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Rough Set-based Feature Selection: A Review 
 
Abstract: Feature selection aims to determine a minimal feature subset from a problem 
domain while retaining a suitably high accuracy in representing the original features. Rough 
set theory (RST) has been used as such a tool with much success. RST enables the discovery 
of data dependencies and the reduction of the number of attributes contained in a dataset 
using the data alone, requiring no additional information.  This chapter describes the 
fundamental ideas behind RST-based approaches and reviews related feature selection 
methods that build on these ideas. Extensions to the traditional rough set approach are 
discussed, including recent selection methods based on tolerance rough sets, variable 
precision rough sets and fuzzy-rough sets. Alternative search mechanisms are also highly 
important in rough set feature selection. The chapter includes the latest developments in this 
area, including RST strategies based on hill-climbing, genetic algorithms and ant colony 
optimization. 
 
Keywords: Feature Selection, Rough Sets, Data Preprocessing, Data Mining, Rough 
Set Variations, Search Algorithms. 
 
 
INTRODUCTION 
 
The main aim of feature selection (FS) is to determine a minimal feature subset from 
a problem domain while retaining a suitably high accuracy in representing the original 
features. In many real world problems FS is a must due to the abundance of noisy, 
irrelevant or misleading features. For instance, by removing these factors, learning 
from data techniques can benefit greatly.  A detailed review of feature selection 
techniques devised for classification tasks can be found in (Dash & Liu, 1997). 
 
The usefulness of a feature or feature subset is determined by both its relevancy and 
redundancy. A feature is said to be relevant if it is predictive of the decision 
feature(s), otherwise it is irrelevant. A feature is considered to be redundant if it is 
highly correlated with other features. Hence, the search for a good feature subset 
involves finding those features that are highly correlated with the decision feature(s), 
but are uncorrelated with each other. 
 

 
Figure 1: Aspects of feature selection 

 
A taxonomy of feature selection approaches can be seen in Figure 1. Given a feature 
set size n, the task of FS can be seen as a search for an ''optimal'' feature subset 
through the competing 2n candidate subsets. The definition of what an optimal subset 



is may vary depending on the problem to be solved.  Although an exhaustive method 
may be used for this purpose in theory, this is quite impractical for most datasets. 
Usually FS algorithms involve heuristic or random search strategies in an attempt to 
avoid this prohibitive complexity.  However, the degree of optimality of the final 
feature subset is often reduced. The overall procedure for any feature selection 
method is given in Figure 2 (adapted from (Dash & Liu, 1997)). 
 

 
Figure 2: Feature Selection 

 
The generation procedure implements a search method (Langley 1994; Siedlecki & 
Sklansky, 1988) that generates subsets of features for evaluation. It may start with no 
features, all features, a selected feature set or some random feature subset. Those 
methods that start with an initial subset usually select these features heuristically 
beforehand.  Features are added (forward selection) or removed (backward 
elimination) iteratively in the first two cases (Dash & Liu, 1997). In the last case, 
features are either iteratively added or removed or produced randomly thereafter. An 
alternative selection strategy is to select instances and examine differences in their 
features. The evaluation function calculates the suitability of a feature subset 
produced by the generation procedure and compares this with the previous best 
candidate, replacing it if found to be better. 
 
A stopping criterion is tested every iteration to determine whether the FS process 
should continue or not.  For example, such a criterion may be to halt the FS process 
when a certain number of features have been selected if based on the generation 
process. A typical stopping criterion centred on the evaluation procedure is to halt the 
process when an optimal subset is reached. Once the stopping criterion has been 
satisfied, the loop terminates. For use, the resulting subset of features may be 
validated. 
 
Determining subset optimality is a challenging problem. There is always a trade-off in 
non-exhaustive techniques between subset minimality and subset suitability - the task 
is to decide which of these must suffer in order to benefit the other. For some domains 
(particularly where it is costly or impractical to monitor many features), it is much 
more desirable to have a smaller, less accurate feature subset. In other areas it may be 
the case that the modelling accuracy (e.g. the classification rate) using the selected 
features must be extremely high, at the expense of a non-minimal set of features. 



 
Figure 3 Filter and wrapper methods 

 
Feature selection algorithms may be classified into two categories based on their 
evaluation procedure (see Figure 3). If an algorithm performs FS independently of 
any learning algorithm (i.e. it is a completely separate preprocessor), then it is a filter 
approach. In effect, irrelevant attributes are filtered out before induction. Filters tend 
to be applicable to most domains as they are not tied to any particular induction 
algorithm. 
 
If the evaluation procedure is tied to the task (e.g. classification) of the learning 
algorithm, the FS algorithm employs the wrapper approach. This method searches 
through the feature subset space using the estimated accuracy from an induction 
algorithm as a measure of subset suitability. Although wrappers may produce better 
results, they are expensive to run and can break down with very large numbers of 
features. This is due to the use of learning algorithms in the evaluation of subsets, 
some of which can encounter problems when dealing with large datasets. 
 
This chapter reviews generic filter-based methods to feature selection based on rough 
set theory. Most developments in the area concentrate on using rough sets within the 
evaluation function. This can be achieved by employing the rough set dependency 
degree (including extensions of this measure) or through the use of discernibility 
functions. The theoretical background and recent approaches for this are found in the 
next section. Following this, details are given concerning RST-based approaches to 
handling real-valued and noisy data. Although the techniques reviewed here are 
primarily for feature selection, their use is not restricted solely to this field. 
Alternative search mechanisms are presented in the following section that attempt to 
tackle the problem of locating globally optimal subsets. Finally, the chapter is 
concluded, including a discussion of future research issues. 
 
 
ROUGH SET-BASED FEATURE SELECTION 
 
Rough set theory (RST) can be used as a tool to discover data dependencies and to 
reduce the number of attributes contained in a dataset using the data alone, requiring 
no additional information (Pawlak, 1991; Polkowski, 2002). Over the past ten years, 
RST has become a topic of great interest to researchers and has been applied to many 
domains.  Given a dataset with discretized attribute values, it is possible to find a 
subset (termed a reduct) of the original attributes using RST that are the most 
informative; all other attributes can be removed from the dataset with minimal 



information loss. From the dimensionality reduction perspective, informative features 
are those that are most predictive of the class attribute. 
 
There are two main approaches to finding rough set reducts: those that consider the 
degree of dependency and those that are concerned with the discernibility matrix. This 
section describes the fundamental ideas behind both approaches. To illustrate the 
operation of these, an example dataset (Table 1) will be used.  
 
 
 

Ux ∈  a b c d e 
0 1 0 2 2 0 
1 0 1 1 1 2 
2 2 0 0 1 1 
3 1 1 0 2 2 
4 1 0 2 0 1 
5 2 2 0 1 1 
6 2 1 1 1 2 
7 0 1 1 0 1 

Table 1 An example dataset 
 
 
Dependency Function-based Approaches 
 
RSAR 
 
Central to Rough Set Attribute Reduction (RSAR) (Chouchoulas & Shen, 2001; 
Jensen & Shen, 2004b) is the concept of indiscernibility. Let I = (U, A) be an 
information system, where U is a non-empty set of finite objects (the universe) and A 
is a non-empty finite set of attributes such that a:U �Va for every Aa ∈ . Va is the set 
of values that attribute a may take. With any AP ⊆  there is an associated 
equivalence relation IND(P): 
 
Equation 1 

)}()(,|),{()( 2 yaxaPaUyxPIND =∈∀∈=  
 
The partition of U generated by IND(P) is denoted U/IND(P) (or U/P).  If 

)(),( PINDyx ∈ , then x and y are indiscernible by attributes from P. The equivalence 
classes of the P-indiscernibility relation are denoted [x]P.  For the illustrative example, 
if P = {b,c}, then objects 1, 6 and 7 are indiscernible; as are objects 0 and 4. IND(P) 
creates the following partition of U : 
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Let UX ⊆ . X can be approximated using only the information contained within P by 
constructing the P-lower and P-upper approximations of X: 
 
Equation 2 

}][|{ XxxXP P ⊆=  
 
Equation 3 

}][|{ ∅≠∩= XxxXP P  
 
Let P and Q be equivalence relations over U, then the positive region can be defined 
as: 
 
Equation 4 

�
QUX

P XPQPOS
/
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The positive region contains all objects of U that can be classified to classes of U/Q 
using the information in attributes P. For example, let P = {b,c} and Q ={e}, then 
 

}5,3,2{}}3{},5,2{,{)( =∅= �QPOSP  
 
Using this definition of the positive region, the rough set degree of dependency of a 
set of attributes Q on a set of attributes P is defined in the following way: 
 
For AQP ⊂, , it is said that Q depends on P in a degree k (0 � k � 1), denoted P �k Q, 
if 
 
Equation 5 
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In the example, the degree of dependency of attribute {e} from the attributes {b,c} is: 
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The reduction of attributes is achieved by comparing equivalence relations generated 
by sets of attributes. Attributes are removed so that the reduced set provides the same 
predictive capability of the decision feature as the original. A reduct R is defined as a 
subset of minimal cardinality of the conditional attribute set C such 
that )()( DD CR γγ = . 

 



 
 
The QUICKREDUCT algorithm given in Figure 4, attempts to calculate a reduct without 
exhaustively generating all possible subsets.  It starts off with an empty set and adds 
in turn, one at a time, those attributes that result in the greatest increase in the rough 
set dependency metric, until this produces its maximum possible value for the dataset. 
 
According to the algorithm, the dependency of each attribute is calculated, and the 
best candidate chosen. Attribute d generates the highest dependency degree, so that 
attribute is chosen and the sets {a,d}, {b,d} and {c,d} are evaluated. This process 
continues until the dependency of the reduct equals the consistency of the dataset (1 if 
the dataset is consistent). In the example, the algorithm terminates after evaluating the 
subset {b,d}. The generated reduct shows the way of reducing the dimensionality of 
the original dataset by eliminating those conditional attributes that do not appear in 
the set. 
 
This, however, is not guaranteed to find a minimal subset. Using the dependency 
function to discriminate between candidates may lead the search down a non-minimal 
path. It is impossible to predict which combinations of attributes will lead to an 
optimal reduct based on changes in dependency with the addition or deletion of single 
attributes. It does result in a close-to-minimal subset, though, which is still useful in 
greatly reducing dataset dimensionality. 
 
VPRS 
 
Variable precision rough sets (VPRS) (Ziarko, 1993) extends rough set theory by the 
relaxation of the subset operator. It was proposed to analyse and identify data patterns 
which represent statistical trends rather than functional. The main idea of VPRS is to 
allow objects to be classified with an error smaller than a certain predefined level. 
This introduced threshold relaxes the rough set notion of requiring no information 
outside the dataset itself. Let UYX ⊆, , the relative classification error is defined by: 
 

QUICKREDUCT(C,D) 
  C, the set of all conditional features; 
  D, the set of decision features. 
 
