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A B S T R A C T

Temporal information on mangrove extent, age, structure and biomass provides an important contribution to-
wards understanding the role of these ecosystems in terms of the services they provide (e.g., in relation to storage
of carbon, conservation biodiversity), particularly given the diversity of influences of human activity and natural
events and processes. Focusing on the Matang Mangrove Forest Reserve (MMFR) in Perak Province, Peninsular
Malaysia, this study aimed to retrieve comprehensive information on the biophysical properties of mangroves
from spaceborne optical and Synthetic Aperture Radar (SAR) to support better understanding of their dynamics
in a managed setting. For the period 1988 to 2016 (29 years), forest age was estimated on at least an annual basis
by combining time-series of Landsat-derived Normalised Difference Moisture Index (NDMI) and Japanese L-band
Synthetic Aperture Radar (SAR) data. The NDMI was further used to retrieve canopy cover (%). Interferometric
Shuttle Radar Topographic Mission (SRTM) X/C-band (2000), TanDEM-X-band (2010–2016) and stereo
WorldView-2 stereo (2016) data were evaluated for their role in estimating canopy height (CH), from which
above ground biomass (AGB, Mg ha−1) was derived using pre-established allometry. Whilst both L-band HH and
HV data increased with AGB after about 8–10 years of growth, retrieval was compromised by mixed scattering
from varying amounts of dead woody debris following clearing and wood material within regenerating forests,
thinning of trees at ~15 and 20 years, and saturation of L-band SAR data after approximately 20 years of growth.
Reference was made to stereo Phantom-3 DJI stereo imagery to support estimation of canopy cover (CC) and
validation of satellite-derived CH. AGB estimates were compared with ground-based measurements. Using re-
lationships with forest age, both CH and AGB were estimated for each date of Landsat or L-band SAR observation
and the temporal trends in L-band SAR were shown to effectively track the sequences of clearing and re-
generation. From these, four stages of the harvesting cycle were defined. The study provided new information on
the biophysical properties and growth dynamics of mangrove forests in the MMFR, inputs for future monitoring
activities, and methods for facilitating better characterisation and mapping of mangrove areas worldwide.

1. Introduction

Understanding mangrove dynamics in response to both natural and
human-induced disturbance has often been addressed using Earth

Observation (EO) data and by largely considering changes in extent
over time (Asbridge et al., 2015; Richards and Friess, 2016; Thomas
et al., 2017; Lagomasino et al., 2019). The capacity to undertake such
analyses has increased with the release of archives of optical (e.g.
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Landsat) and, more recently, Synthetic Aperture Radar (SAR) satellite
sensor data that have a high frequency of observations (Lymburner
et al., 2019). This high spatio-temporal frequency provides the capacity
to track inter and intra-annual variability with finer fidelity. The ca-
pacity to interrogate the three-dimensional structure of mangroves at
multiple scales has also improved with the provision of airborne and
spaceborne stereo viewing capability, Light Detection and Ranging
(LIDAR) and interferometric SAR (Simard et al., 2018; Lee and
Fatoyinbo, 2015; Lagomasino et al., 2016).

Focusing on the Matang Mangrove Forest Reserve (MMFR) in Perak
Province, Peninsular Malaysia, this research aimed to better quantify
and understand mangrove dynamics in response to forest management
by integrating time-series of Japanese L-band SAR and Landsat sensor,
interferometric X/C-band SAR and WorldView-2 stereo data, with va-
lidation provided primarily by stereo drone (RGB) imagery and field
measurements. The MMFR provided a unique setting as the area is
comprised of mangroves of varying age, including relatively un-
disturbed (protective forest), naturally regenerating forests and those
recovering from timber extraction (productive forest for charcoal and
pole production; Ariffin and Mustafa, 2013). Harvesting has taken place
since 1902 on a nominal 30-year rotation (as stated in the MMFR
management plans; Noakes, 1952). The specific objectives of the paper
were to:

a) Estimate the age of mangrove forests (primarily within the pro-
ductive zone) across the MMFR through integration of time-series of
Landsat sensor and Japanese L-band HH and/or HV SAR data.

b) Investigate the reliability of canopy height (CH) retrieval from both
interferometric SAR and high-resolution spaceborne stereo optical
imagery and determine whether relationships with CH could be used
to estimate above-ground biomass (AGB, Mg ha−1) across the
MMFR.

c) Determine changes in CH (and by inference AGB) as a function of
forest age, to establish whether CH could be predicted from age
alone.

d) Track changes in the L-band backscattering coefficient (Sigma0; σ°,
dB) as a function of CH and age and establish potential for retrieving
forest AGB.

e) Investigate whether a reported decline in L-band backscattering
(Lucas et al., 2007; Asbridge et al., 2016; particularly at HH polar-
isation) over time was in proportion to CH and aligned with the
development and maturing of the prop root systems of Rhizophora
species

The following sections provide details of the MMFR, an overview of
available remote sensing data, approaches to the retrieval of forest age,
structure and AGB from these, and the resulting map products with
associated validation. Stages in the nominal 30-year harvesting cycle
are then defined in relation to the temporal trajectories of satellite
sensor data and derived products. The contribution of EO from a di-
versity of sensors for characterising and mapping mangroves is then
discussed together with implications for developing mangrove mon-
itoring systems to support forest management and sustainable utiliza-
tion.

2. Study area

The MMFR is located on the west coast of Peninsular Malaysia
(02°30′N, 112°30′E; Fig. 1). The climate regime of the Peninsula is
tropical with monsoons occurring from April to October (blowing to-
wards the southwest) and October to February (the northeast). The area
receives an annual rainfall ranging from 2000 to 2800 mm and average
diurnal air temperatures from 22 to 33 °C. The coastal margin is largely
of low elevation but is interspersed with steep hills comprised primarily
of limestone. Protection from ocean waves and tidal influences (spring
tide amplitude of 3.3 m) has allowed extensive mangrove forests to

colonise and thrive along the coastline. Within the MMFR, mangroves
occupy an area of 40,466 ha, and 11 true mangrove families (28 spe-
cies) and 10 associate mangrove families (13 species) occur. The
dominant species are Rhizophora mucronata Lamk. and R. apiculata Bl.,
Sonneratia alba J. Smith, Bruguiera gymnorrhiza (L.) Lamk. and B. cy-
lindrica (L.) Blume and Avicennia marina (Forssk.) Vierh.. These man-
groves enclose or adjoin transitional dryland forest, with these domi-
nated by Acrostichum ferns. Nypa fruticans (Thunb.) Wurmb., a palm, is
frequent along the river margins.

