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Abstract: This paper presents a machine learning based approach for the discrimination of malignant1

and benign microcalcification (MC) clusters in digital mammograms. A series of morphological2

operations were carried out to facilitate the feature extraction from segmented microcalcification. A3

combination of morphological, texture, and distribution features from individual MC components and4

MC clusters were extracted and a correlation-based feature selection technique was used. The clinical5

relevance of the selected features is discussed. The proposed method was evaluated using three6

different databases: OPTIMAM, DDSM, and MIAS. The best classification accuracy (95.00 ± 0.57%)7

was achieved for OPTIMAM using a stack generalization classifier with 10-fold cross validation8

obtaining an Az value equal to 0.97 ± 0.01.9

Keywords: digital mammogram; microcalcification; stack generalization; classification;10

morphological features.11

Note1.12

1. Introduction13

Breast cancer is one of the leading causes of cancer death in women [1][2]. The mortality rate of14

breast cancer can be reduced by early detection and by using Computer Aided Diagnostic (CADx)15

systems [3]. Microcalcification (MC) clusters are an important early sign of breast cancer [4]. MC16

clusters appear as small localized granular points of high brightness within soft breast tissue [5] and it17

can be difficult to distinguish MC clusters from normal breast tissue because of their subtle appearance18

and ambiguous margins [6],[7]. Approximately 50% of early diagnosed cases indicated the existence19

of MC clusters, revealing up to 90% of ductal carcinoma in situ [8]. A typical example of a benign20

(non-cancerous) and a malignant (cancerous) MC cluster is shown in Fig. 1.21

Double reading can improve sensitivity, but a lack of experienced radiologists can be a challenge22

[9]. CADx can assist radiologists in detecting abnormalities in an efficient way [10],[11] and systems23

have been developed to provide a second opinion for diagnosis [12]. Previous studies have developed24

computerized methods to aid the diagnosis of MC clusters. Singh et al. [13] proposed a MC cluster25

classification technique based on morphology: including size of the calcifications and number of26

calcifications in a cluster. A region of interest (ROI) around the MC cluster was first enhanced using27

morphological operations, and two types of features: cluster shape and cluster texture were obtained.28

1 The submitted paper is an extended version of the 22nd Medical Image Understanding and Analysis (MIUA) conference
paper [11]
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(a) 12_4173_45 (b) 3_2169_58

Figure 1. Example MC clusters from the OPTIMAM database: (a) benign MC cluster, (b) malignant
MC cluster.

A new set of shape features generated by recursive subsampling were added to the feature set,29

which improved the classification accuracy. Akram et al. [14] proposed an improved Fisher Linear30

Discriminant Analysis (LDA) approach for the linear transformation of segmented micro-calcification31

data. In the proposed method, a SVM variant was used to classify benign and malignant clusters.32

Multi-scale graph topological features were used by Chen et al. [15] using a k-nearest-neighbors33

classifier. The performance of machine learning techniques was investigated by Rampun et al. [16] by34

examining the probability outputs from classifiers in conjugation with the classification accuracy and35

area under the receiver operator curve (Az) to indicate the reliability of CADx.36

Bekker et al. [17] proposed a two-phase classification scheme. The method was based on37

combining decisions from multiple views (craniocaudal (CC) view and mediolateral oblique (MLO)38

view), implemented by a logistic regression classifier, followed by a stochastic combination of the39

two view-level (CC and MLO) indications into a final benign or malignant decision. Shachor et al.40

[18] examined data fusion methods for multi-view MC cluster classification. This data fusion concept41

was implemented by a special purpose neural network architecture that demonstrated the task of42

classifying breast microcalcifications as benign or malignant based on CC and MLO mammographic43

views.44

Hu et al. [19] applied a hidden Markov tree model of dual-tree complex wavelet transform45

(DTCWT-HMT) for microcalcification diagnosis in digital mammograms. DTCWT-HMT was used to46

capture the correlation between different wavelet coefficients and model the statistical dependencies47

and non-Gaussian statistics of real signals. The combined features of the DTCWT-HMT and the48

DTCWT were optimized by a genetic algorithm (GA). An extreme learning machine (ELM) was used49

as the classifier to diagnose the benign and malignant MC clusters.50

A feature selection method was introduced by Diamant et al. [20] based on a mutual information51

(MI) criterion for automatic classification of MC clusters. The MI based feature selection method was52

explored for various texture features. Wang et al. [21] used a semi-automated segmentation method to53

characterize all MCs, and constructed a classifier model to assess the accuracies for microcalcifications54

and breast masses, either in isolation or combination, for classifying breast lesions. Sert et al. [22],55

however, used convolutional neural networks along with various preprocessing techniques such as56

contrast scaling, dilation, cropping etc. to classify microcalcification. Adaptive thresholding and57

morphological technique was used by Nguyen et al. [23] to segment nuclei for single channel image.58

A superpixel-based framework was presented for segmentation that used a "hybrid" approach which59

was intended to integrate the advantage of region-based clustering algorithm and an edge detector60

with an integrated edge map.61
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Figure 2. Overview of the proposed MC cluster classification methodology.

The present work focused on developing a method for discriminating malignant and benign62

clusters in digital mammograms. Images were first segmented using a wavelet-based method in63

conjunction with a bi-cubic interpolation technique and a series of morphological operations. A64

combination of morphological, texture, and distribution features from individual MC components65

and the MC cluster were extracted and MC clusters were classified with a stack generalization-based66

classifier. An ensemble classifier was also used to classify MC clusters from digital and digitized67

mammograms. The most important features were selected and used to classify the MC cluster as68

benign or malignant. An overview of our proposed approach is presented in Fig. 2.69

2. Materials and Methods70

2.1. Image databases71

We have used the digital mammograms from the OPTIMAM Mammography Image Database [24]72

which is currently an ongoing project at the Medical Physics Department of the Royal Surrey County73

Hospital, which contains NHS Breast Screening Programme (NHSBSP) images from different centres74

across the United Kingdom with an aim to develop a large repository of breast images for research75

purposes. The database contains 3D and 2D unprocessed and processed breast images, associated76

annotations and where applicable expert-determined ground truths which describe features of77

abnormalities like microcalcification, mass, architectural distortions, etc. The images were categorized78

by radiologists in three clinical categories: normal, benign, and malignant. Core biopsies were79

also performed where applicable and associated with the opinion provided by the radiologists. In80

our experiment, patient-based case selection was performed on the digital mammograms, and a81

total number of 286 cases (136 benign and 150 malignant) were selected, which only contained82

microcalcification clusters that had associated core biopsy scores. The histological and radiographic83

scores were not considered for patient-based case selection, as very few images that contained84

microcalcification clusters were provided with such scores, which was an obstacle to create a balanced85

database. These mammograms were acquired using a Hologic Selenia mammography unit, with a86

resolution of 70 microns per pixel and a depth of 12 bits.87
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(a) (b)

Figure 3. Example enhancement of MC clusters: digital mammogram from the OPTIMAM
database (top row: 1_1076_463) and digitized mammogram from the DDSM database (bottom
row: B_3049_1.RIGHT_MLO): (a) MC patch cropped from the original mammogram (without image
enhancement), (b) MC patch cropped after enhancement.