 (1)  R � {} 
 (2)  do 
 (3)     T � R 
 (4)     )( RCx −∈∀  
 (5)          if )()(}{ DD TxR γγ >∪  

 (6)             T � }{xR ∪  
 (7)      R � T 
 (8)  until )()( DD CR γγ =  
 (9)  return R 
 

Figure 4 The QUICKREDUCT Algorithm 



Equation 6 
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Observe that c(X,Y) = 0 if and only if YX ⊆ . A degree of inclusion can be achieved 
by allowing a certain level of error, �, in classification: 
 

5.00,),(iff <≤≤⊆ βββ YXcYX  
 
Using β⊆ instead of ⊆ , the �-upper and �-lower approximations of a set X can be 
defined as: 
 
Equation 7 

}][|/]{[ XxPUxXP PP ββ ⊆∈∪=  
 
Equation 8 

}1),]([|/]{[ ββ −<∈∪= XxcPUxXP PP  
 
Note that XPXP =β for � = 0. The positive, negative and boundary regions in the 
original rough set theory can now be extended to: 
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where P is also an equivalence relation on U. This can then be used to calculate 
dependencies and thus determine �-reducts. The dependency function becomes: 
 
Equation 9 
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Returning to the example dataset in Table 1, the �-positive region can be calculated 
for P = {b,c}, Q = {e} and � = 0.4. Setting � to this value means that a set is 
considered to be a subset of another if at least 60% of their elements are shared.  The 
partitions of the universe of objects for P and Q are: 
 
U/P = {{2},{0,4},{3},{1,6,7},{5}} 
U/Q = {{0},{1,3,6},{2,4,5,7}} 
 
For each set PUA /∈ and QUB /∈ the value of c(A,B) must be less than � if the 
equivalence class A is to be included in the �-positive region. Considering A = {2} 
gives 
 



c({2},{0}) = 1 > � 
c({2},{1,3,6}) = 1 > � 
c({2},{2,4,5,7}) = 0 < � 
 
So object 2 is added to the �-positive region as it is a �-subset of {2,4,5,7} (and is in 
fact a traditional subset of the equivalence class). Taking A = {1,6,7}, a more 
interesting case is encountered: 
 
c({1,6,7},{0}) = 1 > � 
c({1,6,7},{1,3,6}) = 0.3333 < � 
c({1,6,7},{2,4,5,7}) = 0.6667 > � 
 
Here the objects 1, 6 and 7 are included in the �-positive region as the set {1,6,7} is a 
�-subset of {1,3,6}. Calculating the subsets in this way leads to the following �-
positive region: 
 
POSP,�(X) = {1,2,3,5,6,7} 
 
Compare this with the positive region generated previously: {2,3,5}. Objects 1, 6 and 
7 are now included due to the relaxation of the subset operator. If the original dataset 
contained noise, it could have been the case that these objects did indeed belong to the 
positive region. Using traditional rough set theory, this would not have been possible 
due to the inflexibility of the subset operator. 
 
It can be seen that the QUICKREDUCT algorithm outlined previously can be adapted to 
incorporate the reduction method built upon the VPRS theory. By supplying a suitable 
� value to the algorithm, the �-lower approximation, �-positive region, and �-
dependency can replace the traditional calculations. This will result in a more 
approximate final reduct, which may be a better generalization when encountering 
unseen data. Additionally, setting � to 0 forces such a method to behave exactly like 
RSAR. 
 
Extended classification of reducts in the VPRS approach may be found in (Beynon, 
2000; Beynon, 2001; Kryszkiewicz, 1994). As yet, there have been no comparative 
experimental studies between rough set methods and the VPRS method. However, the 
variable precision approach requires the additional parameter � which has to be 
specified from the start. By repeated experimentation, this parameter can be suitably 
approximated. However, problems arise when searching for true reducts as VPRS 
incorporates an element of inaccuracy in determining the number of classifiable 
objects. 
 
 
Dynamic Reducts 
 
Reducts generated from an information system are sensitive to changes in the system. 
This can be seen by removing a randomly chosen set of objects from the original 
object set. Those reducts frequently occurring in random subtables can be considered 
to be stable; it is these reducts that are encompassed by dynamic reducts (Bazan et al, 
1994). 
 



Let A = ( dCU ∪, ) be a decision table, then any system B = ( dCU ∪,' ) ( UU ⊆' ) is 
called a subtable of A. If F is a family of subtables of A, then 
 
Equation 10 
DR(A,F) = Red(A,d) �

FB∈

∩{ Red(B,d)} 

defines the set of F-dynamic reducts of A. From this definition, it follows that a 
relative reduct of A is dynamic if it is also a reduct of all subtables in F. In most cases 
this is too restrictive, so a more general notion of dynamic reducts is required.  
 
By introducing a threshold, 10 ≤≤ ε , the concept of ),( εF -dynamic reducts can be 
defined: 
 
Equation 11 
DR�(A,F) = })(:),(Red{ ε≥∈ CsdAC F  
 
where 
 
Equation 12 

||
|)},(Red:{|
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F

dBCFB
CsF

∈∈=  

 
is the F-stability coefficient of C. This lessens the previous restriction that a dynamic 
reduct must appear in every generated subtable. Now, a reduct is considered to be 
dynamic if it appears in a certain proportion of subtables, determined by the value �. 
For example, by setting � to 0.5 a reduct is considered to be dynamic if it appears in at 
least half of the subtables. Note that if F = {A} then DR(A,F) = Red(A,d). Dynamic 
reducts may then be calculated according to the algorithm given in Figure 5. 
 

 
 
Firstly, all reducts are calculated for the given information system, A. Then, the new 
subsystems Ai are generated by randomly deleting one or more rows from A. All 
reducts are found for each subsystem, and the dynamic reducts are computed using 
sF(C,R) which denotes the significance factor of reduct C within all reducts found, R. 

DynamicRed(A, �, its) 
  A, the original decision table; 
  �, the dynamic reduct threshold; 
  its, the number of iterations. 
 
 (1)  R � {} 
 (2)  T � calculateAllReducts(A) 
 (3)  for j = 1…its 
 (4)     Aj � deleteRandomRows(A) 
 (5)     R � ∪R  calculateAllReducts(Aj) 
 (6)    TC ∈∀  
 (7)          if ε≥),( RCsF  
 (8)            output C 
 

Figure 5 Dynamic reduct algorithm 



 
Returning to the example decision table (call this A), the first step is to calculate all its 
reducts. This produces the set of all reducts A = {{b,d},{c,d},{a,b,d},{a,c,d},{b,c,d}}. 
The reduct {a,b,c,d} is not included as this will always be a reduct of any generated 
subtable (it is the full set of conditional attributes). The next step randomly deletes a 
number of rows from the original table A. From this, all reducts are again calculated; 
for one subtable this might be R = {{b,d},{b,c,d},{a,b,d}} In this case, the subset 
{c,d} is not a reduct (though it was for the original dataset). If the number of 
iterations is set to just one, and if � is set to a value less than 0.5 (implying that a 
reduct should appear in half of the total number of discovered reducts), then the 
reduct {c,d} is deemed not to be a dynamic reduct. 
 
Intuitively, this is based on the hope that by finding stable reducts they will be more 
representative of the real world, i.e. it is more likely that they will be reducts for 
unseen data. A comparison of dynamic and non-dynamic approaches can be found in 
(Bazan, 1998), where various methods were tested on extracting laws from decision 
tables. In the experiments, the dynamic method and the conventional RS method both 
performed well. In fact, it appears that the RS method has on average a lower error 
rate of classification than the dynamic RS method. 
 
A disadvantage of this dynamic approach is that several subjective choices have to be 
made before the dynamic reducts can be found (for instance the choice of the value of 
�; these values are not contained in the data. Also, the huge complexity of finding all 
reducts within subtables forces the use of heuristic techniques such as genetic 
algorithms to perform the search. For large datasets, this step may well be too costly. 
 
 
Han et al. 
 
In (Han et al., 2004), a feature selection method based on an alternative dependency 
measure is presented. The technique was originally proposed to avoid the calculation 
of discernibility functions or positive regions, which can be computationally 
expensive without optimizations 
 
The authors replace the traditional rough set degree of dependency with an alternative 
measure, the relative dependency, defined as follows for an attribute subset R: 
 
Equation 13 

|)(/|
|)(/|

)(
DRINDU

RINDU
DR ∪

=κ  

 
The authors then show that R is a reduct if and only if �R(D) = �C(D) and 

)()(, DDRX CX κκ ≠⊂∀ .  
 
Two algorithms are constructed for feature selection based on this measure. The first 
(Figure 6) performs backward elimination of features where attributes are removed 
from the set of considered attributes if the relative dependency equals 1 upon their 
removal. Attributes are considered one at a time, starting with the first, evaluating 
their relative dependency. The second algorithm initially ranks the individual 



attributes beforehand using an entropy measure before the backward elimination is 
performed. 
 

 
 
Returning to the example dataset, the backward elimination algorithm initializes R to 
the set of conditional attributes, {a,b,c,d}. Next, the elimination of attribute a is 
considered: 

 1
|}}7{},5{},4{},3{},2{},6,1{},0{{|
|}}7{},5{},4{},3{},2{},6,1{},0{{|

|}),,,({/|
|}),,({/|

)(},,{ ===
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As the relative dependency is equal to 1, attribute a can be removed from the current 
reduct candidate R �{b,c,d}. The algorithm then considers the elimination of 
attribute b from R: 
 

1
|}}7{},4{},3{},5,2{},6,1{},0{{|
|}}7{},4{},3{},5,2{},6,1{},0{{|
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Again, the relative dependency of {c,d} evaluates to 1, so attribute b is removed from 
R, (R ={c,d}). The next step evaluates the removal of c from the reduct candidate: 
 

5
3
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As this does not equal 1, attribute d is not removed from R. The algorithm then 
evaluates the elimination of attribute d from R (R = {c,d}): 
 

6
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Again, the relative dependency does not evaluate to 1, hence attribute d is retained in 
the reduct candidate. As there are no further attributes to consider, the algorithm 
terminates and outputs the reduct {c,d}. 
 
Zhong et al. 
 

RelativeReduct(C,D) 
  C, the conditional attributes; 
  D, the decision attributes; 
 
 (1)  R � C 
 (2) Ca ∈∀  
 (3)     if (�R-{a}(D) == 1) 
 (4)         R � R – {a} 
 (6)    return R 
 
Figure 6 Backward elimination based on relative dependency 



 
 
In (Zhong et al, 2001), a heuristic filter-based approach is presented based on rough 
set theory. The algorithm proposed, as reformalised in Figure 7, begins with the core 
of the dataset (those attributes that cannot be removed without introducing 
inconsistencies) and incrementally adds attributes based on a heuristic measure. 
Additionally, a threshold value is required as a stopping criterion to determine when a 
reduct candidate is “near enough” to being a reduct. On each iteration, those objects 
that are consistent with the current reduct candidate are removed (an optimization that 
can be used with RSAR). As the process starts with the core of the dataset, this has to 
be calculated beforehand. Using the discernibility matrix for this purpose can be quite 
impractical for datasets of large dimensionality. However, there are other methods 
that can calculate the core in an efficient manner (Pawlak 1991). For example, this 
can be done by calculating the degree of dependency of the full feature set and the 
corresponding dependencies of the feature set minus each attribute. Those features 
that result in a dependency decrease are core attributes. There are also alternative 
methods available that allow the calculation of necessary information about the 
discernibility matrix without the need to perform operations directly on it (Nguyen & 
Nguyen, 1996). 