The MMFR is composed of a patchwork of coupes, each of a dif-
ferent age but logged on a nominal 30-year rotation. The latter involves
complete clearing of each forest coupe, after which subsequent forest
growth within coupes takes place through a combination of replanting
and/or natural regeneration depending on site conditions. After ~15
and 20 years of regrowth, the forests are thinned (Ariffin and Mustafa,
2013) and harvested again once the forests have reached maximum
productivity (i.e., at ~30 years). The management has favoured the
establishment of Rhizophora apiculata and R. mucronata, which has re-
sulted in coupes with relatively even-aged monocultures of these two
species. These two mangrove species dominate the productive forests of
the MMFR. The protective forests have remained relatively undisturbed
from human activities for over 100 years.

3. Methods

3.1. Available data

For the study, all available Landsat Thematic Mapper (TM) and
Enhanced TM+ data acquired over the period 29th July 1988 to 29th
September 2016 were obtained as surface reflectance products from the
United States Geological Survey (USGS). All available Japanese Earth
Resources Satellite (JERS-1) SAR (HH polarisation), Advanced Land
Observing Satellite (ALOS) Phased Arrayed L-band SAR (PALSAR); both
Fine beam Single (FBS; HH) and Fine Beam Dual (FBD; HH and HV),
and ALOS-2 PALSAR-2 FBS and FBD data were obtained through the
Japanese Space Exploration Agency (JAXA) Kyoto and Carbon (K&C)
Initiative for three epochs (1993–1997, 2006–2011 and 2014–2016
respectively). The incidence angles varied between the JERS-1 SAR
(36–42°), ALOS PALSAR (36.6–40.9°) and the ALOS-2 PALSAR-2
(33.7–38.5° and 38.3–42.5°; for beams 6 and 7 with off-nadir angles of
32.5° and 36.2° respectively). The number and date distribution of
scenes from both the Landsat sensors and Japanese L-band SAR is given
in Fig. 2. NASA Shuttle Radar Topographic Mission (SRTM) data were
acquired between the 11th and 22nd February 2000, TanDEM-X be-
tween 23rd January 2011 and 2nd October 2015 (but corresponding to
2015 based on comparisons of clearing patterns within the optical and
SAR data), and commercial WorldView-2 data on January 23th 2016.

To support the retrieval of biophysical variables from the space-
borne data, reference was made to forest inventory data collected in
June, July and December 2016 and April 2017 and included mea-
surements of tree and size (diameter, height; Otero et al., 2018). In July
2016, digital images were obtained for 1-hectare (ha) areas containing
the field plots using a DJI Phantom 3 Professional quadcopter Un-
manned Airborne Vehicle (UAV) and the in-built true colour (RGB)
camera in July 2016 (Otero et al., 2018).

Existing estimates of stand level AGB were obtained for 2010 and
2011 (Hamdan et al., 2013) from 114, 20 m × 50 m sample plots lo-
cated within the MMFR. These plots were measured within undisturbed
as well as managed (productive) forests under varying degrees of ma-
turity. Within the plots, all trees with diameters ≥5 cm at breast height
(D130 or 30 cm above the highest prop root for Rhizophora spp.) were
measured. All trees were identified to species noting that, within the
managed forests, over 90% of the trees are dominated by Rhizophora
species (primarily R. apiculata) with Avicennia, Sonneratia and Bruguiera
species sometimes occurring. The sample plots were located in areas
that were easily accessible and safe to enter. The plot-level AGB was
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estimated using the equations of Ong et al. (2004), Komiyama et al.
(2008) and Clough and Scott (1989) for R. apiculata, Avicennia. alba
Blume (using a wood density of 0.506 g cm−3) and B. parviflora re-
spectively.

3.2. Data analysis

3.2.1. Landsat calibration and derivation of indices
For most years and from 1987 onwards, single Landsat images that

were entirely or largely free of cloud were obtained. However, where
cloud was persistent in some years, available data were combined to
generate annual reflectance image composites for the MMFR. From
these data, the Normalised Difference Vegetation Index (NDVI) and
Normalised Difference Moisture Index (NDMI) were derived (Schmidt
et al., 2013). These two indices were selected as they increased from
low values associated with recently cleared forests to a maximum as-
sociated with canopy closure, suggesting a potential link with canopy
cover.

Individual JERS-1 SAR L-band HH and both ALOS PALSAR and
ALOS-2 PALSAR-2 L-band HH and HV scenes were speckle filtered. The
L-band SAR digital numbers (DN) were calibrated to the σ° using
equations listed in Table 1 (Shimada et al., 2009), with the bands re-
ferred to as LHHσ° and LHVσ° from hereon in.

To establish the framework for collating and combining both optical
and radar data and derived products on the MMFR, the KEA format
(Gillingham and Bunting, 2014) was used, which exploits raster attri-
bute tables to store information. To create a KEA format file, a seg-
mentation algorithm was applied to generate segments that typically
contained<5 pixels of 12 m × 12 m resolution (for testing) and
subsequently at the pixel level (for implementation). Each segment was
then populated with both the Landsat NDVI, and NDMI, Japanese L-

band SAR data and other attributes (e.g., CH from interferometric SAR)
in date order.