The evaluation also used the digitized mammograms from two different publicly available88

benchmark databases: the Mammography Image Analysis Society (MIAS) [25], and the Digital89

Database for Screening Mammography (DDSM) [26]. The DDSM database contains cranial-caudal (CC)90

and mediolateral oblique (MLO) views of left and right breasts of each patient. The images containing91

suspicious area have pixel-level "ground truth" information of the abnormality, and a malignancy92

assessment on a five-point scale according to the American College of Radiology (ACR) Breast Imaging93

Reporting and Data System (BIRADS) [27]. 280 digitized mammograms containing MC clusters (14894

benign and 132 malignant), were used. The MC clusters colocated with masses were not considered,95

as the existence of mass could mislead the classification results whilst considering the neighborhood of96

MCs to extract relevant features. The cases were selected at a patient level, and only MLO views were97

used. The mammograms in the DDSM database were digitised by one of four different scanners: DBA98

M2100 ImageClear (42 microns per pixel, 16 bits), Howtek 960 (43.5 microns per pixel, 12 bits), Lumisys99

200 Laser (50 microns per pixel, 12 bits), and Howtek MultiRad850 (43.5 microns per pixel, 12 bits). For100

our experiment, only the mammograms obtained using Lumisys 200 Laser scanners were considered101

to keep inline with the pixel size of another digitised database (MIAS) [25] used for the development102

and evaluation of the proposed system. The MIAS database [25] contains 322 images among which 24103

cases (12 benign and 12 malignant) contain microcalcification clusters. The mammograms in the MIAS104
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were digitised to 50 microns per pixel. The truth-marking of the locations of the abnormalities were105

delineated by an expert radiologist.106

2.2. Preprocessing and segmentation107

Enhancement was necessary as MC clusters are usually very small, and sometimes can be108

situated in dense breast tissue with very low visibility. This phenomenon makes the segmentation109

and classification task more difficult and challenging [11]. To overcome this problem, a wavelet-based110

algorithm was applied to enhance the mammograms, and the contrast between the MC cluster and111

surrounding background tissues was increased, see section 2.2.1. Such contrast enhancement facilitated112

the subsequent MC cluster segmentation described in section 2.2.2. Features of MC clusters were113

extracted from the segmented image and were used to classify the clusters as benign or malignant.114

2.2.1. Mammogram enhancement and patch extraction115

A dynamic wavelet-based algorithm [28] was applied to enhance the mammograms. The Discrete116

Wavelet Transform (DWT)- based method was used because of its low computational complexity117

and special transformed domain properties [29]. The process of mammogram enhancement was118

divided into three parts which included decomposition, sharpness estimation and filtering. The image119

was first decomposed into individual sub-bands using a multi-level separable DWT [30], [31]. The120

log-energies of the vertical, horizontal, and diagonal sub-bands at each decomposition level were121

(a) (b)

(c)

Figure 4. (a) Three-dimensional intensity representation of a 158 × 189 pixel area of a digital
mammogram, (b) Calculated object background intensity of the same area, (c) The difference image
between the original image (4a) and the background image (4b).
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5. (a) Enhanced image patch (1_1076_463) from the OPTIMAM database, (b) binary image
containing 5% of the highest positive intensity values from the difference image, (c) eliminating
single pixels and perform erosion on (b), (d) Image A: pixels having higher value then the specified
threshold mention in section 2.2.2 are added to (c), (e) contrast enhancement filter applied to the
bi-cubic interpolated image of (a), (f) Image B: five percent of the pixels having the highest intensity
will be selected from the filtered image, (g) Image C: Logical summation of (d) and (f).

calculated followed by measuring the total log-energy (TLE) of each level. Subsequently, by combining122

the TLE of each decomposition level [28] the Scalar Sharpness Index (SSI) was calculated. The SSI123

was later used to estimate the overall sharpness of the images. Higher values of SSI were considered124

as an indicator of higher sharpness of the image. More details on the wavelet-based enhancement125

algorithm have been described by Misra et al. [28], where the enhancement approach was applied to126

satellite images. To enhance the mammograms, the number of sub-bands and the image decomposition127

level were chosen as 3, as we aimed to obtain the horizontal, vertical and diagonal details from the128

mammograms. Each sub-band was assigned a predefined weight (0.10) to enhance the diagonal129

higher spatial frequency. The weight was set to 0.10, as a increase in weight above 0.8 did not provide130

further increase in enhancement and a weight less than 0.8 provided decay in enhancement. The131

region containing the MC cluster was cropped, see Fig. 3b, from the enhanced mammogram using132

the provided annotations. The effect of the enhancement algorithm is shown in Fig. 3b, where it can133

be noted that the appearance of MC clusters is enhanced for both digital (OPTIMAM) and digitized134

(DDSM) mammograms from a qualitative point of view.135
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(a) (b)

Figure 6. (a) Elimination of blobs containing one or two pixels from the probability image generated in
section 2.2.2 (see Fig. 5g), (b) final probability image, for example case: (1_1076_463), after discarding
all blobs from 1 cm2 pixel block whilst objects inside the block were less than 3. In this example, all the
1 cm2 pixel blocks contained more than 3 blobs so no object elimination was done.

2.2.2. Probability image generation for MC cluster136

A combination of image interpolation, morphological operations, and edge-preserving filtering137

were applied to generate the probablity image of the MC clusters. The enhanced cropped region138

of interest (ROI), containing the MC cluster, was considered as a three-dimensional plot with the139

z-axis representing the intensity of each pixel (see Fig. 4a). The whole image was first divided into140

30 × 30 sub-regions. The size of sub-regions was set to 30 × 30 to maintain a trade-off between141

over-segmentation and under-segmentation of the MC clusters. Choosing sub-regions bigger than142

30 × 30 would result in over-segmentation in low contrast images where the disparity between143

the MC cluster and their background is very low. Choosing a size less than 30 × 30 would cause144

under-segmentation.145

Bi-cubic interpolation [32] was applied to each sub-region to obtain pixel intensities of the146

background tissue: see Fig. 4b. The resulting image, Fig. 4b, was subtracted from the original image,147

Fig. 4a, to obtain the difference between the original and local background pixel values, Fig. 4c. In148