 
 
EBR 
 

A further technique for rough set feature selection is entropy-based reduction (EBR), 
developed from work carried out in (Jensen & Shen, 2004a). This approach is based 
on the entropy heuristic employed by machine learning techniques such as C4.5 
(Quinlan, 1993). A similar approach has been adopted in (Dash & Liu, 1997) where 
an entropy measure is used for ranking features. EBR is concerned with examining a 
dataset and determining those attributes that provide the most gain in information. 
The entropy of attribute A (which can take values a1,...,am) with respect to the 
conclusion C (of possible values c1,...,cn) is defined as: 
 

select(C,D,O,�) 
  C, the set of all conditional features; 
  D, the set of decision features. 
  O, the set of objects (instances) 
   �, the reduct threshold 
 
 (1)  R � calculateCore() 
 (2)  while εγ <)(DR  
 (3)     O � O – POSR(D) //optimization 
 (4)     )( RCx −∈∀  
 (5)          va = |)(| }{ DPOS aR∪  

 (6)          ma �| largestEquivClass( )(}{ DPOS aR∪ ) | 
 (7)      Choose a with largest va×ma 
 (8)      R � }{aR ∪  
 (9)  return R 
 

Figure 7 Heuristic filter-based algorithm 



Equation 14 
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This can be extended to dealing with subsets of attributes instead of individual 
attributes only. Using this entropy measure, the algorithm used in rough set-based 
attribute reduction (Chouchoulas & Shen, 2001) can be modified to that shown in 
Figure 8. This algorithm requires no thresholds in order to function - the search for the 
best feature subset is stopped when the resulting subset entropy is equal to that of the 
entire feature set. For consistent data, the final entropy of the subset will be zero. It is 
interesting to note that any subset with an entropy of 0 will also have a corresponding 
rough set dependency of 1. Hence, this technique can be used for finding rough set 
reducts if the data is consistent. 
 
Returning to the example dataset, EBR first evaluates the entropy of each individual 
attribute: 
 

Subset  Entropy 
{a} 1.1887219 
{b} 0.75 
{c} 0.9387219 
{d} 0.75 

 
The subsets with lowest entropy here are {b} and {d}. The algorithm selects attribute 
b due to it being evaluated first and adds it to the current feature subset. The next step 
is to calculate the entropy of all subsets containing b and one other attribute: 
 

Subset Entropy 
{a,b} 0.5 
{b,c} 0.59436095 
{b,d} 0.0 

EBR(C,D) 
  C, the set of all conditional features; 
  D, the set of decision features. 
 
 (1)  R � {} 
 (2)  do 
 (3)     T � R 
 (4)     )( RCx −∈∀  
 (5)          if )(}){( THxRH <∪  
 (6)             T � }{xR ∪  
 (7)      R � T 
 (8)  until )|()|( CDHRDH =  
 (9)  return R 
 

Figure 8 Entropy-based reduction 



 
Here, the subset {b,d} is chosen as this results in the lowest entropy. Additionally, the 
stopping criterion has been met as this value equals the entropy for the entire feature 
set (H(D|{b,d}) = 0 = H(D|C)). The algorithm terminates and returns this feature 
subset – the dataset can now be reduced to these features only. As the resulting 
entropy is zero, the returned subset is a rough set reduct. 
 
Other Algorithms 
 
Among the first rough set-based approaches is the Preset algorithm (Modrzejewski, 
1993) which is another feature selector that uses rough set theory to rank heuristically 
the features, assuming a noise free binary domain. Since Preset does not try to explore 
all combinations of the features, it is certain that it will fail on problems whose 
attributes are highly correlated. There have also been investigations into the use of 
different reduct quality measures (see (Polkowski et al, 2000) for details). 
 
In (Zhang &Yao, 2004), a new rough set based feature selection heuristic, 
Parameterized Average Support Heuristic (PASH), is proposed.  Unlike the existing 
methods, PASH is based on a special parameterized lower approximation which is 
defined to include all predictive instances. Predictive instances are instances that may 
produce predictive rules which hold true with a high probability but are not 
necessarily always true. The traditional model could exclude predictive instances that 
may produce such rules. The main advantage of PASH is that it considers the overall 
quality of the potential rules, thus producing a set of rules with balanced support 
distribution over all decision classes. However, it requires a parameter to be defined 
by the user that adjusts the level of approximation. One of the main benefits of rough 
set theory is that it does not require such additional information, and hence eliminates 
the need for user interaction or repeated experimentation. 
 
 
 
DISCERNIBILITY MATRIX-BASED APPROACHES 
 
Many applications of rough sets to feature selection make use of discernibility 
matrices for finding reducts. A discernibility matrix (Skowron & Rauszer, 1992) of a 
decision table D = ( dCU ∪, ) is a symmetric |U| × |U| matrix with entries defined: 
 
Equation 15 

||,...,1,)}()(|{ UjixaxaCac jiij =≠∈=  
 
Each cij contains those attributes that differ between objects i and j.  For finding 
reducts, the decision-relative discernibility matrix is of more interest. This only 
considers those object discernibilities that occur when the corresponding decision 
attributes differ. Returning to the example dataset, the decision-relative discernibility 
matrix found in Table 2 is produced. For example, it can be seen from the table that 
objects 0 and 1 differ in each attribute. Although some attributes in objects 1 and 3 
differ, their corresponding decisions are the same so no entry appears in the decision-
relative matrix. Grouping all entries containing single attributes forms the core of the 
dataset (those attributes appearing in every reduct). Here, the core of the dataset is 
{d}. 



       
 
 
 
 

Ux ∈  0 1 2 3 4 5 6 7 
0         
1 a,b,c,d        
2 a,c,d a,b,c       
3 b,c  a,b,d      
4 d a,b,c,d  b,c,d     
5 a,b,c,d a,b,c  a,b,d     
6 a,b,c,d b,c  a,b,c,d b,c    
7 a,b,c,d d a,c,d    a,d  

Table 2 The decision-relative discernibility matrix 
 
From this, the discernibility function can be defined. This is a concise notation of how 
each object within the dataset may be distinguished from the others. A discernibility 
function fD is a boolean function of m boolean variables   a1

*,..., am
* (corresponding to 

the attributes a1,..., am) defined as below: 
 
Equation 16 

}|,|1|*{*)*,...,( 1 ∅≠≤≤≤∨∧= ijijmD cUijcaaf  
 
where }|*{* ijij caac ∈= . By finding the set of all prime implicants of the 
discernibility function, all the minimal reducts of a system may be determined.  From 
Table 2, the decision-relative discernibility function is (with duplicates removed): 
 

}{}{}{}{

}{}{}{}{),,,(

dadcbdbacba

dcbdcadcbadcbaf D

∨∧∨∨∧∨∨∧∨∨∧
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Further simplification can be performed by removing those sets (clauses) that are 
supersets of others: 
 

}{}{),,,( dcbdcbaf D ∧∨=  
 
The reducts of the dataset may be obtained by converting the above expression from 
conjunctive normal form to disjunctive normal form (without negations). Hence, the 
minimal reducts are {b,d} and {c,d}. Although this is guaranteed to discover all 
minimal subsets, it is a costly operation rendering the method impractical for even 
medium-sized datasets.  
 
 
Johnson Reducer 
 
This is a simple greedy heuristic algorithm that is often applied to discernibility 
functions to find a single reduct (Øhrn, 1999). Reducts found by this process have no 
guarantee of minimality, but are generally of a size close to the minimal.  
 



 
 
The algorithm begins by setting the current reduct candidate, R, to the empty set. 
Then, each conditional attribute appearing in the discernibility function is evaluated 
according to the heuristic measure. For the standard Johnson algorithm, this is 
typically a count of the number of appearances an attribute makes within clauses; 
attributes that appear more frequently are considered to be more significant. The 
attribute with the highest heuristic value is added to the reduct candidate and all 
clauses in the discernibility function containing this attribute are removed. As soon as 
all clauses have been removed, the algorithm terminates and returns the reduct R. R is 
assured to be a reduct as all clauses contained within the discernibility function have 
been addressed. 
 
Variations of the algorithm involve alternative heuristic functions in an attempt to 
guide search down better paths (Nguyen & Skowron, 1997b; Wang & Wang, 2001). 
However, no perfect heuristic exists, and hence there is still no guarantee of subset 
optimality. 
 
Compressibility algorithm 
 
In (Starzyk et al, 2000), the authors present a method for the generation of all reducts 
in an information system by manipulating the clauses in discernibility functions. In 
addition to the standard simplification laws (such as the removal of supersets), the 
concept of strong compressibility is introduced and applied in conjunction with an 
expansion algorithm.  
 
The strong compressibility simplification applies where clause attributes are either 
simultaneously present or absent in all clauses. In this situation, the attributes may be 
replaced by a single representative attribute. As an example, consider the formula: 
 

}{}{}{}{ cdfedadbfcbaf D ∨∧∨∨∨∧∨∧∨∨∨=  
 

Johnson(C,fD) 
  C, the set of conditional attributes 
  fD, the discernibility function. 
 
 (1)  ∅←R ; bestc=0;  
 (2)    while (fD not empty) 
 (3)       for each Ca ∈ that appears in fD 
 (4)           c = heuristic(a) 
 (5)           if (c > bestc) 
 (6)                bestc=c; bestAttr � a 
 (7)      aRR ∪←  
 (8)       fD � removeClauses(fD, a) 
 (9)   return R 
 

Figure 9 Johnson algorithm 



The attributes a and f can be replaced by a single attribute as they are both present in 
the first and third clauses, and absent in the second and fourth. Replacing }{ fa ∨  
with g results in: 
 

}{}{}{}{ cdedgdbcbgf D ∨∧∨∨∧∨∧∨∨=  
 
If a reduct resulting from this discernibility function contains the new attribute g, then 
this attribute may be replaced by either a or f. Here, {g,d}is a reduct and so 
{a,d}and {f,d}are reducts of the original set of clauses. Hence, fewer attributes are 
considered in the reduct-determining process with no loss of information. The 
complexity of this step is O(a*c + a2), where a is the number of attributes and c is the 
number of clauses. The overall algorithm for determining reducts can be found in 
Figure 10. It uses concepts from Boolean algebra (such as the absorption and 
expansion laws) with strong compressibility for simplifying the discernibility 
function. 
 

 
 
Returning to the example above and following the algorithm from step 4, the most 
commonly occurring attribute can be seen to be d. Hence, the expansion law is 
applied with respect to this attribute to obtain: 
 

}){}{}({}){}({
}){}{}{}({}){}({
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As all components are in simple form, step 6 is carried out, where all strongly 
equivalent classes are replaced by their equivalent attributes: 
 

}){}{}({}){}({
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The corresponding reducts for the function components are as follows (Step 7): 
 

Compressibility(fD) 
  fD, the discernibility function. 
 