3.2.2. Estimation of mangrove forest age
To estimate the age of mangroves within the MMFR, forest and non-

forest areas were mapped on an annual or sub-annual basis by applying
thresholds to the time-series of Landsat NDMI (1988–2016) and LHHσ°
data. The NDMI and LHHσ° showed greater contrast between pre-cleared
and cleared areas compared to the NDVI and LHVσ° respectively (Otero
et al., 2019). For each year from 1988 to 2016, the cloud-free single
scenes or annual composites of Landsat sensor data were selected, with
the latter stamped with the date of the scene contributing the most
cloud-free pixels. The Japanese L-band SAR data were used to provide
better timing of clearing within each of the three epochs (i.e.,
1993–1997, 2006–2011 and 2014–2016) as sub-annual cloud-free data
were available for each year. Some images were acquired only a few
weeks apart were compared and often no changes were detected. An
evaluation of these LHHσ° data revealed that clearings were particularly
distinct but also that each logging coupe was cleared over several years
rather than at the same time, with this attributed to the allocation of
different sections of the coupes to different logging companies or
groups. For example, several logging coupes were progressively cleared
over a period of ~24 months over the period from August 2007 to
January 2011 (Fig. 3). Of note is that several of the areas with a higher
LHHσ° in 2007 had experienced a decline in σ° by 2011.

To map logged areas, thresholds of the NDMI and LHHσ° were used
to identify the conversion of forest to non-forest. This conversion was
only recorded when the Landsat-derived NDMI or LHHσ° was above or
below the threshold defined for mature forest in the first image of each
two consecutive date comparisons (typically between −7.2 to −9.0 dB
and 0.32 to 0.39 respectively) but then was less or greater than the

Fig. 1. The location of the Matang Mangrove Forest Reserve (MMFR) in Peninsular Malaysia.
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threshold in the second image. All thresholds were determined through
visual interpretation, noting that these were within a narrow range
because of the strong contrast between the pre- and post-cleared forests
and introduction of large errors when values either side of these
thresholds was used. The age of forests in days was then estimated in
terms of number of days since the acquisition of the first Landsat image
in the time series (29th July 1988), with this allowing sub-annual (e.g.,
monthly) and annual ages to be assigned subsequently. Japanese L-
band SAR data with partial coverage were included and age estimates
for each date were updated only for those areas with valid data.

3.2.3. Canopy height Models
To retrieve information on the stand height of mangroves, canopy

height models (CHMs) were derived for both 2000 and 2015 using in-
terferometric SAR. An additional CHM for 2016 was also retrieved from
WorldView-2 stereo pair (Fig. 4). The 2015 CHMs were validated
against those generated from stereo drone (RGB) imagery acquired in

July 2016 using the Structure from Motion (SfM) algorithm (Otero
et al., 2018).

3.2.3.1. Shuttle Radar Topography Mission. For 2000, the CH for
mangroves within the MMFR was determined from Shuttle Radar
Topography Mission (SRTM) data (ground resolution of 30 × 30 m).
The maximum mangrove CH (SRTMCHM) was estimated using methods
outlined in Simard et al. (2018). First elevation bias was removed from
the SRTM data by using 57,369 IceSat GLAS spaceborne lidar
waveforms. By applying the bias-correction, the top-of-canopy height
SRTMCHM was estimated using

= ×SRTM 1.697 HCHM SRTM (1)

where 1.697 is the correction and HSRTM is the elevation from SRTM.

3.2.3.2. TanDEM-X digital elevation model. The TanDEM-X DEM
product (2011–2015) developed by the German Space Agency (DLR)
was also used to estimate CH (referred hereon in as TDXCHM). The
TanDEM-X DEM product (with a ground resolution of
12.5 m × 12.5 m) was processed through bistatic focusing, scene
interferograms, and phase unwrapping to guarantee an independent
measure between neighbouring pixels (Wessel, 2016). The DEM was
calibrated using data from the Ice, Cloud and land Elevation Satellite
(ICESat) Geoscience Laser Altimeter System (GLAS) as ground control
for regions of open, non-vegetated and flat terrain. Block adjustments
were made by automatically selecting tie points in overlapping areas of
neighbouring scenes, determining offsets and tilts, and quantifying
differences between the ground control points and the DEM before and
after calibration. The DEMs were then mosaicked using all available
scenes, with this followed by a final quality assurance by an operator.
More details on the generation of the TanDEM-X DEM products can be
found in Wessel (2016). To correct for elevation bias in the TDXCHM,
areas of bare ground were identified within the mangrove forest and a
mean weighted ground elevation was subtracted from the TanDEM-X
DEM, following similar methods used for very-high resolution satellite
stereo-photogrammetry (Lagomasino et al., 2015).

3.2.3.3. Satellite stereophotogrammetry. One pair of Very High
Resolution (2 m) stereo images from WorldView-2 (DigitalGlobe,
Longmont, CO) was acquired over the MMFR on January 23, 2016.
The panchromatic image pair was obtained through the NextView
license agreement between Digital Globe and the National Geospatial
Intelligence Agency (NGA) (Neigh et al., 2013). The image pair was
acquired in “stereo-mode”, whereby two images are collected using an
optimized satellite viewing and sun angle geometry along the same
track to reduce confounding issues related to temporal decorrelation
and sensor angles. Stereophotogrammetric software and NASA Ames
Stereopipeline (ASP) 2.4 software, developed by the Ames Research
Center in Mountain View (California) automatically matches
corresponding regions using parallax tie points. The user guide and
program software are available at http://ti.arc.nasa.gov/tech/asr/
intelligent-robotics/ngt/stereo/. An affine adaptive window (subpixel
mode = 2) was used to estimate the most accurate surface elevation
relative to the WGS84 ellipsoid. The native resolution of the DSM was
approximately 0.80 m × 0.80 m, which was a function of the sensor
viewing geometry of the original panchromatic images. To remove
some noise, the data were resampled to a 1 m × 1 m resolution.