Fig. 4b and Fig. 4c, high picks indicate higher pixel intensities and sharp edges in the image. From this149

difference image (Fig. 4c), the pixels with positive values were identified and a percentage of these (5%)150

with the highest values were selected to generate a binary image: see Fig. 5b. The reason for selecting151

the 5% highest pixel values was to avoid under-segmentation. The highest positive pixel values152

considered as MC clusters were characterized by higher intensity compared to their local background153

tissue. Single pixels were removed from the generated binary image, and an erosion operation was154

performed to eliminate false positive pixels, see Fig. 5c. To perform the erosion operation, a square155

structuring element of size 3 × 3 was used with all values set to one to retain the original morphology156

of the segmented MC cluster. The lowest value among the 5% selected pixels was specified as a157

threshold. If the number of the existing pixels, in Fig. 5c, was lower than 10% of the total number of158

pixels in the cropped image patch, the pixels with intensity higher than half of the previously specified159

threshold were included in the binary image: see Fig. 5d. Considering the 10% of the total pixels in the160

cropped image patch will maintain a trade-off between over-segmentation and under-segmentation.161

By doing so, enough number of pixels were generated for the binary image (A): see Fig. 5d(d). The162

above procedure was performed to avoid under-segmentation when the mammogram exhibited very163

low contrast, which was usually due to erroneous exposure conditions.164

Subsequently, a contrast enhancement filter, having a 9 × 9 kernel with its central pixel element165

equal to 80, was applied to the bi-cubic interpolated image [32]: see Fig. 5e. Five percent of the pixels166

having the highest intensity were selected from the filtered image, producing another binary image167

(B), see Fig. 5f. Finally, logical summation (AND) of the two binary images A and B (Fig. 5e and Fig. 5f)168
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was performed to keep pixels that have high intensity values in comparison with the background169

intensity of their local neighbourhood tissues: see Fig. 5g.170

2.2.3. Specifying MC cluster171

The clinical definition of the MC cluster was used for the reduction of false positives from the172

probability image generated in section 2.2.2. According to the medical definition of clustered MC,173

more than 3 MCs should reside in a 1 cm2 area [33], which is equivalent to 200 × 200 pixels in the174

digitized data (DDSM and MIAS) with a pixel size equal to 50 µm, and 143 × 143 pixels in the digital175

data (OPTIMAM) with a pixel size equal to 70 µm. This results 143 × 143 pixel equivalent to 1 cm2
176

block area for OPTIMAM, and 200 × 200 pixel equivalent to 1 cm2 block area for DDSM and MIAS.177

From the probability image generated in section 2.2.2 (see Fig. 5g) regions containing one or two178

pixels were removed, as they were considered artifacts [35], and an erosion operation with a 2 × 2179

unit element kernel was performed: see Fig. 6a. Here, a 2 × 2 unit element kernel was used for the180

erosion operation, as a bigger kernel size generated under-segmented images and a smaller kernel had181

barely any effect. Removal of individual objects with a morphological erosion operation was necessary,182

because the diagnostic information was based on the existence of a group of MCs [33]. Subsequently,183

neighbouring pixels with eight connectivity were grouped together [11] and considering the clinical184

definition of MC cluster formation, the binary image having only 8-connected component was divided185

into 1 cm2 block areas. This results 143 × 143 pixel equivalent to 1 cm2 block area for OPTIMAM, and186

200 × 200 pixel equivalent to 1 cm2 block area for DDSM and MIAS.187

Elemination of all the elements inside each 1 cm2 block area were done, where the minimum188

number of objects inside a block was less than 3 [33], all the elements were removed: see Fig. 6b. In189

Fig. 6b, no object elimination was done inside any block since all the 1 cm2 blocks contained more190

than 3 objects; a sample case is shown in Fig. 7, which represents how the images were divided into 1191

cm2 block areas, and the elements inside each block were eleminated, where the minimum number192

of objects inside the block was less than 3 [33]. For better visual understanding, the MC clusters193

were highlighted in yellow (see Fig. 7c and Fig. 7d) and green (see Fig. 7e and Fig. 7f). Image C was194

generated for the sample image patch (10_35_242) from the OPTIMAM database (Fig. 7b). All single195

pixels were eliminated to remove a fraction of false positive MC objects (Fig. 7c). The image was196

then divided into 1 cm2 pixel blocks, see Fig. 7d. The blocks containing less than 3 MCs, marked by197

a rectangle, were removed, see Fig. 7e. All the blocks were stitched together to generate the final198

segmented image (Fig. 7e).199

The whole MC cluster may not be covered by the proposed approach. The block area has to be200

slided to different locations of the patch image to build-up a complete MC cluster network. For the201

sliding window approach, we would have to come up with a methodology to harmonize the changes202

in MC clusters between windows and how this representation is affecting the classification. In addition,203

the sliding window approach would be time consuming, and is an interesting research question to204

address in future.205

3. Segmentation evaluation206

The evaluation was carried out using the Dice similarity metric [37] [38], and is in line with our207

previous work [11]. The reference masks (see Fig. 8b), were generated from the radiologist's annotation208

outline: see Fig. 8a. Subsequently, individual MCs that reside inside the radiologist's annotation were209

considered to generate convex hull. This convex hull (see Fig. 8f) and the reference mask (see Fig. 8b),210

were used to calculate the Dice similarity score (see (Fig. 8g - 8i)). The Dice similarity metric for DDSM211

and MIAS is presented in Fig. 9.212

From Fig. 9, it is clear that the segmentation technique based on the morphological approach213

works better than the area-rank based segmentation method proposed in [11]. Also, it is to be noted214

that, the segmentation results generated by applying the method of Oliver et al. [39] gives almost the215

same similarity score as gained by our proposed morphological opeation-based segmentation method,216
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(a) (b) (c)

(d) (e) (f)

Figure 7. (a) Enhanced image patch (10_35_242) from the OPTIMAM database, (b) Image C: logical
summation of two binary images A and B for image patch (10_35_242), (c) eliminating single pixel
from (b) (all MCs are highlighted for better visual understanding), (d) dividing (c) into 1 cm2 pixel
blocks: the blocks containing fewer than 3 MCs are marked by a rectangle, the last row and the last
column of image blocks were not 1 cm2 pixel block as they were adjusted according to the patch image
size. (e) elimination of all MCs inside each 1 cm2 pixel block that contained fewer than 3 MCs (marked
by a rectangle), (f) all blocks in (e) are stitched together to produce the final segmented image.

though the similarity score for our proposed approach is slightly higher than with Oliver's method217

[39].218

4. Classification module construction219

To classify MC clusters into benign or malignant, a series of classification algorithms were explored220

to create an ensemble learner instead of using only one classification method. A set of nine different221

machine learning algorithms were used, which included k-nearest neighbour (kNN) classification222

