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Abstract

In renewal processes, fuzziness and randomness often coexist intrinsically. Based on the random

fuzzy theory, a delayed renewal process with random fuzzy interarrival times is proposed in this pa-

per. Relations between the renewal number and interarrival times in such a process are investigated,

and useful theorems such as the elementary renewal theorem, Blackwell renewal theorem and Smith

key renewal theorem in a conventional delayed renewal process are extended to their counterparts

for random fuzzy delayed renewal processes.

Keywords: Fuzzy variable; random fuzzy variable; renewal process; delayed renewal process; ran-

dom fuzzy delayed renewal process

1 Introduction

In solving many real world problems, the knowledge and information available is often imprecise and

incomplete. Such uncertainty may be dealt with using the fuzzy set theory [32]. In particular, fuzzy

sets have been successfully applied in modelling renewal processes. For example, Zhao and Liu [34]

considered an ordinary renewal process in which the interarrival times and rewards are characterized as

fuzzy variables, and established the fuzzy version of the elementary renewal theorem and reward renewal

theorem. Li et al [16] discussed a delayed renewal process with fuzzy interarrival times and proposed

some potentially useful properties on the average of the renewal number.

However, the fuzziness and the randomness often occur simultaneously in most practical situations.

Under such circumstances, fuzzy random variables [13] [14] [26] appear to be more suitable to capture

these two kinds of uncertainty in a unified manner. Hwang [12] investigated an ordinary renewal process

in which the interarrival times were considered as fuzzy random variables and then created a theory of

the fuzzy rate for this type of fuzzy random renewal process. Popova and Wu [27] considered a renewal
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reward process with random interarrival times and fuzzy rewards and investigated the long-run average

fuzzy reward property per unit time. Dozzi et al [5] gave a limit theorem for counting renewal processes

indexed by fuzzy sets. Li et al [17] researched a delayed renewal process with fuzzy random interarrival

times, and gave the fuzzy random version of the elementary renewal theorem, Blackwell renewal theorem

and Smith key renewal theorem. As a specific case of the delayed renewal processes as proposed in [17],

Li et al [18] studied a homogeneous Poisson process in a fuzzy random environment.

Very recently, random fuzzy variables [21] have also been suitably employed to simultaneously cap-

ture these two types of uncertainty, and applied to model renewal processes. In contrast to fuzzy

random renewal processes, there have been only a few articles on renewal processes in a random fuzzy

environment. Zhao et al [35] introduced an ordinary renewal process with such a renewal reward process

having random fuzzy interarrival times and rewards. Li et al [19] studied a Poisson process with fuzzy

time-dependent intensity, where the rates of the process were deemed to be the fuzzy variables.

Delayed renewal process is an extension of ordinary renewal processes. The interarrival times of

an ordinary renewal process are regarded to be independent and identically distributed (iid) random

variables. However, a delayed renewal process permits the first interarrival time to have a different

distribution from the remaining ones. This requires an extended theory to address both the renewal

number and the interarrival times. Some important results such as the elementary renewal theorem,

Blackwell renewal theorem and Smith key renewal theorem have been established for delayed renewal

processes [28]. Based on these, this paper further incorporates the concept of random fuzzy variables

into the modelling of delayed renewal processes, with a focus on the relations between the renewal

number and interarrival times holding within such a process.

The paper is organized as follows. In Section 2, some concepts and propositions about fuzzy variables

and random fuzzy variables are introduced. A brief overview of the theory of delayed renewal processes

is described in Section 3. The concept of random fuzzy delayed renewal processes is then proposed

in Section 4 with useful theorems such as the elementary renewal theorem, Blackwell renewal theorem

and Smith key renewal theorem extended. Finally, Section 5 concludes the paper and points of further

research.

2 Fuzzy Variables and Random Fuzzy Variables

Fundamental definitions and concepts of fuzzy variables and random fuzzy variables are briefly outlined

in this section. Interested readers can refer to [20] for further details.
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Possibility measure [33] (Pos) and necessity measure [6] [29] (Nec) have both been widely used. The

main difference among these two measures is that they consider the same question from a different

angle. The possibility measure assesses the possibility of a set A in terms of affirmation, and the

necessity measure in terms of impossibility of the opposite set Ac. This may lead to situations where

the former overrates the possibility of a set while the latter underrates the possibility of a set. To have

a balanced approach, and based on the basic intuitions behind the measures of Pos and Nec, a self-dual

measure Cr, called a credibility measure, has been introduced [22, 23], which is defined such that

Cr{·} =
1
2

(Pos{·}+ Nec{·}) .

Obviously, Cr{A} = 1− Cr{Ac}.

A credibility space is represented by (Θ,P(Θ),Cr), where Θ is a nonempty set, P(Θ) the power set

of Θ, and Cr the credibility measure. A fuzzy variable is defined as a function from a credibility space

to the real number line. From a measure-theoretic point of view, the expected value of a fuzzy variable

[23] can then be defined as

E[ξ] =
∫ +∞

0

Cr{ξ ≥ r}dr −
∫ 0

−∞
Cr{ξ ≤ r}dr.

Note that the definition of the scalar expected value of a fuzzy variable is more favorable in many

applications than others (e.g. [7] and [11]).