For mangroves, the CHM was generated from the WorldView-2
imagery (WVCHM) using a method similar to Lagomasino et al. (2015,
2016). In this approach, bare ground surfaces were identified within the
WV spectral image and then in the co-registered WVCHM. Elevation
values were then extracted from each of the identified ground surfaces
and, using the area of the ground surfaces, a mean-weighted ground
elevation (or Digital Terrain Model; DTM) was calculated. The DTM
was the subtracted from the WV Digital Surface Model (DSM) to give
the WVCHM.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1988   29 
1989   22 
1990   14 
1991   28 
1992 30 
1993 12   9 
1994 14 27 24 12 22 5 18 
1995 1 2 30 9 
1996 16 14 12 26 8 22 
1997 19 16 30 26   13 
1998   25 
1999   27 
2000   30 
2001   3 
2002   29 
2003   30 
2004   16 
2005   30 
2006 6   2 1 1 
2007 29 8 25 1 1 17 
2008 1 1 16 3 17 12 3 19 
2009 20 16 4 14 30 20 6 4 20   14 
2010 20 16 7 24 23 9 7 23 9 8 
2011 18   8 
2012   20 
2013   23 
2014 3 2 
2015 19 18 20 15 1 
2016 18 29 

Fig. 2. The 98 acquisition dates of JERS-1 SAR (1993–1997), ALOS PALSAR
(2006–2011) and ALOS-2 PALSAR-2 (2015–2016) (grey) and Landsat sensor
data (white) acquired for the MMFR. The numbers represent the dates of image
acquisition. Landsat sensor and ALOS PALSAR data were acquired on the 1st
March 2018. ALOS PALSAR data were also acquired on the 29th April 2009,
30th August and 30th November 2007, 14th and 18th March 2009, 5th 14th
and 22nd December 2019, 25th December 2010 and 23th Jan 2011.

Table 1
Equations used to convert L-band SAR digital numbers (DN) to backscattering
coefficients and for generating the NDVI and NDMI.

Sensor Polarisation Equation

Landsat NDVI −

+

RNIR RRed
RNIR RRED

( )
( )

Landsat NDMI −

+

RNIR RSWIR
RNIR RSWIR

( )
( )

JERS-1 SAR HH 10*log(DN2) − 85.34
ALOS PALSAR HH and HV 10*log(DN2) − 83.0
ALOS-2 PALSAR-2 HH and HV 10*log(DN2) − 83.0
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Fig. 3. Time-series of ALOS PALSAR LHHσ° data, with high values (white) indicating the gradual clearance of logging coupes over a ~24-month period, with these
contrasting with the mature forest (dark grey). Several logging coupes (as observed by the ALOS PALSAR) are highlighted in red. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Mangrove canopy height (CH) determined from a) SRTM, b) TanDEM-X DEM and c) WorldView-2 data. The latter is of lower quality, partly because of
atmospheric influences.
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3.2.4. Above ground biomass
For estimating AGB from CHMs, a number of global and regional

equations have been used. For the SRTMCHM, the regional (Southeast
Asia) generic equation from Simard et al. (2018) is recommended
(Table 2a). For the TDXCHM and WVCHM, linear and power relationships
published for areas in East Africa were available (Fatoyinbo et al., 2017;
Table 2b). These six equations were developed based on comparisons
between lidar-derived height and summaries from 41 mangrove in-
ventory plots in the Zambezi Delta in Mozambique. For each inventory
plot (Stringer et al., 2015; Trettin et al., 2015), the AGB was estimated
using equations from Chave et al. (2005), Komiyama et al. (2008), and
Njana et al. (2015). From those field-based AGB estimates, the linear
and power regression relationships with CH were formulated
(Fatoyinbo et al., 2017; Table 2b). For the MMFR, all six combinations
were used to estimate AGB.

3.2.5. Calibration/validation of satellite products
3.2.5.1. Forest age (months). The ages of forests were validated through
reference to over 30 sites where age information based on estimates
from the Perak State Forestry Department was obtained and/or for
which a visual interpretation of available Landsat sensor NDMI and
LHHσ° data in the time-series was undertaken.

3.2.5.2. Canopy height (m). To validate the TDXCHM and WVCHM,
reference was made to the CHMs (DCHM) generated from the eight
~1 ha acquisitions of stereo Phantom 3 DJI RGB imagery (Otero et al.,
2018; Fig. 5a, b). Based on the resolution of the TanDEM-X and
WorldView-2, H was extracted for 12.5 m × 12.5 m segments that
intersected the DCHM and all cells were screened to remove negative or
missing values or partial coverages in the overlap area. The average
DCHM was then compared separately to the TXCHM and WVCHM to
establish the relative correspondence. Historical reference CH data
were not however available to support the validation of the SRTMCHM.

3.2.5.3. Canopy cover (%). Using the Phantom 3 DJI orthomosaics, an
estimate of CC (%) was obtained by first calculating the NDVI from the
red and NIR wavebands and then thresholding the resulting image to
map the extent of green (productive) vegetation. Whilst not calibrated,
comparison of the derived mapping (at< 25 cm resolution) against the
RGB orthoimages indicated reliable mapping of green vegetation
extent. A 12 m × 12 m grid was then overlain and the percentage of
green vegetation within each grid cell (as determined by summing the
number of vegetated and non-vegetated pixels) was determined and
used to estimate canopy cover (CC; %). Relationships were then
established between CC and both the Landsat NDVI and NDMI.

3.2.5.4. AGB (Mg ha−1). AGB estimates obtained from the TDXCHM

using both linear and power relationships established with AGB (for
African mangrove forests) were compared to those obtained from
Hamdan et al. (2013) (adjusted for growth over the subsequent
5–6 years). No field data were available to validate the retrieval of
AGB from the SRTMCHM. Whilst 114 plot-based measurement of AGB
were available, 77 were either a) located close to the edge of the water
or clearings where access was difficult or b) had been cleared in
subsequent years. For this reason, only those plots (37) contained
within the remaining forests and away from the edge were considered,
particularly given the likelihood of change occurring in these areas
(e.g., erosion, storm damage, further cutting) (Fig. 5c). However, it
should be noted that lightning strikes also significantly impact on the
structure of mangroves forests, with these leading to discrepencies
between field-based and remote sensing observations.