[36], a multilayer perception (MLP) classifier [40], a classification tree [41], random forest [42], support223

vector machines: using four different kernels (Gaussian RBF, sigmoid, linear, and polynomial) [43], and224

a Naive Bayes network [44]. All the classifiers individually provide a binary decision by classifying225

the images as benign or malignant. Each classification algorithm was separately applied to the images226

and the number of malignancy predictions (votes for malignancy) were counted. Afterwards, the227

total number of malignancy prediction was divided by the total votes. For example, if eight of the228

nine classifiers classified a case as malignant, then the final estimation of the ensemble classifier for229

malignancy will be 89%. The advantage of employing an ensemble classifier was to aggregate a set230

of models to provide more robust classification results rather than using the opinion from a single231

classification model. The predictions from individual classifiers were combined using majority voting,232

and as such the possibility of over-fitting of any particular classifier was avoided. The individual233

classification results from different classification algorithms will be presented and discussed in section234

6.235
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. (a) Annotation by radiologist (B_3121_1.RIGHT_MLO), (b) reference MC cluster mask
generated from (a), (c) border extraction from reference MC mask and overlaid on segmented image
generated using morphological segmentation approach, (d) MC resides inside the border annotated by
expert radiologist, (e) convex hull outline using the border points of segmented blobs residing inside
annotation outline, (f) mask generation from convex hull border of segmented image, (g) Dice similarity
score (based on morphological segmentation approach)= 0.85599; White region= True positive, Green
region= False positive, Magenta region= False negative, (h) Dice similarity score (based on Oliver's
[39] segmentation approach)= 0.76514, (i) Dice similarity score (based on area ranking segmentation
approach)= 0.5494.

A stacked generalization [46] approach was also applied to create a classifier for classifying the236

MC clusters. In this approach, the above-mentioned nine different learning algorithms were considered237

as base classifiers, and the Naive Bayes classifier [44] was used as the meta-classifier (combiner), as238

previous experiment [45] confirmed that the Naive Bayes classifier as a combiner performed better than239

majority voting. In a stacked generalization approach, the meta-learner was used instead of averaging240

to combine predictions of the base classifiers. Predictions of the base classifiers were used as input for241

the meta-classifier. The meta-classifier attempted to learn the relationships between predictions and242

the final decision. The meta-classifier also corrected some mistakes of the base classifiers [46].243

The aim of this research was to investigate the merit of using a conventional stack generalization244

approach to classify MC cluster in mammogram. Using modern methods such as auto-encoders or245
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(a) (b)

Figure 9. (a) Dice similarity score to compare segmentation results of Oliver's segmentation method,
and our proposed two segmentation methods using the DDSM database (b) Dice similarity score to
compare segmentation results of our proposed two segmentation methods using the MIAS database.

generic neural networks for feature selection and classification is an interesting research question to be246

addressed in the future [47] [48].247

5. Feature extraction and feature selection248

It is crucial to extract and select appropriate features that can classify MC clusters into their clinical249

categories. MC clusters can be assessed based on specific properties such as: size, shape, number,250

distribution, etc. [32]. A set of 51 features [51] were computed from the segmented blobs, see section251

2.2.3, for extracting the statistical and morphological properties of the MC clusters, which form the252

feature space. All the computed features characterize either an individual MC or an MC cluster. These253

features were grouped into three categories: shape, size and texture, see Table 3. Since the number of254

computed features were large and their discriminating power varied, see Table 3, a feature selection255

approach was used to obtain the most salient features. More details on the performance of individual256

features to classify MC clusters are discussed in section 6.257

Feature selection was done by employing the CfsSubsetEval [52] attribute evaluator and the258

BestFirst search method [53] in Weka [53]. CfsSubsetEval [52] evaluated the significance of a subset259

of features by approximating the individual predictive ability of each feature and the redundancy260

between them: this meant that features that were highly correlated with the class whilst having low261

inter-correlation were more likely to be selected [53]. On the other hand, BestFirst [53] searched the262

feature space subsets by greedy hill-climbing augmented with a backtracking facility [53], which263

could start from any point and search forwards and backwards, by considering all possible single264

feature vector additions and deletions [55]. The selected features from unenhanced images were put265

into a group (α). Subsequently, the same 51 features were extracted from the segmented images that266

were generated from the enhanced mammograms. The most significant features from the enhanced267

images were gathered into another group (β), using the same feature selection technique. The common268

features from group α and group β formed a new feature space.269

To ensure the robustness of the feature selection and avoid bias, all the data was divided using270

10-fold cross-validation scheme and 9-fold cross-validation scheme respectively. Important features271

were extracted using the images residing in each fold which showed the same features extracted272

consistantly. When the images were split into different number of groups by changing the fold-number273

higher and lower than 10, we constently obtain the same set of features extracted. A similar approach274

was applied to measure the robustness of the feature selection in a previous publication [51].275

The feature extraction and selection technique, as previously mentioned, was applied separately276

on the digitized and digital databases to investigate whether the provided features from the digital277

database outperformed those extracted from the digitized database in classifying MC clusters. Table 1278
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represents the 4 most important features extracted and selected using Digitized database (DDSM), and279

Table 2 represents the 2 most important features extracted and selected using the Digital database280

(OPTIMAM) with the associated clinical interpretations.281

Table 1. Clinical description of the selected features using the DDSM database for classification of MC
clusters.

MC cluster classification features Radiologists characterization features

Summation of the mean of individual Density of MC cluster

MC intensity

Variance of the standard deviation of the distances MC distribution

from cluster centroids

MC cluster convex hull area Cluster size

Mean of MC perimeter Individual MC size

Table 2. Clinical description of the selected features using the OPTIMAM database for classification of
MC clusters.

MC cluster classification features Radiologists characterization features

MC cluster area Cluster size

Size of individual MC Individual MC size

The in-depth details on the impact of our feature selection approach are described in section 6.282

Here, all the images were segmented maintaining the clinical grounding of the distribution of the MC283

cluster which indicate that an area of 1 cm2 contains no fewer than 3 MCs [33]. The spatial resolution284

of mammography is normally ranging from 40—100 µm per pixel, which enables detection of MC285

clusters at an early stage[15]. The aforementioned feature extraction and selection method was also286

employed on the segmented images from the digital and digitized databases by randomly considering287

a 100 × 100 pixel area as 1 cm2, to investigate if this had an impact on the MC cluster classification.288