Let ξ be a fuzzy variable defined on the credibility space (Θ,P(Θ),Cr). Then, its membership

function µξ(·) can be derived from the credibility measure by

µξ(x) = (2Cr{ξ = x}) ∧ 1.

It is worth mentioning that the α-pessimistic value and the α-optimistic value (see [25]) of a fuzzy

variable ξ, defined as

ξLα = inf
{
r
∣∣ µξ(r) ≥ α} and ξUα = sup

{
r
∣∣ µξ(r) ≥ α} (1)

for any α ∈ (0, 1], are useful means of representing a fuzzy variable as well as its expected value.

Proposition 1 ([25]) Let ξ be a fuzzy variable with the finite expected value E[ξ]. Then

E[ξ] =
1
2

∫ 1

0

(
ξLα + ξUα

)
dα.

Another two concepts to mention are fuzzy variables’ independence [24] and identical distribution [20].

Fuzzy variables ξ1, ξ2, · · · , ξn are said to be independent if and only if for any sets B1, B2, · · · , Bn of <,

Cr{ξi ∈ Bi, i = 1, 2, · · · , n} = min
1≤i≤n

Cr{ξi ∈ Bi}.
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Fuzzy variables ξ1, ξ2, · · · , ξn are said to be identically distributed if and only if for any set B of <,

Cr{ξi ∈ B} = Cr{ξj ∈ B}, i, j = 1, 2, · · · , n.

Random fuzzy variables are extensions of both fuzzy variables and random variables. A random

fuzzy variable can be seen as a function from a credibility space to a collection of random variables.

For example, in the domain of crime prevention, when analyzing forensic data, it might be known that

the concentration of aluminium in c-glass may be an exponentially distributed variable associated with

an unknown parameter [1]. If this parameter is itself regarded as a fuzzy variable, then the aluminium

concentration is a random fuzzy variable. A random fuzzy variable ξ defined on the credibility space

(Θ,P(Θ),Cr) is probabilistically nonnegative if and only if Pr{ξ(θ) < 0} = 0 for each θ ∈ Θ with

Cr{θ} > 0.

Definition 1 ([25]) The expected value of a random fuzzy variable ξ, also denoted by E[ξ] without

causing confusion, is defined by

E[ξ] =
∫ +∞

0

Cr
{
θ ∈ Θ

∣∣ E[ξ(θ)] ≥ r
}

dr −
∫ 0

−∞
Cr
{
θ ∈ Θ

∣∣ E[ξ(θ)] ≤ r
}

dr

provided that at least one of the two integrals is finite.

Proposition 2 ([20]) Let ξ be a random fuzzy variable defined on (Θ,P(Θ),Cr). Then, for any θ ∈ Θ,

E[ξ(θ)] is a fuzzy variable provided that E[ξ(θ)] is finite for fixed θ ∈ Θ.

Definition 2 (Random Fuzzy Arithmetic On Different Credibility Spaces) Let f : <n → < be a mea-

surable function, and ξi random fuzzy variables on the credibility spaces (Θi,P(Θi),Cri), i = 1, 2, · · · , n.

Then ξ = f(ξ1, ξ2, · · · , ξn) is a random fuzzy variable defined on the credibility space (Θ,P(Θ),Cr), i.e.,

ξ(θ1, θ2, · · · , θn) = f(ξ1(θ1), ξ2(θ2), · · · , ξn(θn))

for any (θ1, θ2, · · · , θn) ∈ Θ, where Θ = Θ1 ×Θ2 × · · · ×Θn, and for any A ∈ P(Θ),

Cr{A} = sup
(θ1,θ2,···,θn)∈A

min
1≤i≤n

Cri{θi}.

Definition 3 ([15]) The random fuzzy variables ξ1, ξ2, · · · , ξn defined on (Θ,P(Θ),Cr) are independent

if

(1) ξ1(θ), ξ2(θ), · · · , ξn(θ) are independent random variables for each θ ∈ Θ;

(2) E[ξ1(·)], E[ξ2(·)], · · · , E[ξn(·)] are independent fuzzy variables.
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Definition 4 ([15]) The random fuzzy variables ξ and η are identically distributed if

sup
Cr{A}≥α

inf
θ∈A
{Pr{ξ(θ) ∈ B}} = sup

Cr{A}≥α
inf
θ∈A
{Pr{η(θ) ∈ B}}

for any α ∈ (0, 1] and Borel set B of real numbers.

Proposition 3 ([20]) Let ξ1, ξ2, · · · , ξn be iid random fuzzy variables. Then E[ξi(θ)], i = 1, 2, · · · , n are

iid fuzzy variables.

3 Delayed Renewal Processes

Before discussing random fuzzy delayed renewal processes, it is helpful to review the basic definition

and some useful theorems of a delayed renewal process.

Let ξn, n = 1, 2, · · · , denote the elapsed times between the (n − 1)th and the nth event, known as

interarrival times. Suppose that such interarrival times are nonnegative mutually independent random

variables, and that ξi have a common distribution for i ≥ 2. Define

N(t) = max
n≥0

{
n
∣∣ 0 ≤ ξ1 + ξ2 + · · ·+ ξn ≤ t

}
. (2)

{N(t), t ≥ 0} is called a delayed renewal process and N(t) a renewal number.

