santos 390 

et al., 2001), no association was found between colostrum composition and precalving diet, or cow 391 

maturity, as would suggest differences in density reported by Robinson et al. (2009). 392 

There were limited effects of experimental treatment on milk composition over the first 20 wk of 393 

lactation. Milk protein concentration increased with the inclusion of the protein supplement in the DP 394 

diet, as previously noted for primiparous (Van Saun et al., 1993, Santos et al., 1999) and multiparous 395 

(Moorby et al., 1996) Holstein dairy cows. However, other reports have failed to find any relationship 396 

between precalving CP intake and subsequent milk production or composition (Wu et al., 1997, Putnam 397 

and Varga, 1998, Huyler et al., 1999, Murphy, 1999), which could be associated with the protein 398 

concentration or quality of the control diets. Analysis of milk protein fraction concentrations at wk 3 and 399 



 

 19 

8 of lactation found typical values for CN and whey proteins concentrations, but NPN was slightly above 400 

the range 250 to 300 mg/L of milk assumed as normal (DePeters and Ferguson, 1992). Milk urea 401 

concentrations were within the normal range (DePeters and Ferguson, 1992), and did not exceed the 402 

threshold set for Holstein dairy cows fed according to requirements (Jonker et al., 1998) and rumen-403 

degraded protein balance (Schepers and Meijer, 1998). 404 

Several small but significant effects of treatments were observed among milk and milk 405 

component yields.  The Mature cows had higher concentrations of milk fat than Young cows, and DP Pr 406 

supplementation increased milk protein concentrations. However, fat supplementation of the DP diet of 407 

the Mature cows increased milk yield and protein yields, whereas no differences were detected for Young 408 

cows. Perhaps the most notable result was the effect of CGM supplementation on milk protein yield in 409 

fat-supplemented animals; this was associated with differences in DP diet CP contents and intake.  410 

The results obtained from the sets of milk samples studied at wk 3 and 8 of lactation indicated 411 

that the positive effect of precalving dietary fat diminished as lactation progressed, as is expected if 412 

mobilization of body tissues is playing an important role in lactation (Garnsworthy, 1988, Holter et al., 413 

1990). 414 

CONCLUSIONS 415 

Precalving supplementation of underconditioned dry dairy cows with both fat and protein 416 

apparently improved body fat reserves and labile body protein, and delayed body tissue mobilization, 417 

although differences were found between primiparous and multiparous cows. Precalving intakes of cows 418 

receiving the high fat diets were increased by CGM supplementation, particularly for Mature cows. 419 

Supplementation of the DP diet with protein also led to a significant increase in calf birth weight, and a 420 

small increase in milk protein concentration over the first 20 wk of the subsequent lactation, however, 421 

milk protein yield was only increased when the DP diet was also enriched with fat.  422 
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Animal maturity was a significant factor in this experiment as Mature cows ate more in absolute 423 

terms because they were bigger, and therefore had a larger labile body protein pool than younger cows. 424 

Overall, differences in feed intake indicated that dry period management should consider younger second 425 

calving cows as requiring diets with higher nutrient densities than older cows. 426 
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TABLES 1 

  2 

Table 1. Mean chemical composition of the diets used during the precalving period and the 
ryegrass silage offered after calving. Values in g/kg DM unless stated otherwise. 

 