The results are presented in Table 6 in section 6.289

To evaluate the reliability of the feature selection approach, images from the digital and digitized290

databases were separately divided into ten folds. The process of feature selection was performed on291

each fold which indicated the same selection of features. Detailed evaluation of the feature selection292

for MC cluster classification is provided in section 6.293

6. Result analysis294

To investigate the influence of shape, size, and texture aspects, each individual feature type295

was separately used for the classification using ensemble learning, see Table 3. The experiment was296

separately applied on the individual databases, where the features cognate with size provided the297

highest Az values over the shape and texture features for both digital and digitised databases with298

no feature selection. Whilst only considering the size features, the highest Az value (0.87 ± 0.01) was299

gained for the digital database (OPTIMAM). With feature selection, as described in section 5, the300

value of Az was 0.83 ± 0.01 for OPTIMAM, 0.72 ± 0.01 for DDSM, and 0.68 ± 0.02 for MIAS. The most301

important size features were related to the area covered by individual MC, eccentricity of individual302

MCs, eccentricity of MC cluster, MCs distances covered from MC cluster centroid, perimeter of MC303

cluster, and elongation of MC cluster.304
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We used 10-fold cross-validation with different seed values. The seed values initialize305

randomization of data in each fold. For example, if the value is set to 3, it means that the data306

was shuffled among the folds 3 times. Saving the seed value or setting it to the same number each307

time guarantees that the algorithm will come up with the same results- identical for each run. In308

this experiment, the seed number was set to 1 for the first run and its value was increased by 1 with309

each run. Hence, for 10 runs, the maximum seed value was set to 10. In 10-fold cross-validation, the310

original sample is randomly partitioned into 10 equal size sub samples (folds). Of the 10 sub samples,311

a single sub-sample is retained for testing the model, and the remaining (10-1) sub-samples were312

used as training data. The cross-validation process is then repeated 10 times, with each of the folds313

used exactly once as the test data. The 10 results from the folds were averaged to produce a single314

estimation. The advantage of this method is that all observations are used for both training and testing,315

and each observation is used for testing exactly once.316

Note that the feature selection was only performed on the training data and therefore it is not317

expected that overfitting will happen. By using stratified 10-fold cross-validation we avoided the318

risk of over-training. When using the ensemble learning and stack generalization approach, the319

hyper-parameters were kept as the default parameters set in Weka, since the advantage of using320

default parameters is that we eliminate the risk of introducing optimistic bias by tuning the parameter321

to maximize performance [54]. The segmentation and feature extraction was implemented using322

MATLAB Version: 9.3.0.713579 (R2017b) on Windows 10. The features extracted from the images were323

converted from ".mat" format to ".arff" format to facilitate data structures as input for WEKA.324

Table 3. Az estimation for the classification of MC clusters while applying 10-fold CV using ensemble
learning on segmented image using a block size based on clinical rules.

Feature Feature No. of Total feature Az (AUC)
selection Category feature No. OPTIMUM DDSM MIAS

Size 17 0.87 ± 0.01 0.75 ± 0.01 0.74 ± 0.03
No Shape 17 51 0.70 ± 0.02 0.69 ± 0.02 0.61 ± 0.04

Texture 17 0.77 ± 0.01 0.66 ± 0.01 0.50 ± 0.03
Size 7 0.83 ± 0.01 0.72 ± 0.01 0.68 ± 0.02

Yes Shape 4 12 0.71 ± 0.01 0.68 ± 0.01 0.82 ± 0.04
Texture 5 0.78 ± 0.02 0.68 ± 0.01 0.67 ± 0.03

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

k-nearest

neighbors

Multilayer

perceptron

J48 decision

tree

Random

forest

Naïve Bayes

DDSM OPTIMAM

(a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Gaussian RBF Sigmoid Linear Polynomial

DDSM OPTIMAM

(b)

Figure 10. The accuracy of microcalcification cluster classification by individual classifiers: (a)
classification accuracy for K-nearest neighbour, Multilayer perception, J48 decision tree, Random
forests, Naive bayes, (b) classification accuracy by SVM using four different kernels: Gaussian RBF,
Sigmoid, Linear, and Polynomial.
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All nine classifiers, described in section 4, were tested individually to assess their performance325

with results shown in Fig. 10. SVM provided very low classification accuracy compared to the other326

classifiers, which is caused by low bias and high variance [56]. Another point to note is the SVM327

trained classifier used the trained data partly to estimate the margin, the support vectors, whereas328

others function classifiers consider the training set to define the decision function, making them more329

generalizable. When SVM was discarded from the classifier stack the overall classification preformance330

decreased [11], while including SVM resulted in improved classification accuracy (around 90% for the331

DDSM database) [11] indicating the positive influence of SVM on ensemble learning, where a majority332

voting scheme was applied for improved generalization and to gain more flexibility to maintain strong333

prediction performance by averaging out classifiers individual mistakes and thus reducing the risk of334

over-fitting.335

For the k-nearest neighbour (kNN) classifier, Fig. 10a, the value of k was set to 5 based on336

cross-validation. The classification accuracy for digitized and digital mammograms was 93.77% and337

81.37%, respectively. Lower value of k caused a decrease in classification accuracy and values higher338

than 5 provided the same accuracy as for k=5. For a multilayer perceptron (MLP), the number of339

attributes were summed up with the number of classes and the result was divided by 2 to set the340

number of hidden layers whilst using the learning rate 0.3 and setting the validation threshold as341

20 to terminate the validation testing. Such parameter settings were chosen because it provided the342

best classification accuracy for digital mammograms (around 84%), but the classifier showed poorer343

performance for digitized mammograms (around 73% classification accuracy). It is to be noted that,344

the accuracy was increased to above 92% for both digital and digitized mammograms whilst using345

a classification tree, i.e. C4.5 (J48). Here, the confidence value was chosen to be 0.25 for pruning346

and the number of folds was set to 3; in order to determine the amount of data for reduced-error347

pruning and producing a decision tree. While applying a random forest, the accuracy for digitized348

mammograms was 84%, but the accuracy for digital mammograms was above 90%. The Naive Bayes349

classifier provided an increase in classification accuracy for digital mammograms (around 92%), but350

the accuracy decreased to around 76% for the digital database.351

All the classifiers were used to create an ensemble learner (see section 4). The ensemble learner352

was applied to images from the three different databases: OPTIMAM, DDSM, and MIAS. The353

performance of the ensemble learner is presented in Table 4. 10-fold cross-validation (10-FCV) scheme354

and leave-one-out cross-validation (LOOCV) approach were used. For 10-FCV, the images were355

splitted into 10 folds ensuring that each fold has the same proportion of observations with a given356

categorical value. In our experiment, each fold contains roughly the same proportions of the two types357

of class labels (benign and malignant). 10-FCV allows to use different training and testing data which358

will avoid the over fitting and give better generalization ability. On the other hand, for LOOCV, each359

observation was held out with training based on the remaining samples.360

Two evaluation metrics were used. The first evaluation metric was the overall classification361

accuracy (CA), which was defined as the percentage of correctly classified MC clusters. The receiver362

operating characteristic (ROC) curve analysis was used as the second evaluation metric, plotting the363

true positive rate (TPR) against the false positive rate (FPR) which illustrated a whole range of possible364

operating characteristics for the classifier model. The ROC analysis was used to assess the predictive365

ability of the ensemble learner by using the area under the ROC curve denoted by Az (also know as the366