3.2.6. Relationships between retrieved attributes
For the MMFR, large (> 5 ha) segments representing forests of si-

milar age a) from each time-step (i.e., each date of SAR observation)
and b) on 29th September 2016, including from the undisturbed pro-
tective forests, were identified. Age was estimated in days since 29th
July 1988 for each time-step. LHH and/or LHV were extracted from these
segments, which were typically located in the centres of areas logged
during a harvested period (as determined from the time-series), aver-
aged and converted to σ°. The time since clearance (in days) was also
noted, with this associated with the date of each SAR acquisition. Using
both sets of data (i.e., from a and b), trajectories were established over
the periods where forest were mature, cleared, regenerated and thinned
(which typically occurs at 15 and 20 years).

4. Results

4.1. Age class maps

The age class map (Fig. 6), which was based on the time since
clearing, indicated that in September 2016, the majority of the pro-
ductive zone had been cleared over the preceding 29 years. Comparison
with local records, visual interpretation of the time-series of Japanese L-
band SAR and Landsat sensor data and reference to knowledge from the
Forestry Department of Perak Province indicated typical errors of± 6
months for all age classes. The age class map broadly reflected the
distribution of the different logging coupes (including those outlined in
the management plan; Ariffin and Mustafa, 2013). However, many
contained a diversity of classes albeit within a small range (typi-
cally< 2–3 years) because of the staggered nature of timber harvesting
within each coupe. This was attributed to the allocation of areas within

Table 2a
Allometric equations for estimating AGB from canopy height (Simard et al., 2018).

Equation R2 RMSE (Mg ha−1) Allometry

AGB = exp.(3.9042 + 0.0858 * HCHM) 0.55 148 Simard et al. (2018)

Table 2b
Allometric equations relating AGB to LH100 (the average height of the tallest 100 trees) (Fatoyinbo et a., 2017).

Equation R2 p-Value RMSE (Mg ha−1) RMSE (%) Allometry

Linear
32.27 ∗ (LH100) − 312.8 0.85 0.000023 78 24 Chave et al. (2005)
31.45 ∗ (LH100) − 254.81 0.82 0.000040 83 23 Komiyama et al. (2008)
28.02 ∗ (LH100) − 217.2 0.80 0.000110 80 24 Njana et al. (2015)

Power
AGB = 0.01 ∗ (LH100)3.46 0.88 0.000005 119 33 Chave et al. (2005)
AGB = 0.07 ∗ (LH100)2.83 0.86 0.000012 135 33 Komiyama et al. (2008)
AGB = 0.10 ∗ (LH100)2.7 0.85 0.000023 122 33 Njana et al. (2015)
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the coupe to different logging companies. Lightning strikes also lead to
variability in the age class map and were more prevalent in the older
forests and in the protective zones.

4.2. Mangrove height, cover and AGB

A comparison of the DCHM and the ground measures of height within
the productive zone indicated a close correspondence (1.3 m; Otero
et al., 2018), with this attributed to the relative homogeneity of the
forest and the lack of a well-defined understorey. A similarly close
correspondence was also observed between mangrove plantation
(Navarro et al., 2019) and terrestrial (non-mangrove) forest CH mea-
sured on the ground and from a DCHM generated using the SfM algo-
rithm (Panagiotidis et al., 2017). In the more structurally hetero-
geneous protective forests, the CH estimates were comparable only
when the height of the larger trees was considered. The majority of
forests considered were however from the productive forest, with one
site being in the protective zone but with a relatively closed canopy
formed by the larger trees. Hence, the estimates of CH from the DJI
Phantom-3 images were considered to be sufficiently robust for com-
parison with CHMs generated from interferometric SAR and World-
view-2 data.

A close agreement between the DCHM and TDXCHM (R2 = 0.89;
RMSE = 1.94; Fig. 7a) was observed, which confirmed the adjustment
of the TDXCHM (RMSE = 1.86), although there was an overall bias of

1.06 m (with the DCHM being greater). The agreement between the
WVCHM and the DCHM was less (R2 = 0.75; RMSE = 4.76; Fig. 7b).
Following clearing of the forest, a rapid increase in the Landsat-derived
NDMI was noted (R2 = 0.93), with saturation occurring when the CC
reached approximately 90% (Fig. 7c). No differentiation in the NDMI of
mature forests was observed after 8–10 years of regeneration. A poorer
relationship was observed between CC and the NDVI (R2 = 0.29) and
many of the younger (< 8–10 years) supporting NDVI values> 0.5
(Otero et al., 2019). Based on field-measured AGB from the 37 plots
positioned within contiguous blocks of forest away from edges, a cor-
respondence with the AGB retrieved from the TDXCHM was observed,
with this being greater when AGB was estimated using the power re-
lationship with CH and the equation of Komiyama et al. (2008)
(R2 = 0.53, RMSE = 79 Mg ha−1; Fig. 7d).

4.3. Forest dynamics prior to and since clearance

By combining LHHσ° and LHVσ° from each time step (i.e., each date
of SAR observation) and for forests of the same age, the trends both
prior to and following clear events were established (Fig. 8a). At the
time of clearing, a rapid increase (by ~5–7 dB) in LHHσ° and LHVσ° from
~−11–12 dB and −16–17 dB to ~−5 dB and −12.5 dB respectively
occurred over a period 2–3 years, with this mirrored by a rapid decrease
in the Landsat NDMI as a result of the loss of canopy cover. Both LHHσ°
and LHVσ° then decreased rapidly over the following 7–8 years to