Precalving experimental TMR1 

─────────────────────────────────── 
Postcalving 
─────── 

Ll 
─────── 

Hl 
─────── 

Lh 
─────── 

Hh 
─────── 

Silage 
─────── 

Mean SEM2 Mean SEM Mean SEM Mean SEM Mean SEM 

n 3  3  3  3  5  

DM,3 g/kg fresh matter 246  6.5 255 5.8 263  5.6 272 5.5 235 1.4 

Ash 95 4.0 85 3.2 106 0.6 99 1.3 80 3.0 

Crude protein 156 6.8 162 3.8 143 5.2 170 4.1 170 2.1 

Ether extract4 37 --- 41 --- 67 --- 85 --- --- --- 

Acid detergent fiber 287 2.0 275  4.9 266  6.3 244  5.6 284 4.6 

Neutral detergent fiber 461 2.8 452  7.6 434  6.2 414  5.2 471 8.1 

ADIN5 0.7 0.02 0.8 0.01 0.6 0.02 0.8 0.03 0.5 0.02 

WSC6 9.0 2.3 8.7 1.5 7.5 0.8 8.8 1.5 9.0 0.5 

Gross energy, MJ/kg DM 17.6 0.08 17.6 0.13 18.8 0.13 18.8 0.04 18.0 0.04 

EADig, MJ/MJ 7 0.70 --- 0.72 --- 0.67 --- 0.71 --- --- --- 

ME,8 MJ/kg DM4 10.5 --- 10.9 --- 10.5 --- 11.3 --- --- --- 

Fermentation characteristics   

pH 4.1 0.19 --- --- --- --- --- --- 4.0 0.06 

Ammonia-N, g/kg total N 100 30 --- --- --- --- --- --- 100 7 

Lactic acid 133.4 17.10 --- --- --- --- --- --- 114.6 6.44 

Acetic acid 19.8 4.04 --- --- --- --- --- --- 9.5 1.32 

Propionic acid 3.1 0.82 --- --- --- --- --- --- 0.6 0.03 

Butyric acid 7.1 4.23 --- --- --- --- --- --- 0.1 0.06 
 

1 Ll, Low protein, low fat, ryegrass silage; Lh, Low protein, high fat; Hl, High protein, low fat; Hh, High protein, 
high fat. 

2 Standard error of the mean. 
3 By lyophilization. 
4 From samples collected for in vivo estimates of whole tract digestibility. 
5 Acid detergent insoluble N. 
6 Water soluble carbohydrates. 
7 Apparent digestibility of energy. 
8 Metabolizable energy. 



 

 2 

3 Table 2. Mean chemical composition of concentrates used before and after calving. Values in 
g/kg FDM unless stated otherwise. 

 
Rumen-inert fat1 
────────── 

Corn gluten meal 
────────── 

Dairy concentrate 
───────────── 

Mean SEM2 Mean SEM Mean SEM 

N 3  3  7  

Dry matter, g/kg fresh matter 9803 --- 905 0.7 897 4.9 

Ash 242 6.8 24 9.4 82 1.8 

Crude protein 0.7 0.51 624 2.9 225 4.0 

NDF --- --- --- --- 225 7.0 

ADF --- --- --- --- 111 4.5 

Water soluble carbohydrates --- --- 3 0.0 88 2.7 

Neutral cellulase gamanase digestibility --- --- 951 12.8 --- --- 

Starch --- --- 198 9.0 237 13.3 

Acid hydrolysis ether extract 772 6.7 83 0.3 54 2.7 

Gross energy, MJ/kg 32.1 0.07 22.8 0.06 18.0 0.09 
1 Megalac® (Volac International Ltd, Royston, UK). 
2 Standard error of the mean. 
3 As indicated by the manufacturer.  
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Table 3. Mean treatment effects on precalving DMI and measurements of  BCS, BW, and loin depths of 4 
Longissimus dorsi (LD) and backfat of cows offered diets Hh, Hl, Lh, Ll during the dry period. 5 

Maturity:  Young 
──────────────── 

Mature 
───────────────── 

 Significant Factors 
─────────── 

Treatments:  Ll1 Hl Lh Hh Ll Hl Lh Hh SEM2 P3 

DMI, kg/day4 12.0 12.0 11.9 12.1 12.7 12.2 11.6 14.6 0.51 P×F*; M×P×F* 

Initial           

BCS  1.5 1.9 1.4 1.7 1.9 2.1 2.0 2.0 0.16 M*; P+ 

Body weight, kg 577 644 548 604 662 690 683 707 20.5 M***; P* 

LD, mm 38.8 44.3 37.6 43.8 40.0 45.5 45.2 40.5 2.37 NS 

Backfat, mm 2.8 3.2 2.7 2.3 3.4 3.4 3.4 3.1 0.45 NS 

Maximum5           

BCS  2.4 2.4 2.4 2.3 2.5 2.5 2.4 2.5 0.08 NS 

Body weight, kg 670 708 666 677 691 699 677 702 6.4 P***; F*; M×P×F* 

LD, mm 44.6 45.5 45.1 47.5 46.9 49.0 46.1 47.8 1.04 M*; P* 

Backfat, mm 3.6 4.3 3.2 3.8 3.4 3.9 4.7 4.4 0.28 F+; M×F** 

Maximum gain (units/wk)    