The followings are several important theorems regarding delayed renewal processes (see [2, 3, 4, 8,

9, 10, 30] for more detail).

Theorem 1 (Elementary Renewal Theorem) For a delayed renewal process {N(t), t ≥ 0} with interar-

rival times ξi, the following holds:

lim
t→+∞

E[N(t)]
t

=
1

E[ξ2]
.

Theorem 2 For a delayed renewal process {N(t), t ≥ 0} with interarrival times ξi, E[N(t)] is a non-

decreasing, finite, and right-continuous function of t.

Definition 5 A nonnegative random variable η is said to be lattice if and only if there exists d > 0 such

that
∑∞
n=0 Pr{η = nd} = 1.

Theorem 3 (Blackwell Renewal Theorem) For a delayed renewal process {N(t), t ≥ 0}, if random

variables ξi are nonlattic, then, for any a > 0,

lim
t→+∞

(E[N(t+ a)]− E[N(t)]) =
a

E[ξ2]
. (3)
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Theorem 4 (Smith Key Renewal Theorem) For a delayed renewal process {N(t), t ≥ 0} with interar-

rival times ξi, if random variables ξi are nonlattic, and
∫ +∞
0

h(t)dt < +∞, then, for any a > 0,

lim
t→+∞

∫ t

0

h(t− x)dE[N(x)] =
1

E[ξ2]

∫ +∞

0

h(t)dt.

4 Extension to Random Fuzzy Delayed Renewal Processes

Let ξ1, ξ2, · · · , known as the interarrival times, be nonnegative mutually independent random fuzzy

variables defined on the credibility spaces (Θi,P(Θi),Cri). Suppose that ξ2, ξ3, · · · have a common

distribution, and that

N(t) = max
n≥0

{
n
∣∣ 0 ≤ ξ1 + ξ2 + · · ·+ ξn ≤ t

}
. (4)

The process {N(t), t ≥ 0} is called a random fuzzy delayed renewal process defined on the credibility

space (Θ,P(Θ),Cr) (see Definition 2), and N(t) is termed a renewal number.

According to Definition 2, the renewal number N(t) is a random fuzzy variable. Furthermore, from

Proposition 2, E[N(t)(θ)] is a fuzzy variable. For any α ∈ (0, 1], denote the α-pessimistic value and

the α-optimistic value of E[N(t)(θ)] as E[N(t)(θ)]Lα and E[N(t)(θ)]Uα , respectively. Similarly, E[ξi(θ)],

i = 1, 2, · · ·, are fuzzy variables, and the α-pessimistic values and the α-optimistic values of E[ξi(θ)] can

be written as E [ξi(θ)]
L
α and E [ξi(θ)]

U
α .

Throughout the rest of this paper, the followings are assumed:

(a) Θ2 = Θ3 = · · ·;

(b) For each i and θ ∈ Θi, to avoid trivialities suppose that Pr{ξi(θ) = 0} < 1;

(c) For any θ ∈ Θi, E[ξi(θ)] are closed and bounded sets for i ≥ 1;

(d) Let F = {ξi(θ), θ ∈ Θi, i = 1, 2, · · ·}. Suppose that the image set F of ξi is a totally ordered set

with a stochastic ordering. That is, for any given ξi(θi), ξj(θj) ∈ F , i, j = 1, 2, · · · and r ∈ <, either

Pr{ξi(θi) ≤ r} ≤ Pr{ξj(θj) ≤ r} (denoted by ξj(θj) ≤d ξi(θi))

or

Pr{ξj(θj) ≤ r} ≤ Pr{ξj(θj) ≤ r} (denoted by ξi(θi) ≤d ξj(θj))

(The symbol ≤d represents stochastic ordering; see [31] for proportion of stochastic ordering).
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Lemma 1 For a random fuzzy delayed renewal process {N(t), t ≥ 0} with random fuzzy interarrival

times ξi, the following holds:

lim
t→+∞

E [N(t)(θ)]Lα
t

=
1

E [ξ2(θ)]Uα
,

lim
t→+∞

E [N(t)(θ)]Uα
t

=
1

E [ξ2(θ)]Lα
.

Proof. For any α ∈ (0, 1], by Assumptions (a) and (c), there at least exist θ
′

i, θ
′′

i ∈ Θi such that{
ξi

(
θ

′

i

)}
and

{
ξi

(
θ

′′

i

)}
are two iid random variable sequences for i ≥ 2, and

E
[
ξi

(
θ

′

i

)]
= E [ξi(θ)]

L
α , (5)

E
[
ξi

(
θ

′′

i

)]
= E [ξi(θ)]

U
α , (6)

θ
′

2 = θ
′

3 = · · · , θ
′′

2 = θ
′′

3 = · · ·

For any θi ∈ Θi with membership degree µ(E [ξi(θi)]) ≥ α, using (1) it follows that

E
[
ξi

(
θ

′

i

)]
≤ E [ξi(θi)] ≤ E

[
ξi

(
θ

′′

i

)]
.