 (1)   while (fD not in simple form) 
 (2)         applyAbsorptionLaws(fD)  //remove supersets 
 (3)         replaceStronglyCompressibleAttributes(fD)  
 (4)         a � mostFrequentAttribute(fD)  
 (5)         applyExpansionLaw(a,fD) 
 (6)   substituteStronglyCompressibleClasses(fD) 
 (7)   Reds � calculateReducts(fD) 
 (8)   return minimalElements(Reds) 
  

Figure 10 Compressibility algorithm 
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The reducts for the system are generated by taking the union of the components and 
determining the minimal elements: 
 

}),,{},,,{},,,{},,{},,{},,{},,({)(Red cebcfbcabdcdbfddaf D =  
 
 
RSAR-SAT 
 
The problem of finding the smallest feature subsets using rough set theory can be 
formulated as a SAT problem.  Rough sets allows the generation from datasets of 
clauses of features in conjunctive normal form. If after assigning truth values to all 
features appearing in the clauses the formula is satisfied, then those features set to true 
constitute a valid subset for the data. The task is to find the smallest number of such 
features so that the CNF formula is satisfied. In other words, the problem here 
concerns finding a minimal assignment to the arguments of f(x1,...,xn) that makes the 
function equal to 1. There will be at least one solution to the problem (i.e. all xis set to 
1) for consistent datasets. Preliminary work has been carried out in this area (Bakar et 
al, 2002), though this does not adopt a DPLL-style approach to finding solutions. 
 

 
 
The DPLL algorithm for finding minimal subsets can be found in Figure 11, where a 
search is conducted in a depth-first manner. The key operation in this procedure is the 
unit propagation step, unitPropagate(F), in lines (6) and (7). Clauses in the formula 
that contain a single literal will only be satisfied if that literal is assigned the value 1 
(for positive literals). These are called unit clauses. Unit propagation examines the 
current formula for unit clauses and automatically assigns the appropriate value to the 
literal they contain. The elimination of a literal can create new unit clauses, and thus 

DPLL(F) 
  F, the formula containing the current set of clauses. 
 
 (1)   if (F contains an empty clause) 
 (2)      return unsatisfiable 
 (3)   if (F is empty) 
 (4)      output current assignment 
 (5)      return satisfiable 
 (6)   if (F contains a unit clause {l}) 
 (7)       F’ � unitPropagate(F) 
 (8)      return DPLL(F’) 
 (9)   x � selectLiteral(F) 
 (10) if (DPLL( }{xF ∪ ) is satisfiable) 
 (11)    return satisfiable 
 (12) else return DPLL( }{ xF −∪ ) 
  

Figure 11 The definition of the DPLL algorithm 



unit propagation eliminates variables by repeated passes until there is no unit clause in 
the formula. The order of the unit clauses within the formula makes no difference to 
the results or the efficiency of the process. 
 
Branching occurs at lines (9) to (12) via the function selectLiteral(F). Here, the next 
literal is chosen heuristically from the current formula, assigned the value 1, and the 
search continues. If this branch eventually results in unsatisfiability, the procedure 
will assign the value 0 to this literal instead and continue the search.  The importance 
of choosing good branching literals is well known - different branching heuristics may 
produce drastically different sized search trees for the same basic algorithm, thus 
significantly affecting the efficiency of the solver.  The heuristic currently used within 
RSAR-SAT is to select the variable that appears in the most clauses in the current set 
of clauses. Many other heuristics exist for this purpose (Zhang & Malik, 2002), but 
are not considered here. 
 
A degree of pruning can take place in the search by remembering the size of the 
currently considered subset and the smallest optimal subset encountered so far. If the 
number of variables currently assigned 1 equals the number of those in the presently 
optimal subset, and the satisfiability of F is still not known, then any further search 
down this branch will not result in a smaller optimal subset. 
 
Although stochastic methods have been applied to SAT problems (Hoos & Stützle, 
1999) these are not applicable here as they provide no guarantee of solution 
minimality. The DPLL-based algorithm will always find the minimal optimal subset. 
However, this will come at the expense of time taken to find it. The initial 
experimentation (Jensen et al, 2005) has shown that the method performs well in 
comparison to RSAR, which often fails to find the smallest subsets.  
 
 
HANDLING CONTINUOUS VALUES 
 
The reliance on discrete data for the successful operation of RST can be seen as a 
significant drawback of the approach. Indeed, this requirement of RST implies an 
objectivity in the data that is simply not present (Koczkodaj et al., 1998). For 
example, in a medical dataset, values such as Yes or No cannot be considered 
objective for a Headache attribute as it may not be straightforward to decide whether 
a person has a headache or not to a high degree of accuracy. Again, consider an 
attribute Blood Pressure. In the real world, this is a real-valued measurement but for 
the purposes of RST must be discretised into a small set of labels such as Normal, 
High, etc.  Subjective judgments are required for establishing boundaries for objective 
measurements. 
 
In the rough set literature, there are two main ways of handling real-valued attributes 
– through fuzzy-rough sets and tolerance rough sets. Both approaches replace the 
traditional equivalence classes of crisp rough set theory with alternatives that are 
better suited to dealing with this type of data. In the fuzzy-rough case, fuzzy 
equivalence classes are employed within a fuzzy extension of rough set theory, 
resulting in a hybrid approach. In the tolerance case, indiscernibility relations are 
replaced with similarity relations that permit a limited degree of variability in attribute 



values. Approximations are constructed based on these tolerance classes in a manner 
similar to that of traditional rough set theory. 
 

 a b c q 
1 -0.4 -0.3 -0.5 no 
2 -0.4 0.2 -0.1 yes 
3 -0.3 -0.4 -0.3 no 
4 0.3 -0.3 0 yes 
5 0.2 -0.3 0 yes 
6 0.2 0 0 no 

Table 3 Example dataset: crisp decisions 
 
To illustrate the operation of the techniques involved, an example dataset is given in 
Table 3. The table contains three real-valued conditional attributes and a crisp-valued 
decision attribute.   
 
 
Fuzzy Rough Sets 
 
A way of handling this problem is through the use of fuzzy-rough sets. Subjective 
judgments are not entirely removed as fuzzy set membership functions still need to be 
defined. However, the method offers a high degree of flexibility when dealing with 
real-valued data, enabling the vagueness and imprecision present to be modelled 
effectively. 
 
Fuzzy Equivalence Classes 
In the same way that crisp equivalence classes are central to rough sets, fuzzy 
equivalence classes are central to the fuzzy-rough set approach (Dubois & Prade, 
1992; Thiele, 1998; Yao, 1998).  For typical applications, this means that the decision 
values and the conditional values may all be fuzzy.  The concept of crisp equivalence 
classes can be extended by the inclusion of a fuzzy similarity relation S on the 
universe, which determines the extent to which two elements are similar in S. For 
example, if 9.0),( =yxSµ , then objects x and y are considered to be quite similar.  

The usual properties of reflexivity ( 1),( =xxSµ ), symmetry ( ),(),( xyyx SS µµ = ) and 

transitivity ( ),(),(),( zyyxzx SSS µµµ ∧≥ ) hold. 
 
Using the fuzzy similarity relation, the fuzzy equivalence class [x]S for objects close 
to x can be defined: 
 
Equation 17 

),()(][ yxy Sx S
µµ =  

 
The following axioms should hold for a fuzzy equivalence class F (Höhle, 1988): 
 

)normalised is  (1)( FF x µµ =∃  
)(),()( yyxx FSF µµµ ≤∧  

),()()( yxyx SFF µµµ ≤∧  



 
The first axiom corresponds to the requirement that an equivalence class is non-
empty. The second axiom states that elements in y's neighbourhood are in the 
equivalence class of y. The final axiom states that any two elements in F are related 
via S. Obviously, this definition degenerates to the normal definition of equivalence 
classes when S is non-fuzzy. 
 
The family of normal fuzzy sets produced by a fuzzy partitioning of the universe of 
discourse can play the role of fuzzy equivalence classes (Dubois & Prade, 1992). 
Consider the crisp partitioning of a universe of discourse, U, by the attributes in Q: 
U/Q = {{1,3,6},{2,4,5}}. This contains two equivalence classes ({1,3,6} and {2,4,5}) 
that can be thought of as degenerated fuzzy sets, with those elements belonging to the 
class possessing a membership of one, zero otherwise.  For the first class, for instance, 
the objects 2, 4 and 5 have a membership of zero.  Extending this to the case of fuzzy 
equivalence classes is straightforward: objects can be allowed to assume membership 
values, with respect to any given class, in the interval [0,1].  U/Q is not restricted to 
crisp partitions only; fuzzy partitions are equally acceptable. 
 
Fuzzy-Rough Feature Selection 
 
Fuzzy-Rough Feature Selection (FRFS) (Jensen & Shen, 2004a; Jensen & Shen, 
2004b; Shen & Jensen, 2004) provides a means by which discrete or real-valued noisy 
data (or a mixture of both) can be effectively reduced without the need for user-
supplied information. Additionally, this technique can be applied to data with 
continuous or nominal decision attributes, and as such can be applied to regression as 
well as classification datasets.  The only additional information required is in the form 
of fuzzy partitions for each feature which can be automatically derived from the data.  
 
From the literature, the fuzzy P-lower and P-upper approximations are defined as 
(Dubois & Prade, 1992): 
 
Equation 18 

ixxF XFxiXP i
∀−= )}(),(1max{inf)( µµµ  

 
Equation 19 

ixxF XFxiXP i
∀= )}(),(min{sup)( µµµ  

 
where Fi denotes a fuzzy equivalence class belonging to U/P. Note that although the 
universe of discourse in feature selection is finite, this is not the case in general, hence 
the use of sup and inf.  These definitions diverge a little from the crisp upper and 
lower approximations, as the memberships of individual objects to the approximations 
are not explicitly available. As a result of this, the fuzzy lower and upper 
approximations are herein redefined as: 
 
Equation 20 

)})(),(1max{inf),(min(sup)(
/

yyxx XFUyF
PUF

XP µµµµ −=
∈∈

 

 



Equation 21 
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In implementation, not all Uy ∈ need to be considered - only those where )( yFµ is 
non-zero, i.e. where object y is a fuzzy member of (fuzzy) equivalence class F.  The 
tuple >< XPXP , is called a fuzzy-rough set.  
 
The crisp positive region in traditional rough set theory is defined as the union of the 
lower approximations. By the extension principle (Zadeh, 1975), the membership of 
an object Ux ∈ , belonging to the fuzzy positive region can be defined by 
 
Equation 22 
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Object x will not belong to the positive region only if the equivalence class it belongs 
to is not a constituent of the positive region. This is equivalent to the crisp version 
where objects belong to the positive region only if their underlying equivalence class 
does so. Similarly, the negative and boundary regions can be defined.  For this 
particular feature selection method, the upper approximation is not used, though this 
may be useful for other methods. 
 
Using the definition of the fuzzy positive region, the new dependency function can be 
defined as follows: 
 
Equation 23 
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As with crisp rough sets, the dependency of Q on P is the proportion of objects that 
are discernible out of the entire dataset. In the present approach, this corresponds to 
determining the fuzzy cardinality of )()( xQPOSP

µ divided by the total number of objects 
in the universe. The definition of dependency degree covers the crisp case as its 
specific instance.  
 
If the fuzzy-rough reduction process is to be useful, it must be able to deal with 
multiple features, finding the dependency between various subsets of the original 
feature set. For example, it may be necessary to be able to determine the degree of 
dependency of the decision feature(s) with respect to P = {a,b}.  In the crisp case, U/P 
contains sets of objects grouped together that are indiscernible according to both 
features a and b. In the fuzzy case, objects may belong to many equivalence classes, 
so the cartesian product of U/IND({a}) and U/IND({b}) must be considered in 
determining U/P.  
 