BCS, units/wk 0.15 0.15 0.13 0.10 0.14 0.13 0.12 0.14 0.026 NS 

Body weight, g/d 817 1405 1124  910 1315 1285 785 1505 153.9 P*; M×P×F** 

LD, mm/wk 2.45 1.21 3.01 1.65 1.46 3.30 2.40 2.55 0.865 NS 

Backfat, mm/wk 0.25 0.20 0.14 0.22 0.17 0.19 0.42 0.35 0.119 NS 

Weeks between maximum value and calving   

BCS  1.7 2.0 0.3 1.2 1.5 2.3 2.0 1.0 0.40 F*; M×P×F+ 

Body weight 1.5 1.0 2.0 1.0 1.2 1.2 1.7 0.8 0.35 P* 

LD 3.5 2.5 3.0 2.7 2.0 3.5 3.7 1.7 0.84 NS 

Backfat 4.2 3.0 3.0 1.5 4.7 4.5 3.0 2.3 0.92 F* 
 6 
1 Ll, Low protein, low fat, ryegrass silage; Lh, Low protein, high fat; Hl, High protein, low fat; Hh, High protein, high fat. 7 
2 Standard error of the mean for n = 6. 8 
3 M, Maturity; P, Protein; F, Fat; NS, not significant; +, P≤ 0.10; *, P≤ 0.05; **, P≤ 0.01; ***, P≤ 0.001. 9 
4 Covariate (initial body weight) corrected means. 10 
5 Covariate (first homologous data recorded) corrected means. 11 

12 
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Table 4. Mean treatment effects on postcalving measurements of BCS, BW, and loin depths of 13 
Longissimus dorsi (LD) and backfat of cows offered diets Hh, Hl, Lh, Ll1 during the dry period. 14 

Factors: Maturity2 
─────────── 

Protein 
──────── 

Fat 
──────────── 

Significant Factors 
──────────── 

 Y M SEM3 Low High Low High SEM4 P5 

n 16 24 --- 20 20 20 20 ---  

Minimum6          

BCS  1.8 1.8 0.06 1.7 1.9 1.8 1.8 0.06 Cov*** 

Body weight, g/d 569 583 9.0 569 586 581 574 6.6 Cov*** 

LD, mm 34 37 0.6 35 37 37 34 0.7 Cov***; M*; P*; F** 

Backfat, mm 1.1 1.5 0.14 1.3 1.4 1.4 1.3 0.14 M+ 

Postpartum loss       

BCS, units/wk 0.10 0.08 0.010 0.08 0.09 0.10 0.08 0.011 NS 

Body weight, g/d 1213 1107 160 1223 1076 1210 1090 175 M×P+7 

LD, mm/wk 1.5 1.3 0.12 1.6 1.2 1.2 1.6 0.14 P+; F*; M×P*8 

Backfat, mm/wk 0.14 0.20 0.036 0.21 0.14 0.16 0.19 0.039 NS8 

Wk between calving and minimum value     

BCS  5.6 6.6 0.91 5.7 6.6 5.5 6.9 1.0 NS 

Body weight 3.3 4.7 0.78 3.7 4.6 3.6 4.7 0.86 NS9 

LD 4.9 6.0 0.45 5.0 6.0 5.5 5.5 0.49 NS 

Backfat 12.6 10.0 1.21 9.6 12.4 11.7 10.3 1.33 M×P**10 
 15 
1 Ll, low protein, low fat, ryegrass silage; Lh, low protein, high fat; Hl, high protein, low fat; Hh, high protein, high fat. 16 
2 Y, young cows; M, mature cows. 17 
3 Standard error of the mean for n = 24. 18 
4 The same SEM for P and F factors. 19 
5 Cov, covariate; M, Maturity; P, protein; F, fat; NS, not significant; +, P ≤ 0.10; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. 20 
6 Statistical model with covariate of first homologous data recorded during the dry period.  21 
7 M×P+ for body weight loss, M-Low P = 1366, M-High P = 849, LSD (5 %) = 656; Y-Low P = 1010, Y-High P = 1417, LSD 22 