AUC) [57] (see Fig. 11). Az is equivalent to the Wilcoxon signed-ranks test, which is a nonparametric367

alternative to the paired t-test [58]. All the classification and evaluation aspects were implemented368

using the Weka [59] data mining suite.369

When using 10-FCV, in Table 4, the ensemble learner performed better using only 2 important370

features which were extracted and selected from the digital database (OPTIMAM) showing an accuracy371

equal to 89.80 ± 1.98%. The feature selection was performed using the proposed method described in372

section 5. The most important 2 features were related to the MC cluster area and size of individual MC.373

Increase in accuracy was also noticed while using the same 2 important features to classify MC cluster374
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Table 4. Classification accuracy using LOOCV and 10-fold CV applying all 51 and the 2 most salient
features from digital mammogram, and 4 most salient features from the digitized mammogram using
ensemble learning. The images were segmented following the clinical grounding of cluster distribution.

Database Feature LOOCV 10-FCV
name number CA Az (AUC) CA Az (AUC)
OPTIMAM 51 86.49% 0.85 87.11 ± 1.38% 0.86 ± 0.01
(286) 4 85.71% 0.84 83.55 ± 2.57% 0.82 ± 0.03

2 91.12% 0.91 89.80 ± 1.98% 0.89 ± 0.02
DDSM 51 73.98% 0.73 76.28 ± 1.25% 0.75 ± 1.01
(280) 4 80.66% 0.80 81.67 ± 1.65% 0.81 ± 0.01

2 88.48% 0.88 85.24 ± 2.52% 0.82 ± 0.08
MIAS 51 82.35% 0.79 95.29 ± 4.41% 0.94 ± 0.05
(24) 4 100.00% 1.00 100.00 ± 0.00% 1.00 ± 0.00

2 100.00% 1.00 100.00 ± 0.00% 1.00 ± 0.00

(a) (b)

Figure 11. ROC curves for a stack generalization classifier for the OPTIMAM digital database: (a) 2
features after feature selection (AUC = 0.97), and (b) 51 features (AUC = 0.96).

for the digitized mammograms (85.24 ± 2.52% for DDSM, and 100.00 ± 0.00% for MIAS) compared375

to Table 3. When considering only the selected two important features, it is investigated that the376

classification accuracy is lower for the digitized database (DDSM) then the accuracy achieved for377

the digital database (OPTIMAM). A possible reason for such decrease in accuracy for the digitized378

mammograms is due to the decreased image quality compared to the digital mammograms, which379

affected the accuracy of the MC segmentation [60]. As the digital mammograms were higher quality,380

more accurate segmentation was obtained which potentially influenced appropriate feature extraction381

and classification results [61]. The accuracy was also high for the same selected features when using382

the LOOCV scheme: 91.12% for OPTIMUM, 88.48% for DDSM, and 100% for MIAS. Such limitations383

of digitized mammograms were more pronounced when using 4 important features, extracted and384

selected from the digitized database (DDSM) using method explained in section 5, and showed385

decreased accuracy when compared with the selected 2 features from the digital database (OPTIMAM):386

Table 4.387

The stacked generalization approach [46] was applied to create an additional classifier, described388

in section 4. The outputs of the nine different learning algorithms were collated to model a new389

dataset. The Naive Bayes classifier [44] was used as the meta-classifier to provide the final classification390

results [62]. The meta learner was used instead of averaging to combine the predictions of the base391

classifiers, which provided classification accuracy of 95.75% for the digital (OPTIMAM) database,392

and classification accuracy of 95.17% for digitized database (DDSM) when applying only 2 important393

features that were extracted and selected from the digital database (OPTIMAM) whilst using LOOCV394
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Table 5. Classification accuracy using LOOCV and 10-fold CV applying all 51 and the 2 most salient
features from digital mammogram, and 4 most salient features from the digitized mammogram
using stacked generalization. The images were segmented following the clinical grounding of cluster
distribution. Naive Bayes was used as the meta-classifier.

Database Feature LOOCV 10-FCV
name number CA Az (AUC) CA Az (AUC)
OPTIMAM 51 91.89% 0.97 89.85 ± 1.69% 0.96 ± 0.00
(286) 4 92.66% 0.98 92.70 ± 0.63% 0.97 ± 0.01

2 95.75% 0.97 95.75 ± 0.57% 0.97 ± 0.01
DDSM 51 89.96% 0.95 89.74 ± 1.35% 0.95 ± 0.01
(280) 4 92.19% 0.96 93.12 ± 0.58% 0.96 ± 0.02

2 95.17% 0.98 94.91 ± 0.72% 0.97 ± 0.01
MIAS 51 100% 1.00 97.06 ± 2.94% 0.99 ± 0.00
(24) 4 100% 1.00 100.00 ± 0.00% 1.00 ± 0.00

2 100% 1.00 100.00 ± 0.00% 1.00 ± 0.00

scheme. With the same selected features, similar classification accuracy was obtained for OPTIMAM395

(95.75 ± 0.57%), and DDSM (94.90 ± 0.72%) databases using 10-fold CV. As the precision for the digital396

(OPTIMAM) and digitized (DDSM) databases are very similar; we performed an unpaired t-test, where397

the p value of p < 0.05 was obtained indicating significant differences in the classification results using398

the digital and digitized databases. This demonstrates that our proposed classification approach works399

good providing high classification accuracy for the digital databases (OPTIMAM) over the digitized400

one (DDSM).401

Comparing Table 4 and Table 5 signifies that the ensemble learner performs poorly providing a402

decrease in the classification accuracy in all considered cases. This strongly supports the statement that403

the digital mammograms were higher quality, and more accurate segmentation was obtained which404

potentially regulate appropriate feature extraction and classification results [61]. It is worthy noting405

that even though 100% classification accuracy was obtain for the MIAS dataset, the number of sample406

in MIAS is very small (24 women: 12 benign, and 12 malignant) to draw a significant conclusion in407

terms of classifying MC cluster, as it has smaller variability then the larger database like DDSM.408

The results presented in Table 3, Table 4, and Table 5 are based on the images segmented409

maintaining the clinical grounding of the distribution of the MC cluster which indicates that an area of410

1 cm2 contains no fewer than 3 MCs [33]. Since the spatial resolution of mammography was 40—100411