Fig. 5. a) The location of the eight DJI Phantom-3 imagery and 100 m × 100 m (1 ha) extraction zones and b) a close up of the DCHM (height in m) and extraction
cells. c) The location of plots surveyed in 2010 by Hamdan et al. (2013) from which stand level estimates of AGB were obtained.
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~−12.5 dB and − 18 dB observed respectively. The NDMI also in-
creased following clearance and attained maximum values (> 90%
canopy cover) approximately 8 years after the clearing event. The de-
crease in L-band σ° continued even though a relatively closed canopy
was forming, suggesting that the microwave scattering from coarse
woody debris beneath the canopy was still occurring. Thereafter, LHHσ°
and LHVσ° remained close to these levels although increased slightly
until about 17 years since clearing after which LHHσ° declined slightly
whilst LHVσ° slowly increased to ~ −17.5 dB (similar in magnitude to
that of the forest prior to clearance). Differences were observed be-
tween the LHHσ° recorded by the JERS-1 SAR and the ALOS-1/2
PALSAR-1/2, which may, in part, be attributable to variations in the
incidence angle range between sensors. The variation in both LHHσ° and
LHVσ° with forest age, estimated for the 29th September 2016 and ex-
tracted from multiple forests coupes, showed a similar pattern (Fig. 8b).
Throughout the period, CH increased asymptotically to a maximum of
~22 and 23 m. Four phases therefore became evident from the L-band
SAR datasets, with these being associated with a) a rapid increase fol-
lowed by a decrease in LHHσ° and LHVσ° (over a period of 5–6 years),
b) a period of high variability in both LHHσ° and LHVσ°, (6–10 years
after clearing) and c) a more coherent period of slight and steady in-
crease in LHHσ° and LHVσ° (10–20 years), with the former reducing
slightly thereafter (d).

An increase in the AGB (Mg ha−1) estimated from the TXCHM using
the equations of Komiyama et al. (2008) and time-since clearance

(years) was obtained (Fig. 9; R2 = 0.88; AGB = 91.369 x ln (Age)
-95.839), with this highlighting the potential of using age class in-
formation for quantifying AGB across the MMFR. From this relation-
ship, rates of AGB increase were > 20 Mg ha−1 yr−1 in the first few
years of regeneration but decreased steadily to< 5 Mg ha−1 yr−1 after
13 years. The mean rate of AGB accumulation was 8.36 Mg ha−1. The
CH increase in the early years was approximately 1 m yr−1 but de-
creased to about 0.6 m yr−1 after 13 years and below 0.4 m after
20 years.

5. Discussion

5.1. Age class estimation

The combined use of both Landsat sensor and Japanese L-band SAR
data provided more precise and frequent information on the timing and
location of logging activities, and greatly improved spatial estimates of
time since clearance and hence the age of forests. The L-band SAR,
particularly when acquired at LHHσ°, allowed easy detection of the
transition from a mature forest cover to woody debris whilst the
Landsat NDMI captured the removal of foliage and hence canopy cover.
Whilst the NDVI could also be used, there was less contrast between the
recently cleared and pre-cleared forest areas. Limitations of the
Japanese L-band SAR included incomplete coverages, but cloud-free
data and consistency in between-scene registration and calibration were

Fig. 6. Map of time since clearance (approximating forest age) on 29th September 2016 for mangroves within the MMFR based on time-series comparison of Landsat-
derived NDMI and Japanese LHHσ° data.
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advantageous. The age class map indicated that the majority of man-
groves within the productive zone have been cleared since 1988 and are
being managed in rotation, as outlined in the Forest Management Plan
(Ariffin and Mustafa, 2013).

5.2. Temporal trajectories

Through the rotational cycle and based on the time-series of the
Landsat NDMI and Japanese L-band SAR, four change stages (I to IV)
could be described and are illustrated in Fig. 10 using UAV RGB images
and ground photographs. The UAV images acquired for forests of dif-
ferent age show the progressive covering of woody debris and the for-
mation of a closed canopy and its structural development until ma-
turity. The ground photographs highlight the development of the prop
root system within the Rhizophora-dominated forests as they approach
maturity.

Stage I commences with the cutting of trees and removal of their
branches before the logs are taken away from the site. The loss of CC
leads to a rapid decrease in the NDMI with a corresponding increase in
LHHσ°. Formerly, the canopy would have scattered and attenuated the L-
band microwaves as they passed through the volume of plant material.
Instead, there is an increase in double bounce interactions with exposed
cut stumps and associated overground root systems of the mature
Rhizophora trees as well as the large branches remaining on the floor.

Stage II commences with the peak in LHHσ° and is completed when the
minimum is reached after approximately 6–8 years following the
clearing event. The transition to Stage III, which follows formation of
a closed canopy by regenerating or replanted mangroves, can be de-
fined by the period where the increase in the Landsat NDMI cuts across
the decrease in LHHσ°. During this period, LHHσ° continues to decline
whereas the NDMI increases, with this attributed to continued scat-
tering from the woody debris located beneath the canopy, which the
microwaves penetrate (see also Otero et al., 2019). Stage III itself re-
presents the period where, at the start, much of the woody debris has
dried and been removed or is in advanced states of decomposition, with
this associated with a decreased and minimum LHHσ°. However,
through this stage, the decrease is reversed and both LHHσ° and LHVσ°
are increased by the steady accumulation of AGB within the stems of
the regenerating or replanted forest. Thinning of the forests occurs at 15
and 20 years but this was not evident within the time-series of L-band
SAR data, despite some temporary loss of AGB. In this stage, a slight
decrease in NDMI occurs with this attributed to structural development
of the upper canopy. Stage IV is only relevant to Rhizophora-dominated
forests which primarily occur within the productive reserve and its start
is defined by the point where σ° at the different polarisations diverge,
with LHHσ° decreasing because of the establishment and maturation of
the prop roots and LHVσ° increasing because of the greater volume
scattering from increasing amounts of larger woody material (see

Fig. 7. The correspondence between the DCHM and a) the TXCHM and b) the WVCHM and c) the NDMI and CC(%). d) Comparison of the AGB estimated from the TXCHM

and on the ground by Hamdan et al. (2013).
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Fig. 8a). The end of Stage IV is marked by the clearance of the forest at
approximately 30 years of age. If left, Stage IV forests would become
more structurally complex as natural processes of succession and die-
back occur.