(5 %) = 803 g/d. 23 
8 M×P* for LD loss, M-low P = 1.7, M-high P = 1.0, LSD (5 %) = 0.51; Y-low P = 1.4, Y-high P = 1.6, LSD (5 %) = 0.63 24 

mm/d. 25 
9 Failed Bartlett’s test. 26 
10 M×P** for wk since calving to minimum backfat, M-low P = 6.5, M-high P = 13.5, LSD (5 %) = 4.9; Y-low P = 14.2, Y-27 

high P = 10.9, LSD (5 %) = 6.0 wk. 28 
  29 
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Table 5. Mean treatment effects on daily milk yield, composition and component yields of the first 20 30 
wk of lactation of cows fed with Ll, Lh, Hl and Hh diets1 during the pre-calving period. Values are 31 
covariate adjusted means for the M×F interaction. 32 

Maturity: Young 
──────────────── 

Mature 
──────────────── 

Significant factors 
─────────── 

Fat: Low Fat High Fat SEM2 Low Fat High Fat SEM P3 

n 8 74  114 12   

Yield, kg/d 27.5 26.3 1.21 26.3 28.7 0.99 M×F+ 

Fat, g/d 1038 1036 43.4 1084 1128 35.4 Cov+ 

Protein g/d 841 788 24.9 837 899 20.3 M+; M×F**; F×P*5 

Lactose, g/d 1272 1218 59.9 1242 1331 48.9 NS 

Fat, g/kg 39 39 0.8 41 40 0.6 Cov***; M+ 

Protein, g/kg 31 31 0.4 32 31 0.5 Cov***; P+6 

Lactose, g/kg 46 46 0.4 47 46 0.5 NS 

 33 
1 Ll, Low protein, low fat, ryegrass silage; Lh, low protein, high fat; Hl, high protein, low fat; Hh, high protein, high fat.  34 
2 Standard error of the mean.  35 
3 Cov, Covariate (previous lactation’s similar variable); M, maturity; P, Protein; F, Fat; NS, non-significant; +, P ≤ 0.10; *, P 36 

≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001.  37 
4 Data from 2 cows were removed for this analysis due to very low production. 38 
5 F ×P* Ll = 858, Hl = 820, Lh = 832, Hh = 877, SEM (5 %) = 20.8 g/d. 39 
6 P+ low protein = 31, high protein = 32, SEM (5 %) = 0.92 g/kg. 40 
  41 
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Table 6. Mean treatment effects on milk N fractions at 3 wk postcalving of cows fed with Hh, Hl, Lh, Ll 42 
diets during the pre-calving period. Values are covariate adjusted means. 43 

Maturity: Young 
───────────────── 

Mature 
───────────────── 

SEM2 Significant 
factors 

Treatments1: Ll Hl Lh Hh Ll Hl Lh Hh  P3 

n 4 4 3 4 5 5 4 5   

Milk protein fraction concentrations, g/kg        

Crude protein 32.7 34.8 32.3 32.9 34.5 33.3 32.7 33.4 0.89 Cov+ 

Non protein N 0.36 0.34 0.34 0.30 0.33 0.34 0.36 0.39 0.020 M×F* 

Urea N 0.03 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.002 M×F* 

True protein 30.4 32.5 30.0 31.0 32.4 31.1 30.4 30.9 0.83 Cov** 

Casein 25.4 26.5 23.8 24.2 27.3 25.7 24.3 25.2 0.72 F** 

Whey protein 5.0 6.0 6.2 6.7 5.0 5.4 6.1 5.7 0.62 Cov+ 
 44 
1 Ll, low protein, low fat, ryegrass silage; Lh, low protein, high fat; Hl, high protein, low fat; Hh, high protein, high fat. 45 
2 Standard error of the mean for n = 6. 46 
3 Cov, covariate (previous lactation average milk protein content); M, maturity; P, protein; F, fat; NS, non-significant; +, P≤ 47 

0.10; *, P≤ 0.05; **, P≤ 0.01 48 
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 49 Table 7. Mean treatment effects on milk N fraction yields (values in g/d unless otherwise 
stated) at 3 and 8 wk postcalving of cows fed with Hh, Hl, Lh, Ll diets during the pre-calving 
period. Values are covariate adjusted means. 