Furthermore, it follows by Assumption (d) that

ξi

(
θ

′

i

)
≤d ξi (θi) ≤d ξi

(
θ

′′

i

)
. (7)

That is, for any real number r ∈ <,

Pr
{
ξi

(
θ

′′

i

)
≤ r
}
≤ Pr {ξi(θi) ≤ r} ≤ Pr

{
ξi

(
θ

′

i

)
≤ r
}
.

Replacing ξi in (4) with ξi(θi), ξi
(
θ

′

i

)
and ξi

(
θ

′′

i

)
, respectively, and writing

N(t)(θ) = max
{
n
∣∣ 0 ≤ ξ1(θ1) + ξ2(θ2) + · · ·+ ξn(θn) ≤ t

}
,

N(t)
(
θ

′
)

= max
{
n
∣∣ 0 ≤ ξ1

(
θ

′

1

)
+ ξ2

(
θ

′

2

)
+ · · ·+ ξn

(
θ

′

n

)
≤ t
}
, (8)

N(t)
(
θ

′′
)

= max
{
n
∣∣ 0 ≤ ξ1

(
θ

′′

1

)
+ ξ2

(
θ

′′

2

)
+ · · ·+ ξn

(
θ

′′

n

)
≤ t
}
, (9)

then the following can be obtained: a counting process {N(t)(θ), t ≥ 0} generated by ξ1(θ1), ξ2(θ2), · · · ,

and two delayed renewal processes
{
N(t)

(
θ

′
)
, t ≥ 0

}
which is generated by ξ1

(
θ

′

1

)
, ξ2

(
θ

′

2

)
, · · · , and{

N(t)
(
θ

′′
)
, t ≥ 0

}
which is generated by ξ1

(
θ

′′

1

)
, ξ2

(
θ

′′

2

)
, · · · , where

θ = (θ1, θ2, · · ·), θ
′

=
(
θ

′

1, θ
′

2, · · ·
)
, θ

′′
=
(
θ

′′

1 , θ
′′

2 , · · ·
)
.
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From (7), it follows that for any fixed positive integer k,

k∑
i=1

ξi

(
θ

′

i

)
≤d

k∑
i=1

ξi(θi) ≤d
k∑
i=1

ξi

(
θ

′′

i

)
,

which is equivalent to

Pr

{
k∑
i=1

ξi

(
θ

′′

i

)
≤ r

}
≤ Pr

{
k∑
i=1

ξi(θi) ≤ r

}
≤ Pr

{
k∑
i=1

ξi

(
θ

′

i

)
≤ r

}

for any real number r ∈ <. Since

Pr
{
N(t)

(
θ

′
)
≤ k

}
⇐⇒ Pr

{
k∑
i=1

ξi

(
θ

′

i

)
≥ t

}
,

Pr {N(t)(θ) ≤ k} ⇐⇒ Pr

{
k∑
i=1

ξi(θi) ≥ t

}
,

Pr
{
N(t)

(
θ

′′
)
≤ k

}
⇐⇒ Pr

{
k∑
i=1

ξi

(
θ

′′

i

)
≥ t

}
,

then

Pr
{
N(t)

(
θ

′
)
≤ k

}
≤ Pr {N(t)(θ) ≤ k} ≤ Pr

{
N(t)

(
θ

′′
)
≤ k

}
,

which implies

N(t)
(
θ

′′
)
≤d N(t)(θ) ≤d N(t)

(
θ

′
)
. (10)

Taking expectations over (10) yields

E
[
N(t)

(
θ

′′
)]
≤ E[N(t)(θ)] ≤ E

[
N(t)

(
θ

′
)]
. (11)

Owing to the arbitrariness of θi, using (1) leads to

E[N(t)(θ)]Lα = E
[
N(t)

(
θ

′′
)]
, E[N(t)(θ)]Uα = E

[
N(t)

(
θ

′
)]
. (12)

In addition, it follows from Assumption (b) and ξi ≥ 0 that

0 < E[ξi(θ)] ≤ +∞

for any θ ∈ Θi. For delayed renewal processes
{
N(t)

(
θ

′′
)
, t ≥ 0

}
and

{
N(t)

(
θ

′
)
, t ≥ 0

}
, as defined

in (9) and (8) respectively, following the Elementary Renewal Theorem gives

lim
t→+∞

E
[
N(t)

(
θ

′′
)]

t
=

1
E
[
ξ2
(
θ

′′
2

)] ,
lim

t→+∞

E
[
N(t)

(
θ

′
)]

t
=

1
E
[
ξ2
(
θ

′
2

)] .
Substituting (12) into (5) and (6) completes the proof.
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Theorem 5 (Random Fuzzy Delayed Elementary Renewal Theorem) For a random fuzzy delayed re-

newal process {N(t), t ≥ 0} with random fuzzy interarrival times ξi, the following holds:

lim
t→+∞

E[N(t)]
t

= E

[
1
ξ

]
,

where ξ is one of the fuzzy variables with the α-pessimistic value E [ξ2(θ)]Lα and the α-optimistic value

E [ξ2(θ)]Uα , and E
[

1
ξ

]
< +∞.