5.3. Quantifying structural diversity and biomass

Otero et al. (2018) demonstrated that low cost drones supporting, as
a minimum, RGB cameras can be used to retrieve CH estimates at the
plot (e.g., 1 ha) level. The close correspondence between the DCHM,

TDXCHM and WVCHM confirmed that the method for retrieving CH was
viable from Tandem-X interferometric SAR data and satellite

stereophotogrammetric data and paves the way for using these data
both in the MMFR but also other mangrove forests. Whilst no ground or
airborne data were available to validate the SRTMCHM, the correspon-
dence with the CH as a function of age (as obtained from the TanDEM-X
data) indicated retrievals that were acceptable (Lucas et al., 2020). The
TanDEM-X interferometric SAR provided a more consistent estimate of
CH compared to that retrieved from stereo WorldView-2 imagery, with
this attributed to haze within some areas of the image but also by the
textural homogeneity of the vegetation and other surfaces (e.g., in-
cluding water) within the scene.

The use of CHMs for estimating AGB has been advocated across a
range of scales, including by Simard et al. (2018) who utilized SRTM

Fig. 8. a). Temporals trend in LHHσ° and LHVσ° following clearance of the forest based on values extracted a) on the date of L-band SAR acquisition associated with the
number of days following (i.e., estimated time since clearing) and b) from ALOS PALSAR HH and HV data acquired on the 29th September 2016 and from multiple
forests of varying age, as quantified through time-series comparison of Japanese L-band SAR and Landsat NDMI data (pre and post clearing; the grey box (dashed)
represents the period of clear cutting). The incidence angles varied from 36–42°, 36.6–40.9°, 33.7–38.5° and 38.3–42.5° for the JERS-1 SAR, ALOS PALSAR and ALOS-
2 PALSAR-2 (beams 6 and 7) respectively.

R. Lucas, et al. Remote Sensing of Environment 237 (2020) 111543

10



data to obtain a global retrieval. A recognised limitation of using CH as
a surrogate, however, is the large variability in AGB for forests of the
same height but with different structural configurations and, to a cer-
tain extent, dependency on the dominant species. In the MMFR, for
example, the relatively large prop root systems of Rhizophora species
contribute to the total AGB, with this amount and proportion also
varying as a function of age. However, other species (e.g., Avicennia
marina) do not have prop root systems although may be of the same
height. Hence, adjustments for the dominant species is desirable. The
retrieval of AGB from CHMs is likely to be robust within the MMFR
because of the dominance of Rhizophora species throughout the reserve
but is likely to be less reliable in areas where several species (including
those without prop root systems) co-dominate. For this reason, con-
sideration needs to be given to classifying mangrove species (Sulong
et al., 2002; Wang et al., 2004a, 2004b; Dahdouh-Guebas et al., 2005;
Neukermans et al., 2008; Satyanarayana et al., 2011; Otero et al., 2016;
Rogers et al., 2017). The observed correspondence between forest age
and AGB for the MMFR also established that, once the age of the forests
is known, a reasonable estimate of AGB can be assigned. However,
caution is needed as factors such as disease, climate-related events or
site (e.g., as a function of soils, water hydroperiod and tidal inundation)
can hinder or promote growth. The changes in CH and AGB over time
also provide insights into the growth of forests. CH increase rates were
comparable to 30-year rotational mangrove plantations in Papua New
Guinea, which averaged 1.3 m yr−1 for a 5-year old stand and de-
creased to 0.7 m yr−1 at age 25 (Sillanpää et al., 2017). Rates of AGB
change were comparable to that reported by Ong et al. (2004), who
reported a mean of 11 Mg ha−1 yr−1 (measured as the accumulation of
biomass and litterfall) and a rate of between 14 and 31 Mg ha−1.

Although there was some sensitivity of LHHσ° or LHVσ° to AGB, the
complexity of the data over time limited retrieval across the AGB range.
Several studies (e.g., Hamdan et al., 2013) have reported that the AGB
of mangroves and other forests within the MMFR can be retrieved from
L-band data using a general relationship with AGB. However, the
complexity of the L-band responses within and between the different
change states limits the use of such relationships. For Australian man-
groves, Lucas et al. (2007) and Asbridge et al. (2016) reported a de-
creasing trend in LHHσ° within taller stands dominated by R. stylosa,
with this attributed to the development of the prop root system as the
trees mature. Whilst a decline in LHHσ° in the MMFR was observed in
the MMFR ~20 years after the event, these were not of the same
magnitude (typically 1–2 dB) as those observed in Australia (4–5 dB),
which may be attributable to smaller roots systems in the MMFR be-
cause of rotational harvesting.

The rapid increase in LHHσ° and LHVσ° following clearance of forests

has been observed in other situations. For sites in Brazilian Amazônia,
Almeida-Filho et al. (2007, 2009) noted respectively that JERS-1 SAR
and ALOS PALSAR LHHσ° were enhanced following deforestation. As
with Stone and Woodwell (1988), this was attributed to double bounce
scattering from woody debris left on the ground, with the signal also
diminishing over time because of drying and removal. The increase in
LHHσ° (2–3 dB) relative to the mature forest was greater in this study
(~5–7 dB), with this attributed to the lower response from mature
mangroves (Lucas et al., 2007) and a wetter ground (soil) surface or
open water associated with cycles of tidal inundation and/or periodic
rainfall (Proisy et al., 2002). Soil conditions are uniform and consist
primarily of fine mud sediment. Wooden boardwalks are used to re-
move timber from the coupe for collection at the water's edge, but these
represent a small fraction of the total area and were considered to have
a minimal impact on the backscattered signal.