Maturity: Young 
─────────── 

Mature 
─────────── 

SEM2 Significant factors 
─────────── 

Treatments1: Ll Hl Lh Hh Ll Hl Lh Hh  P3 

N 4 4 3 4 6 6 6 6   

Wk 3 of lactation          

Milk yield, kg/d  30.5 26.3 27.0 26.0 31.9 28.4 34.1 37.0 1.88 Cov**; M**;M×F* 

Crude protein 998 914 877 862 1092 948 1100 1224 60.3 M**; M×F*; P×F* 

Non protein N 11 9 9 8 11 10 12 15 0.9 M**; M×F** 

Urea N 1.0 1.1 1.0 1.0 1.2 1.2 1.2 1.3 0.08 M* 

True protein 929 856 816 812 1023 884 1022 1131 55.5 M**; M×F*; P×F* 

Casein 774 695 642 633 864 732 821 929 47.2 M**; M×F*; P×F* 

Whey protein 155 161 174 178 159 152 201 201 20.8 F* 

Wk 8 of lactation          

Milk yield, kg/d 28.4 26.6 24.8 25.5 28.6 26.8 30.0 32.9 1.39 Cov+; M; M×F** 

Crude protein 980 893 844 896 955 880 912 1035 65.9 NS 

Non protein N 11 14 11 11 13 12 12 12 1.0 NS 

Urea N 1.4 1.2 1.1 1.4 1.2 1.2 1.1 1.2 0.06 P×F+; M×P×F+ 

True protein 912 807 778 831 935 807 830 954 57.7 F×P* 

Casein 716 630 638 634 683 606 655 719 52.3 NS 

Whey protein 194 176 138 196 149 201 224 235 29.5 NS 
 

1 Ll, Low protein, low fat, ryegrass silage; Lh, Low protein, high fat; Hl, High protein, low fat; Hh, High protein, 
high fat. 

2 Standard error of the mean for n = 6.  
3 Cov, covariate (previous lactation average milk protein content); M, maturity; P, protein; F, fat; NS, non-
significant; +, P≤ 0.10; *, P≤ 0.05; **, P≤ 0.01. 
 



Jaurena - Figure 1 a and b 

Figure 1.  Daily dry matter intake (DMI) of Young (a; R2 = 0.69; P < 0.001) and Mature (b; R2 = 0.80; 
P < 0.001) cows fed with the experimental diets during the dry period. Hh, high protein, high fat ( ■ 
, ——―); Hl, high protein, low fat (♦; ― • •  ―); Lh, low protein, high fat (○; ― • ―); Ll, low protein, 
low fat (∆, ­ ­ ­). Scatter symbols correspond to data, and lines to the fitted exponential model DMI 
(kg) = a + b × (1 – e-k×d), where d is days before calving.  

 

Jaurena - Figure 2 a and b 

Figure 2.  Body condition score (BCS) of Young (a) and Mature (b) cows fed with the experimental 
diets during the precalving period. Hh, high protein, high fat ( ■ , ——―); Hl, high protein, low fat 
(♦; ― • •  ―); Lh, low protein, high fat (○; ― • ―); Ll, low protein, low fat (∆, ­ ­ ­). Markers 
represent treatment means; lines are fitted 4th degree polynomials. Vertical bars equal 1 pooled 
standard deviation. 

 

Jaurena Figure 3 a and b 

Figure 3.  Longissimus dorsi depth of Young (a) and Mature (b) cows fed with the experimental 
diets during the precalving period. Hh, high protein, high fat ( ■ , ——―); Hl, high protein, low fat 
(♦; ― • •  ―); Lh, low protein, high fat (○; ― • ―); Ll, low protein, low fat (∆, ­ ­ ­). Markers 
represent treatment means; lines are fitted 4th degree polynomial. Vertical bars equal 1 pooled 
standard deviation. 
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Figure 1 b 7 
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 Jaurena Figure 2 a 12 
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Figure 2 b 17 
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Jaurena Figure 3 a 20 
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Figure 3 b. 25 
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