Proof. For any given ε > 0, by Lemma 1, there exist two positive real numbers t1 and t2 such that

E [N(t)(θ)]Lα
t

<
1

E [ξ2(θ)]Uα
+ ε

for t > t1, and
E [N(t)(θ)]Uα

t
<

1

E [ξ2(θ)]Lα
+ ε

for t > t2. Consequently, for t > max(t1, t2),

E [N(t)(θ)]Lα
t

+
E [N(t)(θ)]Uα

t
<

1

E [ξ2(θ)]Lα
+

1

E [ξ2(θ)]Uα
+ 2ε.

Since

E

[
1
ξ

]
=

1
2

∫ 1

0

((
1
ξ

)L
α

+
(

1
ξ

)U
α

)
dα

=
1
2

∫ 1

0

(
1
ξLα

+
1
ξUα

)
dα

=
1
2

∫ 1

0

(
1

E [ξ2(θ)]Lα
+

1

E [ξ2(θ)]Uα

)
dα

< +∞,

by Definition 1, Proposition 1 and the dominated convergence theorem we get

lim
t→+∞

E[N(t)]
t

= lim
t→+∞

∫ +∞

0

Cr
{
θ ∈ Θ

∣∣ E[N(t)(θ)]
t

≥ r
}

dr

= lim
t→+∞

1
2

∫ 1

0

(
E[N(t)(θ)]Lα

t
+
E[N(t)(θ)]Uα

t

)
dα

=
1
2

∫ 1

0

(
lim

t→+∞

E[N(t)(θ)]Lα
t

+ lim
t→+∞

E[N(t)(θ)]Uα
t

)
dα

=
1
2

∫ 1

0

(
1

E[ξ2(θ)]Lα
+

1
E[ξ2(θ)]Uα

)
dα

= E

[
1
ξ

]
.

The proof is finished.
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Example 1 Assume that ξ1 ∼ µ
(
ρ

′
, ρ

′
+ 1
)

with ρ
′

= (0, 2, 4), and ξi ∼ µ(ρ, ρ + 1) with ρ = (0, 1, 2)

for i ≥ 2. The result of random fuzzy simulation ([25]) with 10000 cycles is

lim
t→+∞

E[N(t)]
t

= E

[
1
ξ

]
= 0.5470.

Remark 1 A renewal process {N(t), t ≥ 0} is discussed in [12] that involves fuzzy random interarrival

times ξi whose expected value is E[ξi] (as defined in [13, 14]). One of the main results obtained there is

N(t)
t
→ 1

E[ξ1]

with probability 1 as t → +∞. However, the interarrival times between two events described in the

present paper are characterized as random fuzzy variables and consequently, a delayed renewal process

in a random fuzzy situation is defined. A random fuzzy variable and a fuzzy random variable are two

distinct concepts [20].

Remark 2 A renewal process {N(t), t ≥ 0} is described in [35] that involves random fuzzy interarrival

times ξi. One of the main results there is the random fuzzy elementary renewal theorem. That is,

lim
t→∞

E[N(t)]
t

= E

[
1
ξ

]
where ξ is a fuzzy variable with the α-pessimistic value E [ξ1(θ)]Lα and the α-optimistic value E [ξ1(θ)]Uα

and E
[

1
ξ

]
is the expected value of 1

ξ . If ξ1 is assumed to be of the same distribution as the remaining

interarrival times ξi, i ≥ 2 in Theorem 5, then E [ξ1(θ)]Lα = E [ξ2(θ)]Lα , E [ξ1(θ)]Uα = E [ξ2(θ)]Uα and

consequently, Theorem 5 degenerates into the random fuzzy elementary renewal theorem in [35]. Thus,

the result obtained in [35] is a special case of Theorem 5.

Remark 3 A renewal process {N(t), t ≥ 0} is considered in [27] that involves random interarrival

times ξi and fuzzy random rewards ηi whose α-pessimistic values and α-optimistic values are ηLi and

ηUi , respectively. The main result is
C(t)
t
→ a

with probability 1 level-wise, where C(t) is the total reward and a is the fuzzy variable with the α-

pessimistic value E
[
ηL1
]
/E[ξ1] and the α-optimistic value E

[
ηU1
]
/E[ξ1]. This shows that the renewal

process in [27] and the delayed renewal processes in this paper are two different processes.

Theorem 6 For a random fuzzy delayed renewal process {N(t), t ≥ 0}, E[N(t)] is a nondecreasing,

finite, and right-continuous function of t.

10



Proof. The proof involves three stages. First, prove E[N(t)] to be a nondecreasing function of t.

It follows from the stochastic renewal theorem in a random delayed renewal process (see [28]) that

E
[
N(t)

(
θ

′′
)]

and E
[
N(t)

(
θ

′
)]

are two nondecreasing functions of t. That is, for any t1 < t2,

E
[
N(t1)

(
θ

′′
)]
≤ E

[
N(t2)

(
θ

′′
)]

and E
[
N(t1)

(
θ

′
)]
≤ E

[
N(t2)

(
θ

′
)]
,

which imply

E [N(t1)(θ)]Lα ≤ E [N(t2)(θ)]Lα and E [N(t1)(θ)]Uα ≤ E [N(t2)(θ)]Uα .