Each set in U/P denotes an equivalence class.  For example, if P = {a,b}, U/IND({a}) 
= {Na, Za} and U/IND({b}) = {Nb, Zb}, then 
 



},,,{/ babababa ZZNZZNNNPU ∩∩∩∩=  
 
The extent to which an object belongs to such an equivalence class is therefore 
calculated by using the conjunction of constituent fuzzy equivalence classes, say Fi, 
i=1,2,...,n: 
 
Equation 24 
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Fuzzy-Rough QUICKREDUCT 
 
A problem may arise when this approach is compared to the crisp approach. In 
conventional RSAR, a reduct is defined as a subset R of the features which have the 
same information content as the full feature set A. In terms of the dependency 
function this means that the values )(QRγ and )(QAγ are identical and equal to 
1 if the dataset is consistent. However, in the fuzzy-rough approach this is not 
necessarily the case as the uncertainty encountered when objects belong to many 
fuzzy equivalence classes results in a reduced total dependency. 
 

 
 
A possible way of combatting this would be to determine the degree of dependency of 
a set of decision features D upon the full feature set and use this as the denominator 
rather than |U| (for normalization), allowing �' to reach 1.  With these issues in mind, a 
new QUICKREDUCT algorithm has been developed as given in Figure 12. It employs 
the new dependency function �' to choose which features to add to the current reduct 
candidate in the same way as the original QUICKREDUCT process (see Figure 4).  The 
algorithm terminates when the addition of any remaining feature does not increase the 
dependency (such a criterion could be used with the original QUICKREDUCT 
algorithm). 

FRQUICKREDUCT(C,D) 
  C, the set of all conditional features; 
  D, the set of decision features. 
 
 (1)   R � {}; 0' =bestγ  
 (2)   do 
 (3)      T � R 
 (4)     bestprev '' γγ =  

 (5)     )( RCx −∈∀  
 (6)           if )(')(' }{ DD TxR γγ >∪  

 (7)                 T � }{xR ∪  
 (8)                )('' DTbest γγ =  
 (9)          R � T 
 (10) until prevbest '' γγ ==  
 (11) return R 
  
Figure 12 The fuzzy-rough QUICKREDUCT algorithm 



 
As the new degree of dependency measure is non-monotonic, it is possible that the 
QUICKREDUCT style search terminates having reached only a local optimum. The 
global optimum may lie elsewhere in the search space. This motivates the adoption of 
alternative search mechanisms. However, the algorithm as presented in Figure 12 is 
still highly useful in locating good subsets quickly. 
 
Note that an intuitive understanding of the algorithm implies that, for a dimensionality 
of n, (n2 + n)/2 evaluations of the dependency function may be performed for the 
worst-case dataset. However, as FRFS is used for dimensionality reduction prior to 
any involvement of the system which will employ those features belonging to the 
resultant reduct, this operation has no negative impact upon the run-time efficiency of 
the system. 
 
It is also possible to reverse the search; that is, start with the full set of features and 
incrementally remove the least informative features. This process continues until no 
more features can be removed without reducing the total number of discernible 
objects in the dataset. Again, this tends not to be applied to larger datasets as the cost 
of evaluating these larger feature subsets is too great. 
 
Application to the Example Dataset 
 

 
Figure 13 Fuzzifications for conditional features 

 
Using Table 3 and the fuzzy sets defined in Figure 13 (for all conditional attributes), 
and setting A={a}, B={b}, C={c} and Q={q}, the following equivalence classes are 
obtained: 
 
U/A = {Na, Za} 
U/B = {Nb, Zb} 
U/C = {Nc, Zc} 
U/Q = {{1,3,6}, {2,4,5}} 
 
The first step is to calculate the lower approximations of the sets A, B and C, using 
Equation 20. To clarify the calculations involved, Table 4 contains the membership 
degrees of objects to fuzzy equivalence classes.  
 
 
 
 



a b c q Ux ∈  
Na Za Nb Zb Nc Zc {1,3,6} {2,4,5} 

1 0.8 0.2 0.6 0.4 1.0 0.0 1.0 0.0 
2 0.8 0.2 0.0 0.6 0.2 0.8 0.0 1.0 
3 0.6 0.4 0.8 0.2 0.6 0.4 1.0 0.0 
4 0.0 0.4 0.6 0.4 0.0 1.0 0.0 1.0 
5 0.0 0.6 0.6 0.4 0.0 1.0 0.0 1.0 
6 0.0 0.6 0.0 1.0 0.0 1.0 1.0 0.0 

Table 4 Membership values of objects to corresponding fuzzy sets 
 
For simplicity, only A will be considered here; that is, using A to approximate Q. For 
the first decision equivalence class X = {1,3,6}, )(}6,3,1{ xAµ needs to be calculated: 
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Considering the first fuzzy equivalence class of A, Na: 
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For object 2 this can be calculated as follows. From Table 4 it can be seen that the 
membership of object 2 to the fuzzy equivalence class Na, )2(

aNµ , is 0.8. The 
remainder of the calculation involves finding the smallest of the following values: 
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From the calculations above, the smallest value is 0.2, hence: 
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Similarly for Za 
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Thus, 
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Calculating the A-lower approximation of X = {1,3,6} for every object gives 
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The corresponding values for X = {2,4,5}can also be determined: 
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It is a coincidence here that )()( }5,4,2{}6,3,1{ xx AA µµ = for this example. Using these 
values, the fuzzy positive region for each object can be calculated via using 
 

)(sup)(
/

)( xx XA
QUX

QPOS A
µµ

∈
=  

 
This results in: 
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The next step is to determine the degree of dependency of Q on A: 
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Calculating for B and C gives: 
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From this it can be seen that attribute b will cause the greatest increase in dependency 
degree. This attribute is chosen and added to the potential reduct. The process iterates 
and the two dependency degrees calculated are 
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Adding attribute a to the reduct candidate causes the larger increase of dependency, so 
the new candidate becomes {a,b}. Lastly, attribute c is added to the potential reduct: 
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As this causes no increase in dependency, the algorithm stops and outputs the reduct 
{a,b}. The dataset can now be reduced to only those attributes appearing in the reduct. 
When crisp RSAR is performed on this dataset (after using the same fuzzy sets to 
discretize the real-valued attributes), the reduct generated is {a,b,c}, i.e. the full 
conditional attribute set (Jensen & Shen, 2004b).  Unlike crisp RSAR, the true 
minimal reduct was found using the information on degrees of membership. It is clear 
from this example alone that the information lost by using crisp RSAR can be 
important when trying to discover the smallest reduct from a dataset. 
 
 
Fuzzy Entropy-Guided FRFS 
 
From previous experimentation with crisp rough sets and entropy (Jensen & Shen, 
2004b) it was observed that entropy-based methods often found smaller reducts than 
those based on the dependency function. This provided the motivation for a new 
fuzzy-rough technique using fuzzy entropy to guide search (Kosko, 1986; Mac 
Parthláin et al., 2006), in order to locate optimal fuzzy-rough subsets. 
 
 
Fuzzy Entropy 
 
Again, let I = (U, A) be a decision system, where U is a non-empty set of finite 
objects. }{ DCA ∪= is a non-empty finite set of attributes, where C is the set of input 
features and D is the set of classes. An attribute Aa ∈ has corresponding fuzzy subsets 
F1, F2,…, Fn. The fuzzy entropy for a fuzzy subset Fi can be defined as being: 
 
Equation 25 
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where p(Q | Fi) is the relative frequency of the fuzzy subset Fi of attribute a with 
respect to the decision Q, and is defined: 
 
Equation 26 
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The cardinality of a fuzzy set is denoted by | . |. Based on these definitions, the fuzzy 
entropy for an attribute subset R is defined as follows: 
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This fuzzy entropy can be used to gauge the utility of attribute subsets in a similar 
way to that of the fuzzy-rough measure. However, the fuzzy entropy measure 



decreases with increasing subset utility, whereas the fuzzy-rough dependency measure 
increases. With these definitions, a new feature selection mechanism can be 
constructed that uses fuzzy entropy to guide the search for the best fuzzy-rough 
feature subset. 
 
Fuzzy Entropy-based QUICKREDUCT 
 

 
 
Figure 14 shows a fuzzy-rough entropy-based QUICKREDUCT algorithm based on the 
previously described fuzzy-rough algorithm in Figure 12. FREQUICKREDUCT is 
similar to the fuzzy-rough algorithm but uses the entropy value of a data subset to 
guide the feature selection process. If the fuzzy entropy value of the current reduct 
candidate is smaller than the previous, then this reduct is retained and used in the next 
iteration of the loop. It is important to point out that the reduct is evaluated by 
examining its entropy value, termination only occurs when the addition of any 
remaining features results in a decrease in the dependency function value (�’prev). The 
fuzzy-entropy value therefore is not used as a termination criterion. 
 
The algorithm begins with an empty subset R and with �’prev initialised to zero. The 
do-until loop works by examining the entropy value of a subset and incrementally 
adding one conditional feature at a time, until the dependency function value begins to 
fall to a value that is lower or equal to that of the last subset. For each iteration, a 
conditional feature that has not already been evaluated will be temporarily added to 
the subset R. The entropy of the subset currently being examined (5) is then evaluated 
and compared with the entropy of T, (the previous subset). If the entropy value of the 
current subset is lower (6), then the attribute added in (5) is retained as part of the new 
reduct T (7). The loop continues to evaluate in the above manner by adding 
conditional features, until the dependency value of the current reduct candidate 
(�’R(D)) falls to a value lower than or equal to that of the previously evaluated reduct 
candidate. 
 
 

FREQUICKREDUCT(C,D) 
  C, the set of all conditional features; 
  D, the set of decision features. 
 
 (1)   T � {}; 0' =prevγ  
 (2)   do 
 (3)      R � T 
 (4)     )('' DTprev γγ =  

 (5)     )( RCx −∈∀  
 (6)           if )|(}){|( TDExRDE <∪  
 (7)                 T � }{xR ∪  
 (8)  until prevT D ')(' γγ ≤  
 (9)  return R 
  
Figure 14 The fuzzy-rough entropy-based QUICKREDUCT algorithm 



Application to the Example Dataset 
 
Employing the same setup as before, but with D = {e} the following partitions are 
obtained: 
 
U/A = {Na, Za} 
U/B = {Nb, Zb} 
U/C = {Nc, Zc} 
U/D = {{1,3,6}, {2,4,5}} = {Q1, Q2} 
 
The algorithm begins with an empty subset, and considers the addition of individual 
features. The attribute that results in the greatest decrease in fuzzy entropy will 
ultimately be added to the reduct candidate. For attribute a, the fuzzy entropy is 
calculated as follows (A = {a}): 
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For the first part of the summation, the value H(Na) must be determined. This is 
achieved in the following way: 
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The required probabilities are p(Q1 | Na) = 0.6363637, p(Q2 | Na) = 0.3636363. Hence, 
H(Na) = 0.94566023. In a similar way, H(Za) can be calculated, giving a value of 1.0. 