µm per pixel which enabled the detection of MC clusters at an early stage [15]- the feature extraction412

and selection method presented in section 5 was employed on the segmented images from the digital413

and digitized databases that treated a 100 × 100 pixel block equivalent to a 1 cm2 area. This was done414

to investigate if such size selection had an impact on the MC cluster classification. The 100 × 100415

pixel block is 50% of block size (200 × 200) that was maintained to segment the digitized database416

(DDSM and MIAS) and 70% of block size (143 × 143) that was maintained to segment the digital417

database (OPTIMAM). In Table 6, both 51 features, and the selected 4 most important features extracted418

from the digitized mammogram (DDSM) were used for MC cluster classification using LOOCV and419

10-fold CV scheme. Here, the images were segmented, using the approach mentioned in section 2.2.2,420

without following the clinical grounding of cluster distribution by selecting the block size 100 × 100 to421

investigate if it had any effects on the MC cluster classification.422

The selected 4 most important features provided higher classification accuracy while applying423

LOOCV and 10-fold CV scheme for the OPTIMAM database (95.77% for LOOCV, and 94.94 ± 0.90%424

for 10-fold CV), the DDSM databases (93.91% for LOOCV, and 93.98 ± 0.87% for 10-fold CV), and425

the MIAS database (100% for LOOCV, and 100.00 ± 0.00% for 10-fold CV). Observing that the MIAS426

provided 100% classification accuracy with the 4 most important features it had a very limited number427

of samples to draw significant conclusions. The increase in accuracy for the OPTIMAM database428
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Table 6. Classification accuracy using LOOCV and 10-fold CV applying all 51 and the 4 most salient
features from digitized mammogram using stacked generalization. The images were segmented
without following the clinical grounding of cluster distribution. Naive Bayes was used as the
meta-classifier.

Database Feature LOOCV 10-FCV
name number CA Az (AUC) CA Az (AUC)
OPTIMAM 51 93.66% 0.97 91.38 ± 0.86% 0.97 ± 0.01
(286) 4 95.77% 0.98 94.94 ± 0.90% 0.98 ± 0.01
DDSM 51 90.68% 0.96 89.38 ± 0.44% 0.94 ± 0.01
(280) 4 93.91% 0.97 93.98 ± 0.87% 0.96 ± 0.02
MIAS 51 100% 1.00 99.58 ± 1.25% 1.00 ± 0.00
(24) 4 100% 1.00 100.00 ± 0.00% 1.00 ± 0.00

with the 4 most important features over the 51 features derived from the digitized database (DDSM)429

warrant that the selected features from the digitized database (DDSM) have influence in classifying MC430

clusters in the digital mammograms (OPTIMAM). This also demonstrated that the feature selection431

approach proposed in section 5 is robust.432

It is noteworthy that, whilst using 10-fold CV, the classification accuracy 94.94 ± 0.90% for the433

OPTIMAM database using the 4 most important features in Table 6, and the classification accuracy434

95.75 ± 0.57% for the same database using the 2 most important features in Table 5 appears to be435

similar. The same applied when comparing the classification accuracy for the DDSM database. With436

10-fold CV and the 4 most important features, Table 6, the DDSM database achieve 93.98 ± 0.87%437

classification accuracy, since with the 2 most important features and 10- fold CV, in Table 5, the DDSM438

database obtain an accuracy of 94.90 ± 0.72%. The precision was calculated using an unpaired t-test439

for the aforementioned circumstances and a p value of p>0.05 was obtained in all cases. This exhibits440

that similar classification accuracy can be achieved for classifying MC cluster using more number of441

features (4 most important features) when the feature extraction and selection is performed on digitized442

database, whereas less features (2 most important features) can be used to obtain similar classification443

accuracy (around 95%) when the feature extraction and selection is performed on digital database, and444

the MC are segmented complying the clinical groundings concerning the cluster distribution.445

7. Discussion446

The proposed method for MC cluster classification was compared with other relevant publications,447

see Table 7. Akram et al. [12] proposed a tree-based representations for MC clusters, where448

scale-invariant topological features of MC were extracted showing 91% accuracy for cluster449

classification. Though high accuracy was achieved, the performance for MC cluster classification450

on digital mammogram was not reported in this study. In another study by Akram et al. [14], 96%451

classification accuracy was achieved using digitized mammograms with an improved Fisher Linear452

Discriminant Analysis (LDA) approach combined with a Support Vector Machine (SVM) variant.453

The properties of MC clusters were presented by mereotopological barcodes by Strange et al.454

[60], where the discrete mereotopological relations between the individual MCs over a range of scales455

were presented in the form of a mereotopological barcode. The classification accuracy on digitized456

mammograms reported by Strange et al. [60] was 95% and 80% for the MIAS and DDSM datasets,457

respectively.458

Chen et al. [15] used multi-scale graph topological features and classified MC clusters459

using k-nearest-neighbours-based classifiers. Their approach obtained 96% accuracy for digital460

mammograms. Though the accuracy for digital mammogram was high, the number of cases in461

the digital mammogram database was very low (25 cases), which provided less variability of MC462

distribution in the sample cases. It is also noteworthy that the digital images were manually annotated463



Version September 7, 2019 submitted to J. Imaging 18 of 23

Table 7. A qualitative comparison of our results with respect to related work.

Method Databases Cases Features Classifier Results

Akram et al. [12] DDSM 288
Tree-based
modeling

tree-structure
height CA = 91%

Akram et al. [14] DDSM 288 Scalable-LDA SVM CA = 96%

Strange et al. [60] DDSM 150 Cluster barcodes
CA = 95%,
Az = 0.82

Strange et al. [60] MIAS 20 Cluster barcodes
CA = 80%,
Az = 0.80

Chen et al. [15]
MIAS I
(Manual
Annotation)

20 Topology
kNN/FNN/
FRNN/VQNN

CA = 95%,
Az = 0.96

Chen et al. [15] Digital 25 Topology kNN/FNN
CA = 96%,
Az = 0.96

Chen et al. [15]
DDSM
(LOOCV) 300 Topology kNN

CA = 86.0%,
Az = 0.90

Chen et al. [15]
DDSM
(10-fold CV) 300 Topology kNN

CA = 85.2 ± 57%,
Az = 0.91 ± 0.05

Alam et al. [11]
MIAS
(LOOCV) 24

Morphology,
Texture
& Cluster

Ensemble
classifier

CA = 100%,
Az = 1

Alam et al. [11]
MIAS
(10-fold CV) 24

Morphology,
Texture
& Cluster

Ensemble
classifier

CA = 100 ± 0.00%,
Az = 1.00 ± 0.00

Alam et al. [11]
DDSM
(LOOCV) 280

Morphology,
Texture
& Cluster

Ensemble
classifier

CA = 91.39%,
Az = 0.91

Alam et al. [11]
DDSM
(10-fold CV) 280

Morphology,
Texture
& Cluster

Ensemble
classifier

CA = 90.02 ± 1.42%,
Az = 0.89 ± 0.02

Ours
OPTIMAM
(10-fold CV) 286

Morphology,
Texture
& Cluster

Ensemble
classifier
(Extended)