By Definition 1 and Proposition 1,

E[N(t1)] =
1
2

∫ 1

0

(
E[N(t1)(θ)]Lα + E[N(t1)(θ)]Uα

)
dα

≤ 1
2

∫ 1

0

(
E[N(t2)(θ)]Lα + E[N(t2)(θ)]Uα

)
dα

= E[N(t2)].

Second, prove E[N(t)] to be finite. It also follows from the stochastic renewal theorem in a random

delayed renewal process (see [28]) that both E
[
N(t)

(
θ

′′
)]

and E
[
N(t)

(
θ

′
)]

are finite. That is, there

exist two positive real numbers M1 and M2 such that

E
[
N(t)

(
θ

′′
)]
≤M1 and E

[
N(t)

(
θ

′′
)]
≤M2

for any fixed t. Consequently, the following holds:

E [N(t)(θ)]Lα + E [N(t)(θ)]Uα = E
[
N(t)

(
θ

′
)]

+ E
[
N(t)

(
θ

′′
)]
≤M1 +M2.

Hence,

E[N(t)] =
1
2

∫ 1

0

(
E[N(t)(θ)]Lα + E[N(t)(θ)]Uα

)
dα

≤ M1 +M2

2

∫ 1

0

dα

=
M1 +M2

2
.

Finally, prove E[N(t)] to be a right-continuous function of t. For any fixed t, let {tn, n ≥ 0} be

a sequence of real numbers decreasing to t, i.e., tn ↓ t. Once again, it follows from the stochastic

renewal theorem in random delayed renewal process (see [28]) that E
[
N(t)

(
θ

′′
)]

and E
[
N(t)

(
θ

′
)]

are right-continuous functions of t, and consequently

lim
tn→t

E
[
N(tn)

(
θ

′′
)]

= E
[
N(t)

(
θ

′′
)]

and lim
tn→t

E
[
N(tn)

(
θ

′
)]

= E
[
N(t)

(
θ

′
)]
.

11



Since E
[
N(tn)

(
θ

′′
)]

and E
[
N(tn)

(
θ

′
)]

are two nondecreasing functions of tn,

E
[
N(tn)

(
θ

′
)]
≤ E

[
N(t0)

(
θ

′
)]

and E
[
N(tn)

(
θ

′′
)]
≤ E

[
N(t0)

(
θ

′′
)]
.

As E
[
N(t0)

(
θ

′′
)]

and E
[
N(tn)

(
θ

′
)]

are finite, i.e.,

E
[
N(t0)

(
θ

′
)]

< +∞ and ≤ E
[
N(t0)

(
θ

′′
)]

< +∞,

and by Definition 1, Proposition 1 and the dominated convergence theorem, the following can be shown:

lim
tn→t

E[N(tn)] = lim
tn→t

1
2

∫ 1

0

(
E[N(tn)(θ)]Lα + E[N(tn)(θ)]Uα

)
dα

=
1
2

∫ 1

0

(
lim
tn→t

E[N(tn)(θ)]Lα + lim
tn→t

E[N(tn)(θ)]Uα

)
dα

=
1
2

∫ 1

0

(
E[N(t)(θ)]Lα + E[N(t)(θ)]Uα

)
dα

= E[N(t)].

Thus, the theorem is proven.

Remark 4 For a random fuzzy delayed renewal process {N(t), t ≥ 0} and r ≥ 0, E [Nr(t)] is a

nondecreasing, finite, and right-continuous function of t.

Theorem 7 (Random Fuzzy Delayed Blackwell Renewal Theorem) For a random fuzzy delayed renewal

process {N(t), t ≥ 0}, if for any given θ ∈ Θ, random variables ξi(θ) are nonlattic, then, for any a > 0,

lim
t→+∞

(E[N(t+ a)]− E[N(t)]) = E

[
a

ξ

]
. (13)

Proof. For delayed renewal processes
{
N(t)

(
θ

′′
)
, t ≥ 0

}
and

{
N(t)

(
θ

′
)
, t ≥ 0

}
, as defined in (9)

and (8) respectively, using Blackwell Renewal Theorem leads to

lim
t→+∞

(
E
[
N(t+ a)

(
θ

′′
)]
− E

[
N(t)

(
θ

′′
)])

=
a

E [ξ2 (θ′′)]

and

lim
t→+∞

(
E
[
N(t+ a)

(
θ

′
)]
− E

[
N(t)

(
θ

′
)])

=
a

E [ξ2 (θ′)]
,

which, by (5), (6) and (12), imply

lim
t→+∞

(
E[N(t+ a)(θ)]Lα − E[N(t)(θ)]Lα

)
=

a

E[ξ2(θ)]Uα
(14)

and

lim
t→+∞

(
E[N(t+ a)(θ)]Uα − E[N(t)(θ)]Uα

)
=

a

E[ξ2(θ)]Lα
. (15)

12



Consequently, for any ε > 0,

E[(t+ a)(θ)]Lα − E[N(t)(θ)]Lα + E[N(t+ a)(θ)]Uα − E[N(t)(θ)]Uα <
a

E[ξ2(θ)]Lα
+

a

E[ξ2(θ)]Uα
+ ε

for any sufficiently large t. Finally, by Definition 1, Proposition 1, and the dominated convergence

theorem, it follows that

lim
t→+∞

(E[N(t+ a)]− E[N(t)])