To determine the fuzzy entropy for a, the values
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be determined. This is achieved through the standard fuzzy cardinality, resulting in a 
fuzzy entropy value of: 
 
E(A)  = (0.47826084×H(Na)) + (0.5217391×H(Za)) 

= (0.47826084×0.94566023) + (0.5217391×1.0) 
= 0.9740114 
 

Repeating this process for the remaining attributes gives: 
 
E(B) = 0.99629750 
E(C) = 0.99999994 
 
From this it can be seen that attribute a will cause the greatest decrease in fuzzy 
entropy. This attribute is chosen and added to the potential reduct, }.{aRR ∪←  This 
subset is then evaluated using the fuzzy-rough dependency measure, resulting in �R(D) 
= 0.3333333. The previous dependency value is 0 (the algorithm started with the 
empty set), hence the search continues. The process iterates and the two fuzzy entropy 
values calculated are 
 
E({a, b}) = 0.7878490 



E({a, c}) = 0.9506136 
 
Adding attribute b to the reduct candidate causes the larger decrease of fuzzy entropy, 
so the new candidate becomes {a,b}. The resulting dependency value for this, 
�{a,b}(D), is 0.56666666. This is, again, larger than the previous dependency value, 
and so search continues. Lastly, attribute c is added to the potential reduct: 
 
E({a, b, c}) = 0.7412282 
(�{a,b,c}(D) = 0.56666666) 
 
As this causes no increase in dependency, the algorithm stops and outputs the reduct 
{a,b}. The dataset can now be reduced to only those attributes appearing in the reduct. 
 
Tolerance Rough Sets 
 
Another way of attempting to handle the problem of real-valued data is to introduce a 
measure of similarity of feature values and define the lower and upper approximations 
based on these similarity measures. Such lower and upper approximations define 
tolerance rough sets (Skowron & Stepaniuk, 1996). By relaxing the transitivity 
constraint of equivalence classes, a further degree of flexibility (with regard to 
indiscernibility) is introduced. In traditional rough sets, objects are grouped into 
equivalence classes if their attribute values are equal. This requirement might be too 
strict for real-world data, where values might differ only as a result of noise. 
 
Similarity Measures 
 
For the tolerance-based approach, suitable similarity relations must be defined for 
each attribute, although the same definition can be used for all features if applicable. 
A standard measure for this purpose, given in (Stepaniuk, 1998), is: 
 
Equation 27 
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where a is the attribute under consideration, and amax and amin denote the maximum 
and minimum values respectively for this attribute. When considering more than one 
attribute, the defined similarities must be combined to provide a measure of the 
overall similarity of objects. For a subset of features, P, this can be achieved in many 
ways; two commonly adopted approaches are: 
 
Equation 28 
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where ]1,0[∈τ  is a global similarity threshold:τ determines the required level of 
similarity for inclusion within tolerance classes. It can be seen that this framework 
allows for the specific case of traditional rough sets by defining a suitable similarity 
measure (e.g. equality of feature values and Equation 28) and threshold ( 1=τ ). 
Further similarity relations are investigated in (Nguyen & Skowron, 1997a). 
 
Tolerance classes generated by the similarity relation for an object x are defined as: 
 
Equation 30 

})( |{)( ,, ττ PP SIMx,yUyxSIM ∈∈=  
 
Approximations and Dependency 
 
Lower and upper approximations are then defined in a similar way to traditional 
rough set theory: 
 
Equation 31 
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Equation 32 
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Positive region and dependency functions then become: 
 
Equation 33 
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From these definitions, attribute reduction methods can be constructed that use the 
tolerance-based degree of dependency, )(, QP τγ , to gauge the significance of feature 
subsets. For example, the fuzzy-rough QUICKREDUCT algorithm (Figure 12) can be 
adapted to perform feature selection based on the tolerance rough set-based measure. 
The resulting algorithm can be found in Figure 15. 



 
 
Application to the Example Dataset 
 
To illustrate the operation of the tolerance QUICKREDUCT algorithm, it is applied to 
the example data given in Table 3. For this example, the similarity measure is the 
same as that given in Equation 27 and Equation 28 for all conditional attributes, with � 
= 0.7. This choice of threshold permits attribute values to differ to a limited extent, 
allowing close values to be considered as identical. For the decision feature, � is set to 
1 (i.e. objects must have identical values to appear in the same tolerance class) as the 
decision value is nominal. Setting A = {a}, B = {b}, C = {c} and Q = {q}, the 
following tolerance classes are obtained: 
 
U/SIMA,� = {{1,2,3},{4,5,6}} 
U/SIMB,� = {{1,3,4,5},{2},{6}} 
U/SIMC,� = {{1},{2,4,5,6},{3}} 
U/SIMQ,� = {{1,3,6}, {2,4,5}} 
U/SIM{a,b},� = {{1,3}, {2}, {4,5}, {4,5,6}, {5,6}} 
U/SIM{b,c},� = {{1,3}, {2,6}, {4,5,6}, {2,4,5,6}} 
U/SIM{a,b,c},� = {{1,3}, {2},{4,5,6}} 
 
It can be seen here that some objects belong to more than one tolerance class. This is 
due to the additional flexibility of employing similarity measures rather than strict 
equivalence. 
 
Based on these partitions, the degree of dependency can be calculated for attribute 
subsets, providing an evaluation of their significance. The tolerance QUICKREDUCT 
algorithm considers the addition of attributes to the currently stored best subset 
(initially the empty set) and selects the feature that results in the highest increase of 

TOLQUICKREDUCT(C,D,�) 
  C, the set of all conditional features; 
  D, the set of decision features; 
  �, similarity threshold. 
 
 (1)   R � {}; 0=best

τγ  
 (2)   do 
 (3)      T � R 
 (4)     bestprev

ττ γγ =  
 (5)     )( RCx −∈∀  
 (6)           if )()( ,},{ DD TxR ττ γγ >∪  

 (7)                 T � }{xR ∪  

 (8)                )(, DTbest τ
τ γγ =  

 (9)          R � T 
 (10) until prevbest

ττ γγ ==  
 (11) return R 
 
Figure 15 Tolerance QUICKREDUCT algorithm 



this value. Considering attribute b the lower approximations of the decision classes 
are calculated as follows: 
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Hence, the positive region can be constructed: 
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And the resulting degree of dependency is: 
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For the other conditional features in the dataset, the corresponding dependency 
degrees are: 
 

6
2

|}6,5,4,3,2,1{|
|}3,1{|

)(

6
0

|}6,5,4,3,2,1{|
|}{|

)(

,

,

==

=∅=

Q

Q

C

A

τ

τ

γ

γ
 

 
Following the tolerance QUICKREDUCT algorithm, attribute b is added to the reduct 
candidate (R = {b}) and the search continues. The algorithm makes an arbitrary 
choice here between attributes b and c as they produce equally high degrees of 
dependency (although they generate different positive regions). As attribute b was 
considered before attribute c, it is selected. The algorithm continues by evaluating 
subsets containing this attribute in combination with the remaining individual 
attributes from the dataset. 
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The subset {a,b} is chosen as this results in a higher dependency degree than {b}. The 
algorithm then evaluates the combination of this subset with the remaining attributes 
(in this example only one attribute, c, remains): 
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As this value is less than that for subset {a,b}, the algorithm terminates and outputs 
the reduct {a,b}. This is the same subset as that found by the fuzzy-rough method. 
However, for tolerance-based FS techniques, a suitable similarity measure must be 
defined for all attributes that are considered and an appropriate value for � must be 
determined.  
 
 
ALTERNATIVE SEARCH MECHANISMS 
 
GA-based Approaches 
 

 
Figure 16 Feature selection with genetic algorithms 

 
 

Genetic Algorithms (GAs) (Holland, 1975) are generally quite effective for rapid 
search of large, nonlinear and poorly understood spaces. Unlike classical feature 
selection strategies where one solution is optimized, a population of solutions can be 
modified at the same time (Siedlecki & Sklansky, 1989; Kudo & Skalansky, 
2000). This can result in several optimal (or close-to-optimal) feature subsets as 
output. 
 
A feature subset is typically represented by a binary string with length equal to the 
number of features present in the dataset. A zero or one in the jth position in the 
chromosome denotes the absence or presence of the jth feature in this particular 
subset. The general process for feature selection using GAs can be seen in Figure 16. 
 
An initial population of chromosomes is created; the size of the population and how 
they are created are important issues. From this pool of feature subsets, the typical 
genetic operators (crossover and mutation) are applied. Again, the choice of which 
types of crossover and mutation used must be carefully considered, as well as their 
probabilities of application. This generates a new feature subset pool which may be 
evaluated in two different ways. If a filter approach is adopted, the fitness of 
individuals is calculated using a suitable criterion function. This function evaluates 
the goodness of a feature subset; a larger value indicates a better subset. Such a 
criterion function could be Shannon's entropy measure (Quinlan, 1993) or the 
dependency function from rough set theory (Pawlak, 1991). 



 
For the wrapper approach, chromosomes are evaluated by inducing a classifier based 
on the feature subset, and obtaining the classification accuracy (or an estimate of it) 
on the data (Smith & Bull, 2003). To guide the search toward minimal feature subsets, 
the subset size is also incorporated into the fitness function of both filter and wrapper 
methods. Indeed, other factors may be included that are of interest, such as the cost of 
measurement for each feature etc. GAs may also learn rules directly, and in the 
process perform feature selection (Cordón et al., 1999; Jin, 2000; Xiong & 
Litz, 2002). 
 
A suitable stopping criterion must be chosen. This is typically achieved by limiting 
the number of generations that take place or by setting some threshold which must be 
exceeded by the fitness function. If the stopping criterion is not satisfied, then 
individuals are selected from the current subset pool and the process described above 
repeats.  
 
As with all feature selection approaches, GAs can get caught in local minima, missing 
a dataset's true minimal feature subset. Also, the fitness evaluation can be very costly 
as there are many generations of many feature subsets that must be evaluated. This is 
particularly a problem for wrapper approaches where classifiers are induced and 
evaluated for each chromosome.  
 
The approaches reported in (Bjorvand & Komorowski, 1997; Wróblewski, 1995) use 
genetic algorithms to discover optimal or close-to-optimal reducts. Reduct candidates 
are encoded as bit strings, with the value in position i set if the ith attribute is present. 
The fitness function depends on two parameters. The first is the number of bits set. 
The function penalises those strings which have larger numbers of bits set, driving the 
process to find smaller reducts. The second is the number of classifiable objects given 
this candidate. The reduct should discern between as many objects as possible (ideally 
all of them). 
 
Although this approach to FS is not guaranteed to find minimal subsets, it may find 
many subsets for any given dataset. It is also useful for situations where new objects 
are added to or old objects are removed from a dataset - the reducts generated 
previously can be used as the initial population for the new reduct-determining 
process.  The main drawback is the time taken to compute each bit string's fitness, 
which is O(a*o2), where a is the number of attributes and o the number of objects in 
the dataset. The extent to which this hampers performance depends mainly on the 
population size. 
 
Simulated Annealing-based 
 
Annealing is the process by which a substance is heated (usually melted) and cooled 
slowly in order to toughen and reduce brittleness. For example, this process is used 
for a metal to reach a configuration of minimum energy (a perfect, regular crystal). If 
the metal is annealed too quickly, this perfect organisation is unable to be achieved 
throughout the substance. Parts of the material will be regular, but these will be 
separated by boundaries where fractures are most likely to occur. 
 