SAR simulation models, including those based on wave theory (e.g.,
Durden et al., 1989) or radiative transfer theory (e.g., Karam et al.,
1992, 1995), have been widely used to better understand microwave
scattering from within and between vegetation structures and the un-
derlying surface (e.g., by Proisy et al., 2002). However, parameterisa-
tion of the models to take account of the varying ground conditions in
cleared areas is complex because of the high diversity of dimensions
and orientations of woody debris, the different moisture contents of live
and dead vegetation, and variations in the extent and depth of surface
water. Nevertheless, quantitative ground data could be collected for
model parameterisation and augmented by terrestrial or airborne laser
scanners or drone imagery. There is also a role for coupling these si-
mulations with inputs from models that quantitatively describe the
growth and dynamics of mangroves (e.g., FORMAN; Berger et al., 2008,
as undertaken by Kasischke and Christensen (1990) and Ranson et al.
(1997)). These models could therefore be adapted to better understand
the processes that lead to the enhanced LHHσ° and, to a lesser extent,
LHVσ°, following clearance of forests.

5.4. Implications for management, science and national and international
policy

This research provides insight into how to effectively use EO data to
inform management of mangroves, including biomass stocks and
change. Whilst the length of the time-series (29 years) captured most of
the logging cycle, the continued integration of optical (including
Landsat-8 Operational Land Imager or OLI and Sentinel-2) and L-band
and even C-band (including from Sentinel-1) would allow ongoing
monitoring and better advise on the current and future management
strategy.

Maintaining an up-to-date record of the AGB of mangroves within
the MMFR can be achieved by updating the maps of forest age class.
Cross checking of the resulting estimates with available CHMs, as and
when acquired, would give some confirmation of the validity of the
approach. Indeed, the study has demonstrated that WorldView-2 data
are able to provide reliable estimates of CH, which can also be updated
as and when cloud free stereo data are acquired. The study has also
highlighted the diverse range of information that can be provided by
integrating a range of remote sensing data and products. This gives the
Malaysian Forest Service the opportunity to continually monitor the
impacts of timber extraction to ensure maintenance of a healthy eco-
system and sustainable use of the timber resources and maintain bio-
logical diversity (Sleutel, 2016; Barrios Trullols, 2017). The study also
provided an indication of rates of both CH and AGB change over the
regeneration period, which informs on the dynamics of all forests where
the forest age is known. Future work could also investigate the changes
in carbon stored in the below-ground components and the transfer to
other pools (e.g., the soil and water), with this informed by spatial
estimates of AGB. The information obtained can inform current and
future investors on the potential impacts of future activities, but also
national and international policies aimed at conserving and ensuring

Fig. 9. Relationship between time since clearing and AGB (Mg ha−1) and rates
of AGB increase over time.
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wise use, including in support of the United Nations Sustainable De-
velopment Goals (SDGs).

Rotational management of the productive forests within the MMFR
has some negative impacts, with Adame et al. (2018) conveying a lower
carbon sequestration rate compared to the protective (unmanaged)
forests. However, when the carbon (C) sequestration rates of all forests
are considered, the MMFR has a positive carbon budget despite losses
from the charcoal and pole trade (Barrios Trullols, 2017). Forest man-
agement also has other benefits. For example, increases have been
observed in all functional guides of avifauna within productive stands
of just 7 years and older (Sleutel, 2016). Hence, despite the destructive
management associated with clear-cutting every 30 years, the forest can

provide functional habitat for some fauna for approximately
22–23 years per rotation and have a positive C budget (provided pro-
tective forest area does not decrease). Compared to many other areas in
South-East Asia that are cleared for aquaculture or are associated with
quick-cash sectors (Duke et al., 2007; Lee et al., 2014; Richards and
Friess, 2016), the MMFR does not represent a worst-case scenario. A
concern, however, is that if even a small part of the productive zone is
affected by, for example, a climate-related event then planned logging
sequences might be disrupted with an associated loss of productivity
and hence the management and production cycle. The information
provided through satellit observations can therefore be used to better
plan the rotation cycles and also the allocation of licenses for timber

Fig. 10. The four states of change manifested within the time-series of Landsat NDMI and Japanese L-band SAR data and highlighted in the DJI Phantom 3 RGB
orthomosaics and ground photographs.
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extraction. In support, Lucas et al. (2020) illustrate how a historical and
near real time monitoring system might be implemented using open
source software, tools and data.

6. Conclusions

Many studies have focused on using data from single sensors for
mapping mangrove extent (e.g., Giri et al., 2011) or retrieving struc-
tural attributes such as CC or CH (e.g., Simard et al., 2018). In this
study, EO data have been integrated to provide a better understanding
of mangrove states and dynamics in response to management carried
within the MMFR. The age class map generated using the combination
of Japanese L-band SAR and Landsat sensor data highlighted that most
mangroves in the productive zones have been harvested over the period
1988 to 2016. The integration of age with CH and CC has led to the
identification and description of four stages of change within the ro-
tational cycle.

During the rotation cycle, rapid changes in the amount and hor-
izontal and vertical distribution of woody debris and live plant material
occurs as trees are felled, regenerate and are thinned. Such changes
have been captured in four stages by the Landsat NDMI (which is
sensitive to canopy cover), L-band SAR (relative amounts of dead and
live wood), and either interferometric SAR or WorldView-2 stereo op-
tical data (for CHMs). Whilst studies have integrated L-band data in
algorithms for retrieving forest AGB, the complexity of microwave in-
teractions with vegetation and the ground surface during the rotational
cycle limits their use. For this reason, estimates of AGB are best re-
trieved from CHMs through new or existing relationships.

The study has also demonstrated the use of low cost drones (in this
case, DJI Phantoms) for retrieving estimates of CC and CH over large
areas (e.g., 1 ha), with this information providing highly valuable for
retrieving or validating these same measures from the Landsat NDMI
and interferometric SAR. However, a recommendation is that where
such data are collected, these are made publicly available for wider use
and ideally collected and processed to an established protocol.

The primary beneficiaries of the research include the Malaysian
Forestry Division in terms of assisting with future management of the
MMFR, land and mangrove managers in mangrove regions worldwide,
and carbon cycle scientists and ecologists. The outcomes are also ex-
pected to inform on current and future policy and space agencies of the
outcomes of their efforts to launch EO satellites for environmental
characterisation, mapping and monitoring.
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