= lim
t→+∞

1
2

∫ 1

0

((
E[N(t+ a)(θ)]Lα − E[N(t)(θ)]Lα

)
+
(
E[N(t+ a)(θ)]Uα − E[N(t)(θ)]Uα

))
dα

=
1
2

∫ 1

0

(
lim

t→+∞

(
E[N(t+ a)(θ)]Lα − E[N(t)(θ)]Lα

)
+ lim
t→+∞

(
E[N(t+ a)(θ)]Uα − E[N(t)(θ)]Uα

))
dα

=
1
2

∫ 1

0

(
a

E[ξ2(θ)]Lα
+

a

E[ξ2(θ)]Uα

)
dα

= E

[
a

ξ

]
.

The proof is completed.

Remark 5 A renewal process {N(t), t ≥ 0} is described in [35] that involves random fuzzy interarrival

times ξi. One of the main results there is the random fuzzy Blackwell renewal theorem. That is,

E[N(t+ a)]− E[N(t)]→ E

[
a

ξ

]
,

where ξ is a fuzzy variable with the α-pessimistic values E [ξi(θ)]
L
α and the α-optimistic values E [ξi(θ)]

U
α ,

and E
[

1
ξ

]
is the expected value of 1

ξ . This result is a special case of Theorem 7.

Theorem 8 (Random Fuzzy Delayed Smith Key Renewal Theorem) Let {N(t), t ≥ 0} be a random

fuzzy delayed renewal process. If for any given θ ∈ Θ, random variables ξi(θ) are nonlattic, and∫ +∞
0

h(t)dt < +∞, then

lim
t→+∞

∫ t

0

h(t− x)dE[N(x)] = E

[
1
ξ

] ∫ +∞

0

h(t)dt.

Before showing the proof of Theorem 8, it is helpful to present two lemmas first. Without loss of

generality, assume that h(t) is a positive decreasing function of t such that h(0) < +∞ and h(t) = 0 for

t < 0.

Lemma 2 If
∫ +∞
0

h(t)dt < +∞, then

lim
t→+∞

t · h(t) = 0.

13



Proof. By
∫ +∞
0

h(t)dt < +∞, for any given ε > 0, there exists a positive real number t1 with t ≥ 2t1

such that ∫ t

t
2

h(u)du <
ε

2
.

Furthermore, since ∫ t

t
2

h(u)du ≥ h(t)
∫ t

t
2

du =
h(t) · t

2
,

it follows that
t · h(t)

2
<
ε

2
, (16)

which shows

lim
t→+∞

t · h(t) = 0.

The proof is finished.

Lemma 3 If ϕ(·) is a positive decreasing function of t with ϕ(t) = 0 for t ∈ (−∞, 0) or t ∈ (T0,∞)

(here T0 is a positive real number), and
∫ +∞
0

ϕ(t)dt < +∞, and if it is integrable with respect to the

Lebesgue-Stieltjes measure µ(a, b] = E[N(b)]− E[N(a)] on any finite interval of <, then

lim
t→+∞

∫ t

0

ϕ(t− x)dE[N(x)] = E

[
1
ξ

] ∫ +∞

0

ϕ(t)dt.

Proof. First, it is known that∫ t

0

ϕ(t− x)dE[N(x)] =
∫ t

0

ϕ(u)d(−E[N(t− u)]) =
∫ T0

0

ϕ(u)d(−E[N(t− u)]).

Since ϕ(·) is integrable with respect to the Lebesgue-Stieltjes measure µ(a, b] = E[N(b)] − E[N(a)] on

any finite interval of <,∫ t

0

ϕ(t− x)dE[N(x)] = lim
n→∞

n∑
k=0

ϕ(uk)
(
E

[
N

(
t− k

n
T0 +

T0

n

)]
− E

[
N

(
t− k

n
T0

)])
,

where

x0 = 0, xk =
kT0

n
, and uk ∈ (xk−1, xk] for k = 1, 2, · · · , n.

By Theorem 7,

lim
t→+∞

(
E

[
N

(
t− k

n
T0 +

T0

n

)]
− E

[
N

(
t− k

n
T0

)])
=
T0

n
E

[
1
ξ

]
.

Furthermore, there exist two positive real numbers t1 and M (e.g. M = E
[

1
ξ

]
+1) such that, for t > t1,

E

[
N

(
t− k

n
T0 +

T0

n

)]
− E

[
N

(
t− k

n
T0

)]
<
MT0

n
,
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and consequently

ϕ(uk)
(
E

[
N

(
t− k

n
T0 +

T0

n

)]
− E

[
N

(
t− k

n
T0

)])
< ϕ(uk)

MT0

n
.