Simulated Annealing (SA) (Kirkpatrick et al., 1983) is a stochastic optimization 
technique that is based on the computational imitation of this process of annealing. It 
is concerned with the change of energy (cost) of a system. In each algorithmic step, an 
''atom'' (a feature subset in FS) is given a small random displacement and the resulting 
change of energy, �E, is calculated. If 0≤∆E , this new state is allowed and the 
process continues. However if 0>∆E , the probability that this new state is accepted 
is: 
 
Equation 35 
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As the temperature, T, is lowered, the probability of accepting a state with a positive 
change in energy reduces. In other words, the willingness to accept a bad move 
decreases. The conversion of a combinatorial optimization problem into the SA 
framework involves the following: 
 

1) Concise configuration description. The representation of the problem to be 
solved should be defined in a way that allows solutions to be constructed 
easily and evaluated quickly. 

2) Random move generator. A suitable random transformation of the current 
state must be defined. Typically the changes allowed are small to limit the 
extent of search to the vicinity of the currently considered best solution. If this 
is not limited, the search degenerates to a random unguided exploration of the 
search space. 

3) Cost function definition. The cost function (i.e. the calculation of the state's 
energy) should effectively combine the various criteria that are to be 
optimized for the problem. This function should be defined in such a way that 
smaller function values indicate better solutions. 

4) Suitable annealing schedule. As with the real-world annealing process, 
problems are encountered if the initial temperature is too low, or if annealing 
takes place too quickly. Hence, an annealing schedule must be defined that 
avoids these pitfalls. The schedule is usually determined experimentally. 

 
To convert the feature selection task into this framework, a suitable representation 
must be used. Here, the states will be feature subsets. The random moves can be 
produced by randomly mutating the current state with a low probability. This may 
also remove features from a given feature subset, allowing the search to progress both 
forwards and backwards. The cost function must take into account both the evaluated 
subset ''goodness'' (by a filter evaluation function or a wrapper classifier accuracy) 
and also the subset size. The annealing schedule can be determined by experiment, 
although a good estimate may be T(0) = |C| and )(*)1( tTtT α=+ , with 85.0≥α . 
Here t is the number of iterations and � determines the rate of cooling. 
 
 



 
 
The SA-based feature selection algorithm can be seen in Figure 17. This differs 
slightly from the general SA algorithm in that there is a measure of local search 
employed at each iteration, governed by the parameter Lk. An initial solution is 
created, from which the next states are derived by random mutations and evaluated. 
The best state is remembered and used for processing in the next cycle. The chosen 
state may not actually be the best state encountered in this loop, due to the probability 
P(�E) that a state is chosen randomly (which will decrease over time).  The 
temperature is decreased according to the annealing schedule and the algorithm 
continues until the lowest allowed temperature has been exceeded. 
 
Problems with this approach include how to define the annealing schedule correctly. 
If � is too high, the temperature will decrease slowly, allowing more frequent jumps 
to higher energy states, slowing convergence. However, if � is too low, the 
temperature decreases too quickly and the system will converge to local minima 
(equivalent to brittleness in the case of metal annealing). Also, the cost function 
definition is critical - there must be a balancing of the importance assigned to the 
different evaluation criteria involved. Biasing one over another will have the effect of 
directing search toward solutions that optimize that criterion only. 
 
SimRSAR employs a simulated annealing-based feature selection mechanism to 
locate rough set reducts (Jensen & Shen, 2004b). The states are feature subsets, with 
random state mutations set to changing three features (either adding or removing 
them). The cost function attempts to maximize the rough set dependency (γ) whilst 
minimizing the subset cardinality. The cost of subset R is defined as: 
 

SAFS(T0, Tmin, �, Lk) 
  T0, the initial temperature; 
  Tmin, the minimum allowed temperature;. 
  �, the extent of temperature decrease; 
 Lk, the extent of local search 
 
 (1)   R � genInitSol() 
 (2)   while min)( TtT >  
 (3)      for i=1,…, Lk 
 (4)          S � genSol(R) 
 (5)         )cost(SE =∆        
 (6)           if 0≤∆E  
 (7)                 M � S 
 (8)           else if ())( randNumberEP >∆  
 (9)                 M � S 
 (10)     R � M 
 (11)    )(*)1( tTtT α=+  
 (12) output R 
  
Figure 17 Simulated annealing-based feature selection 
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where a and b are defined in order to weight the contributions of dependency and 
subset size to the overall cost measure.  
 
Ant Colony Optimization-based 
 
Swarm Intelligence (SI) is the property of a system whereby the collective behaviours 
of simple agents interacting locally with their environment cause coherent functional 
global patterns to emerge (Bonabeau, 1999). SI provides a basis with which it is 
possible to explore collective (or distributed) problem solving without centralized 
control or the provision of a global model.  One area of interest in SI is Particle 
Swarm Optimization (Kennedy & Eberhart, 1995), a population-based stochastic 
optimization technique. Here, the system is initialised with a population of random 
solutions, called particles. Optima are searched for by updating generations, with 
particles moving through the parameter space towards the current local and global 
optimum particles. At each time step, the velocities of all particles are changed 
depending on the current optima. 
 
Ant Colony Optimization (ACO) (Bonabeau, 1999) is another area of interest within 
SI. In nature, it can be observed that real ants are capable of finding the shortest route 
between a food source and their nest without the use of visual information and hence 
possess no global world model, adapting to changes in the environment.  The 
deposition of pheromone is the main factor in enabling real ants to find the shortest 
routes over a period of time. Each ant probabilistically prefers to follow a direction 
rich in this chemical. The pheromone decays over time, resulting in much less 
pheromone on less popular paths. Given that over time the shortest route will have the 
higher rate of ant traversal, this path will be reinforced and the others diminished until 
all ants follow the same, shortest path (the ''system'' has converged to a single 
solution). It is also possible that there are many equally short paths. In this situation, 
the rates of ant traversal over the short paths will be roughly the same, resulting in 
these paths being maintained while others are ignored.  Additionally, if a sudden 
change to the environment occurs (e.g. a large obstacle appears on the shortest path), 
the ACO system can respond to this and will eventually converge to a new solution. 
Based on this idea, artificial ants can be deployed to solve complex optimization 
problems via the use of artificial pheromone deposition. 
 
ACO is particularly attractive for feature selection as there seems to be no heuristic 
that can guide search to the optimal minimal subset every time. Additionally, it can be 
the case that ants discover the best feature combinations as they proceed throughout 
the search space 
 
ACO Framework 
 
An ACO algorithm can be applied to any combinatorial problem as far as it is 
possible to define: 
 



1) Appropriate problem representation. The problem can be described as a graph 
with a set of nodes and edges between nodes. 

2) Heuristic desirability (η) of edges. A suitable heuristic measure of the 
''goodness'' of paths from one node to every other connected node in the graph. 

3) Construction of feasible solutions. A mechanism must be in place whereby 
possible solutions are efficiently created. This requires the definition of a 
suitable traversal stopping criterion to stop path construction when a solution 
has been reached. 

4) Pheromone updating rule. A suitable method of updating the pheromone 
levels on edges is required with a corresponding evaporation rule, typically 
involving the selection of the n best ants and updating the paths they chose. 

5) Probabilistic transition rule. The rule that determines the probability of an ant 
traversing from one node in the graph to the next. 

 
Each ant in the artificial colony maintains a memory of its history - remembering the 
path it has chosen so far in constructing a solution. This history can be used in the 
evaluation of the resulting created solution and may also contribute to the decision 
process at each stage of solution construction. 
 
Two types of information are available to ants during their graph traversal, local and 
global, controlled by the parameters � and � respectively. Local information is 
obtained through a problem-specific heuristic measure. The extent to which the 
measure influences an ant's decision to traverse an edge is controlled by the parameter 
�. This will guide ants towards paths that are likely to result in good solutions. Global 
knowledge is also available to ants through the deposition of artificial pheromone on 
the graph edges by their predecessors over time. The impact of this knowledge on an 
ant's traversal decision is determined by the parameter �. Good paths discovered by 
past ants will have a higher amount of associated pheromone. How much pheromone 
is deposited, and when, is dependent on the characteristics of the problem. No other 
local or global knowledge is available to the ants in the standard ACO model, though 
the inclusion of such information by extending the ACO framework has been 
investigated (Bonabeau, 1999).  
 
 
Feature Selection 
 
The feature selection task may be reformulated into an ACO-suitable problem (Jensen 
& Shen, 2005; Jensen, 2006).  ACO requires a problem to be represented as a graph - 
here nodes represent features, with the edges between them denoting the choice of the 
next feature. The search for the optimal feature subset is then an ant traversal through 
the graph where a minimum number of nodes are visited that satisfies the traversal 
stopping criterion. Figure 18 illustrates this setup - the ant is currently at node a and 
has a choice of which feature to add next to its path (dotted lines). It chooses feature b 
next based on the transition rule, then c and then d. Upon arrival at d, the current 
subset {a,b,c,d} is determined to satisfy the traversal stopping criteria (e.g. a suitably 
high classification accuracy has been achieved with this subset, assuming that the 
selected features are used to classify certain objects). The ant terminates its traversal 
and outputs this feature subset as a candidate for data reduction. 
 



 
Figure 18 ACO problem representation for feature selection 

 
A suitable heuristic desirability of traversing between features could be any subset 
evaluation function - for example, an entropy-based measure (Quinlan, 1993) or the 
fuzzy-rough set dependency measure. Depending on how optimality is defined for the 
particular application, the pheromone may be updated accordingly. For instance, 
subset minimality and ``goodness'' are two key factors so the pheromone update 
should be proportional to ``goodness'' and inversely proportional to size. How 
“goodness” is determined will also depend on the application. In some cases, this may 
be a heuristic evaluation of the subset, in others it may be based on the resulting 
classification accuracy of a classifier produced using the subset. 
 
The heuristic desirability and pheromone factors are combined to form the so-called 
probabilistic transition rule, denoting the probability of an ant k at feature i choosing 
to move to feature j at time t: 
 
Equation 37 
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where k

iJ is the set of ant k's unvisited features, ηi,j is the heuristic desirability of 
choosing feature j when at feature i and �i,j(t) is the amount of virtual pheromone on 
edge (i,j).  The choice of � and � is determined experimentally. Typically, several 
experiments are performed, varying each parameter and choosing the values that 
produce the best results.  
 
Selection Process 
 



 
Figure 19 ACO-based feature selection overview 

 
The overall process of ACO feature selection can be seen in Figure 19. It begins by 
generating a number of ants, k, which are then placed randomly on the graph (i.e. each 
ant starts with one random feature).  Alternatively, the number of ants to place on the 
graph may be set equal to the number of features within the data; each ant starts path 
construction at a different feature.  From these initial positions, they traverse edges 
probabilistically until a traversal stopping criterion is satisfied. The resulting subsets 
are gathered and then evaluated. If an optimal subset has been found or the algorithm 
has executed a certain number of times, then the process halts and outputs the best 
feature subset encountered. If neither condition holds, then the pheromone is updated, 
a new set of ants are created and the process iterates once more. 
 