CA = 90.97 ± 0.83%,
Az = 0.91 ± 0.01

Ours
OPTIMAM
(10-fold CV) 286

Morphology,
Texture
& Cluster

Stack
generalization
(meta-classifier:
Naive Bayes)

CA = 89.84 ± 1.69%,
Az = 0.96 ± 0.00

Ours
OPTIMAM
(10-fold CV) 286

Morphology,
Texture
& Cluster
(selected features)

Stack
generalization
(meta-classifier:
Naive Bayes)

CA = 95.75 ± 0.57%,
Az = 0.97 ± 0.01

Ours
OPTIMAM
(10-fold CV) 286

Morphology,
Texture
& Cluster
(selected features)

Stack
generalization
(meta-classifier:
Adapting Boosting )

CA = 96.72 ± 0.46%,
Az = 0.98 ± 0.00

in Chen et al. [15], where delicate lines around small microcalcifications were outlined by an expert464

radiologist. Such delicate annotation with no false positives might result in higher classification465

accuracy. In Chen et al. [15], high accuracy, around 95%, was also achieved for a digitised database466

(MIAS) whilst again considering only a very small number of cases providing limited variation of MC467

clusters. Conversely, while using a large image database (DDSM), the classification accuracy reduced468

to 86% for a LOOCV approach and 85.20 ± 0.05% for 10-fold CV. It is worth mentioning that only469

topological features were taken in to account to classify MC clusters, rather than concentrating on the470

morphological and statistical features of the MC clusters.471

In our previous study [11], we acquire high classification accuracy (100%) for the MIAS database472

(24 cases) using LOOCV and 10-fold CV with an ensemble classifier. For DDSM, the accuracy was473
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91% (for LOOCV) and 90.02 ± 1.42% (for 10-fold CV). The images used in Alam et al. [11] did not474

maintain the clinical grounding while segmenting the MC cluster using block processing approach.475

Also, the experiment was not evaluated on digital mammograms. Promising results were achieved476

by our developed approach using the images from the digital and digitised databases (OPTIMAM,477

DDSM, and MIAS) . For brevity, we have only shown the results for the OPTIMAM database in Table 7.478

The comparison of MC classification accuracy for the OPTIMAM database with respect to the DDSM479

and MIAS databases is represented in Table 3, Table 4, Table 5, and Table 6 in section 6. Whilst using480

an ensemble classifier for the OPTIMAM database, 87.11 ± 1.38% classification accuracy was achieved,481

see Table 4. For the DDSM database, the accuracy achieved was 76.28 ± 1.25% for 10-fold CV, which482

was lower than for the OPTIMAM database. The stack generalization approach, described in section483

4, was applied, which provided 89.85 ± 1.69% accuracy without feature selection, and 95.75 ± 0.57%484

accuracy with feature selection for the OPTIMAM database, see Table 5. To perform quantitative485

evaluation for the stack generalization classifier, the receiver operating characteristic (ROC) curves for486

2 features (Table 5) and 51 features are represented in Fig. 11. Using ROC analysis, we achieved an area487

under the ROC of Az = 0.97 when using 2 features, whereas for 51 features the value of Az was 0.96.488

Az is equivalent to the Wilcoxon signed-ranks test and a statistical measure, which is a non-parametric489

alternative to the paired t-test [49], [50]. Additional details on feature selection will be described in490

section 5. A detailed discussion of the results can be found in section 6.491

In addition to this, Table 5 and Table 6 in section 6 reveals that the stack generalization scheme492

outperformed the ensemble learning approach to classify MC clusters for both the digital and digitized493

mammograms using LOOCV and 10-fold CV approaches.494

Apart from the classifiers that are described in section 4, additional classification algorithms ([63],495

[64], [65]) were added to construct an extended ensemble learner which provided better classification496

accuracy 90.97 ± 0.83% for the OPTIMAM database (See Table 7) compared to the accuracy (87.11 ±497

1.38%) obtained by the ensemble learner initially used in Table 4 using 10-fold CV.498

In Table 7, 95.95 ± 0.57% accuracy was achieved with stack generalization with meta-classifier as499

Naive Bayes [44]. This accuracy was increased to 96.72 ± 0.46% when using Adaptive boosting [66] as500

meta-classifier. The Adaptive boosting improved the performance accuracy as it produced a combined501

classifier whose variance is lower than the variances produced by the weak base learner [67].502

It should be noted that most publications in Table 7 used smaller datasets, hence Table 7 represents503

a qualitative comparison. Table 7 shows how different classifiers classify MC clusters using different504

types of features. The methods were tested with different settings and data splitting. It is also505

important to note that the segmented images used in other classification approaches were based on506

the method proposed by Oliver et al. [39], whereas our proposed classification approach was based507

on the images segmented using the method proposed by Alam et al. [11], which is why the number508

of images from the same database in different experiments varies since the under-segmented images509

generated from the method proposed by Alam et al. [11] were discarded in our experiments. One510

significant drawback of the developed method was that it performed badly for cases where the MC511

clusters have no well-defined structure or very few MC were segmented in the cluster region. An512

extreme situation occurred when only a single MC was identified from the cluster by the segmentation513

approach explained in Section 2: this influenced the failure to discriminate malignant from benign514

based on individual MCs morphological feature and texture patterns. However, the experimental515

results demonstrated the robustness and effectiveness of the developed method when combined with516

automatic MC detection and feature selection.517

8. Conclusion518

We have presented a method for discriminating malignant and benign clusters in digital and519

digitized mammograms. Images from digital and digitized databases were first segmented using a520

wavelet based method incorporating bi-cubic interpolation and a series of morphological operations521

were carried out in order to facilitate the feature extraction and classification task from MC segmented522
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images. A combination of morphological, texture, and distribution features from individual MC523

components and the whole MC clusters were extracted from mammograms. The most important524

features were selected and used to classify the MC cluster as benign or malignant. Clinical relevance525

of the selected features is discussed. ROC curve analysis was used to describe the cluster classification526

results. The feature extraction and selection were individually done using the digitized and digital527

mammograms, and afterwards those features were used to classify clusters in the digital database.528

The proposed method was evaluated using three different databases: OPTIMAM, DDSM, and MIAS.529

Two different classifiers- ensemble learner and stack generalization, were applied to evaluate the530

classification result. The best classification accuracy (96.72 ± 0.46%) for the digital database was531

achieved by using a stack generalization classification with 10-fold CV obtaining an Az value equal to532

0.98 ± 0.00.533
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