In addition, since

lim
n→+∞

n∑
k=1

ϕ(uk)
T0

n
=
∫ T0

0

ϕ(u)du < +∞,

then, the series of functions

n∑
k=1

ϕ(uk)
(
E

[
N

(
t− k

n
T0 +

T0

n

)]
− E

[
N

(
t− k

n
T0

)])
convergences uniformly for t ≥ t1. Thus,

lim
t→+∞

lim
n→+∞

n∑
k=1

ϕ(uk)
(
E

[
N

(
t− k

n
T0 +

T0

n

)]
− E

[
N

(
t− k

n
T0

)])

= lim
n→+∞

n∑
k=1

ϕ(uk) lim
t→+∞

(
E

[
N

(
t− k

n
T0 +

T0

n

)]
− E

[
N

(
t− k

n
T0

)])

= lim
n→+∞

n∑
k=1

ϕ(uk)
(
T0

n
E

[
1
ξ

])

= E

[
1
ξ

]
lim

n→+∞

n∑
k=1

ϕ(uk)
T0

n

= E

[
1
ξ

] ∫ +∞

0

ϕ(t)dt.

The proof is completed.

Proof of Theorem 8. Let

ϕn(x) =

{
h(x), 0 ≤ x ≤ n

0, x > n.

On the one hand, when 0 ≤ x ≤ n, ϕn(x) = h(x) and consequently |ϕn(x) − h(x)| = 0. On the other

hand, when x > n,

|ϕn(x)− h(x)| = h(x).

By Lemma 2, for any given ε > 0, there exists a positive real number t1 with t > t1 such that

h(x) <
1
x

(by taking ε = 1 in (16)).

Taking N = [ 1ε ] + 1 with n > max(N, t1) results in

|ϕn(x)− h(x)| = h(x) <
1
x
<

1
n
<

1
N

< ε.

Hence, the following holds:

lim
n→+∞

ϕn(x) = h(x) (17)
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uniformly of x. Therefore,

lim
n→+∞

∫ +∞

0

ϕn(u)du =
∫ +∞

0

lim
n→+∞

ϕn(u)du =
∫ +∞

0

h(u)du. (18)

In addition, using lemma 3,

lim
t→+∞

∫ +∞

0

ϕn(t− u)dE[N(x)] = E

[
1
ξ

] ∫ +∞

0

ϕn(u)du. (19)

Moreover, by Theorem 7, there exist two positive real numbers t2 and M (e.g. M = E[ 1ξ ] + 1 ) such

that

|E[N(t− x)]− E[N(t− y)]| < M |x− y| (20)

for any x, y and t > t2. Since h is Lebesgue integrable on <, then h is integral with respect to Lebesgue-

Stieltjes measure µ(a, b] = E[N(b)]−E[N(a)] on <. Thus, for any given ε > 0, there exists a sufficiently

large number t3 with t > t3 such that∣∣∣∣∫ t

t3

h(t− x)dE[N(x)]
∣∣∣∣ < ε.

Therefore, the integer n can be taken, with t3 ≤ n ≤ t, such that∣∣∣∣∫ t

n

h(t− x)dE[N(x)]
∣∣∣∣ < ε.

Hence, ∣∣∣∣∫ t

0

ϕn(t− x)dE[N(x)]−
∫ t

0

h(t− x)dE[N(x)]
∣∣∣∣ =

∫ t

n

h(t− x)dE[N(x)] < ε,

then

lim
n→+∞

∫ t

0

ϕn(t− x)dE[N(x)] =
∫ t

0

h(t− x)dE[N(x)], (21)

uniformly of t.

Finally, from above,

lim
t→+∞

∫ t

0

h(t− x)dE[N(x)]

= lim
t→+∞

lim
n→+∞

∫ t

0

ϕn(t− x)dE[N(x)] (by (21))

= lim
n→+∞

lim
t→+∞

∫ t

0

ϕn(t− x)dE[N(x)] (by (21))

= lim
n→+∞

(
E

[
1
ξ

] ∫ +∞

0

ϕn(u)du
)

(by (19))

= E

[
1
ξ

]
lim

n→+∞

∫ +∞

0

ϕn(u)du

= E

[
1
ξ

] ∫ +∞

0

h(t)dt. (by (18))
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The theorem is proved.

Remark 6 Generally, the following holds:

lim
t→+∞

(E[N(t+ a)]− E[N(t)]) = E

[
a

ξ

]
⇐⇒ lim

t→+∞

∫ t

0

h(t− x)dE[N(x)] = E

[
1
ξ

] ∫ +∞

0

h(t)dt,

i.e., random fuzzy delayed Smith key renewal theorem is equivalent to random fuzzy delayed Blackwell

renewal theorem.

5 Conclusion

In this paper, by employing random fuzzy variables to describe the interarrival times, random fuzzy

delayed renewal processes were proposed, forming an extension of conventional delayed renewal pro-

cesses. Furthermore, some useful theorems such as random fuzzy delayed elementary renewal theorem,

random fuzzy delayed Blackwell renewal theorem, random fuzzy delayed Smith key renewal theorem

were developed. All these theorems are proven to be generalized versions of the corresponding theorems

that can be found in random delayed renewal processes. These theorems provide a good way to deal

with fuzzy delayed renewal processes and similar types of random fuzzy processes. This may include

applications to addressing problems of crime investigation and prevention where say, forensic data may

be gathered and represented by exponential distributions with associated unknown parameters [1]. A

possible and interesting direction for future research is the computation of the rate of convergence for

the limit theorems presented in this paper. Such an investigation can be based on the work on rates of

convergence in classical renewal processes that can be found in [2].
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