Complexity Analysis 
 
The time complexity of the ant-based approach to feature selection is O(IAk), where I 
is the number of iterations, A the number of original features, and k the number of 
ants.  In the worst case, each ant selects all the features. As the heuristic is evaluated 
after each feature is added to the reduct candidate, this will result in A evaluations per 
ant. After one iteration in this scenario, Ak evaluations will have been performed. 
After I iterations, the heuristic will be evaluated IAk times. 
 
Pheromone Update 
 
Depending on how optimality is defined for the particular application, the pheromone 
may be updated accordingly.  To tailor this mechanism to find rough set reducts, it is 
necessary to use the dependency measure as the stopping criterion. This means that an 
ant will stop building its feature subset when the dependency of the subset reaches the 
maximum for the dataset (the value 1 for consistent datasets). The dependency 
function may also be chosen as the heuristic desirability measure, but this is not 
necessary. In fact, it may be of more use to employ a non-rough set related heuristic 
for this purpose. By using an alternative measure such as an entropy-based heuristic, 



the method may avoid feature combinations that may mislead the rough set-based 
heuristic.  
 
The pheromone on each edge is updated according to the following formula: 
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This is the case if the edge (i,j) has been traversed; )(, tjiτ∆ is 0 otherwise. The value 	 
is a decay constant used to simulate the evaporation of the pheromone, Sk is the 
feature subset found by ant k. The pheromone is updated according to both the rough 
set measure of the goodness of the ant's feature subset and the size of the subset itself. 
By this definition, all ants update the pheromone. Alternative strategies may be used 
for this, such as allowing only the ants with the currently best feature subsets to 
proportionally increase the pheromone. 
 
Results in (Jensen, 2006) show the effectiveness of the ACO-based approach for 
finding reducts both for crisp rough set reduction and fuzzy-rough selection. This 
technique regularly located optimal subsets (in terms of the subset size and 
corresponding dependency degree).  
 
 
Particle Swarm Optimization-based 
 
Particle swarm optimization (PSO) is an evolutionary computation technique 
(Kennedy & Eberhart, 1995). The original intent was to graphically simulate the 
movement of bird flocking behaviour. (Shi & Eberhart, 1998) introduced the concept 
of inertia weight into the particle swarm optimizer to produce the standard PSO 
algorithm.  
 
Standard PSO algorithm 
 
PSO is initialized with a population of particles. Each particle is treated as a point in 
an S-dimensional space. The ith particle is represented as ),...,,( 21 iSiii xxxX = . The 
best previous position (pbest, the position giving the best fitness value) of any particle 
is ),...,,( 21 iSiii pppP = . The index of the global best particle is represented by gbest. 
The velocity for particle i is ),...,,( 21 iSiii vvvV = . The particles are manipulated 
according to the following:  
 
Equation 38 
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Equation 39 
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where w is the inertia weight. Suitable selection of the inertia weight provides a 
balance between global and local exploration. If a time varying inertia weight is 
employed, better performance can be expected (Shi & Eberhart, 1998). The 
acceleration constants c1 and c2 in Equation 38 represent the weighting of the 
stochastic acceleration terms that pull each particle toward pbest and gbest positions. 
Low values allow particles to roam far from target regions before being tugged back, 
while high values result in abrupt movement toward, or past, target regions. Particles’ 
velocities on each dimension are limited to a maximum velocity Vmax. If Vmax is too 
small, particles may not explore sufficiently beyond locally good regions. If Vmax is 
too high, particles might fly past good solutions.   
 
The first part of Equation 38 provides the particles with a memory capability and the 
ability to explore new search space areas. The second part is the “cognition” part, 
which represents the private thinking of the particle itself. The third part is the 
“social” part, which represents the collaboration among the particles. This equation is 
used to update the particle’s velocity, with the position of the particle updated 
according to Equation 39. The performance of each particle is then measured 
according to a pre-defined fitness function. 
 

 
 
The PSO algorithm for feature selection can bee seen in  Figure 20. Initially,  a 
population of particles is constructed with random positions and velocities on S 
dimensions in the problem space.  For each particle, the fitness function is evaluated. 
If the current particle’s fitness evaluation is better than pbest, then this particle 
becomes the current best, and its position and fitness are stored. Next, the current 
particle’s fitness is compared with the population’s overall previous best fitness. If the 
current value is better than gbest, then this is set to the current particle’s position, with 
the global best fitness updated. This position represents the best feature subset 

PSO-FS(C, D) 
  C, the set of conditional features; 
  D, the set of decision features. 
 
 (1)  i∀ : Xi � randomPosition(); Vi � randomVelocity() 
 (2)   fit � bestFit(X);  globalbest � fit; pbest � bestPos(X);  
 (3)  i∀ : Pi � Xi  
 (4)   while (stopping criterion not met) 
 (5)       for i = 1,…, S      // for each particle 
 (6)           if (fitness(i) > fit)     // local best 
 (7)                fit � fitness(i) 
 (8)                pbest � Xi 
 (9)           if (fitness(i) > globalbest)    // global best 
 (10)              globalbest �  fitness(i)    
 (11)              gbest � Xi; R � getReduct(Xi)    // convert to reduct 
 (12)        updateVelocity(); updatePosition() 
 (13)  output R 

  
Figure 20 PSO-FS algorithm 



encountered so far, and is thus converted and stored in R. The velocity and position of 
the particle is then updated according to Equation 38 and Equation 39. This process 
loops until a stopping criterion is met, usually a sufficiently good fitness or a 
maximum number of iterations (generations). 
 
Encoding 
 
To apply PSO to rough set reduction, the particle’s position is represented as binary 
bit strings of length N, where N is the total number of attributes. This is the same 
representation as that used for GA-based feature selection. Therefore, each particle 
position is an attribute subset. 
 
Representation of Velocity 
 
Each particle’s velocity is represented as a positive integer, varying between 1 and 
Vmax. It implies how many of the particle’s bit should be changed to be the same as 
that of the global best position, i.e. the velocity of the particle flying toward the best 
position. The number of different bits between two particles relates to the difference 
between their positions. For example, Pgbest = [1,0,1,1,1,0,1,0,0,1], iX  = 
[0,1,0,0,1,1,0,1,0,1]. The difference between the global best and the particle’s current 
position is Pgbest -Xi = [1,–1,1,1,0,–1,1,–1,0,0]. ‘1’ means that, compared with the best 
position, this bit (feature) should be selected but it is not, decreasing classification 
quality. On the other hand, ‘-1’ means that compared with the best position, this bit 
should not be selected but it is. Both cases will lead to a lower fitness value.  
 
Updating Position 
 
After the updating of velocity, a particle’s position will be updated by the new 
velocity. If the new velocity is V, and the number of different bits between the current 
particle and gbest is xg, there exist two situations while updating the position: 
 

1) V � xg. In such a situation, randomly change V bits of the particle, which are 
different from that of gbest. The particle will move toward the global best while 
keeping its exploration ability.  

 
2) V > xg. In this case, in addition to changing all the different bits to be the same 

as that of gbest, a further (V-xg) bits should be randomly changed. Hence, after 
the particle reaches the global best position, it keeps on moving some distance 
toward other directions, which gives it further exploration ability.  

 
Velocity Limit  
 
In experimentation, the particles’ velocity was initially limited to [1, N]. However, it 
was noticed that in some cases after several generations swarms find good solutions 
(but not optimal ones), and in the following generations gbest remains stationary. 
Hence, only a sub-optimal solution is located. This indicates that the maximum 
velocity is too high and particles often ‘fly past’ the optimal solution. This can be 
prevented by setting Vmax as (1/3)*N and so the velocity is limited to the range [1, 
(1/3)*N]. Once finding a global best position, other particles will adjust their 
velocities and positions, searching around the best position.  



 
Fitness Function 
 
The following can be used as the fitness function for directing search towards optimal 
reducts: 

C
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where )(DRγ  is the classification quality of condition attribute set R relative to 
decision D, |R| is the length of the selected feature subset, and |C| is the total number 
of features.α and β are two parameters that correspond to the importance of 
classification quality and subset length, with ]1,0[∈α  and αβ −= 1 . Setting a 
highα value assures that the best position is at least a real rough set reduct. The goal 
then is to maximize fitness values. 
 
Setting parameters 
 
In the algorithm, the inertia weight decreases along with the iterations according to 
(Shi & Eberhart, 1998): 
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where maxw is the initial value of the weighting coefficient, minw is the final value of 
the weighting coefficient, maxiter is the maximum number of iterations or generations, 
and iter is the current iteration or generation number. 
 
Time Complexity 
 
Let N be the number of features and M the total objects, then the complexity of the 
fitness function is )( 2NMO . The other impact on time is the number of generation 
iterations; however time is spent mainly evaluating the particles’ positions. 
 
Experimentation reported in (Wang et al., 2006) demonstrates the utility of PSO-
based rough set feature selection. The method was compared against standard RSAR, 
EBR, a discernibility-based method, and a GA-based method. It regularly located 
better reducts, but tended to be more time-consuming than RSAR and EBR due to its 
non-deterministic nature. 
 
 
CONCLUSION 
 
This chapter has reviewed several techniques for feature selection based on rough set 
theory. Current methods tend to concentrate on alternative evaluation functions, 
employing rough set concepts to gauge subset suitability. These methods can be 
categorized into two distinct approaches: those that incorporate the degree of 
dependency measure (or extensions), and those that apply heuristic methods to 
generated discernibility matrices.  



 
Methods based on traditional rough set theory do not have the ability to effectively 
manipulate continuous data. For these methods to operate, a discretization step must 
be carried out beforehand, which can often result in a loss of information. There are 
two main extensions to RST that handle this and avoid information loss: tolerance 
rough sets and fuzzy-rough sets. Both approaches replace crisp equivalence classes 
with alternatives that allow greater flexibility in handling object similarity.  
 
Alternative search mechanisms have also been presented in this chapter, with a 
particular emphasis on stochastic approaches. These are of particular interest as no 
perfect heuristic exists that can always guide hill-climbing approaches to optimal 
subsets. Methods based on GAs, simulated annealing, ant colony optimization and 
particle swarm optimization were described. 
 
Most of the effort in dependency degree-based feature selection has focussed on the 
use of lower approximations and positive regions in gauging subset suitability. 
However, there is still additional information that can be obtained through the use of 
upper approximations and the resulting boundary regions. The boundary region is of 
interest as this contains those objects whose concept membership is unknown – 
objects in the positive region definitely belong to a concept, and objects in the 
negative region do not belong. It is thought that by incorporating this additional 
information into the search process, better subsets should be located. Investigations 
into this are ongoing at the University of Wales, Aberystwyth. 
 
An interesting direction for future work in discernibility matrix-based approaches 
might be the use of fuzzy propositional satisfiability.  Traditionally, attributes 
appearing in objects are included in the discernibility matrix if their values differ. 
Based on these entries, a discernibility function is constructed, from which prime 
implicants are calculated or heuristic methods employed to find reducts. Currently, 
there is no flexibility in this process – discrete, noise-free data must be used and 
attributes either appear or are absent in matrix entries. This could be extended by 
considering fuzzy indiscernibility, where attributes belong to the discernibility matrix 
with varying degrees of membership based on fuzzy similarity. From this, fuzzy 
propositional satisfiability (or heuristic methods) could be used to determine fuzzy 
reducts for the system. 
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