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ABSTRACT 
 

Like computer chess, robot soccer can be thought of as a 
game in which the agents on one team cooperate to control 
more space more comprehensively than the opposing team. 
Tactical issues such as winning and holding the ball add a 
complication to the issue of controlling space. As a 
research experiment we are investigating a ‘space-time 
possession game’ in which the only issue is the space 
controlled by the agents individually and in combination. 
The resultant game is similar to ‘Go’, but the objectives 
and rules are different. We have begun to study this using 
cellular automata, and we report on a series of experiments 
in which the ‘robots’ move at random, move to maximise 
their individual space, or move to maximise the whole 
team’s space. Our results suggest the last is the most 
successful approach. 
 

1. INTRODUCTION 
 
Many problems involve humans structuring real and 
abstract spaces, and we are remarkably good at it. These 
include everyday problems of getting around in two or 
three physical dimensions, both living for the moment and 
planning for the future. They also include everyday 
problems of structuring multidimensional information 
spaces of great complexity. One goal in AI and cognitive 
science is to understand how we achieve amazing feats of 
understanding by effortlessly finding useful structure in an 
astonishing range of real and abstract environments. 
 We come to these problems through our interest in 
robot football [1], in which teams of robots collaborate to 
score goals against other teams of robots. The problem is 
elegant and powerful because it is easy to express and 
understand, while taking researchers to the frontiers of AI, 
cognitive science, and engineering. As we reflect on 
human soccer players we realise that they have wonderful 
abilities in perception, cognition, and movement, 
compared to the most advanced robots of today. In this 
paper we are concerned with the cognitive ability of soccer 
players. In particular, we are concerned with the problem 

of how human soccer players are able to construe the 
soccer pitch, and find useful structure in what they see to 
guide their play. 
 The research starts with a set definition. We have two 
teams of n robots, and a ball. We will suppose n = 11, even 
though for most robot soccer games the number has 
predominantly been three, five or seven. We also have a 
‘pitch’, and this is where our problems begin. What is a 
‘pitch’? In robot soccer the pitch is, ideally, an array of 
pixels in an image. This provides the lowest level of 
representation. At a higher level of representation, some 
sets of these pixels are special, being designated the ‘centre 
spot’, the ‘goal area’, the ‘penalty spot’, the ‘corners’, the 
‘goals’, and so on. But the really interesting higher level 
spatial structures are those highly dynamic configurations 
that emerge during the game. As the players move and 
position themselves they create spatial structures that 
enable and constrain the action [2]. It can be argued that 
part of the pleasure of watching football is to observe the 
formation of these dynamic structures, whether or not 
goals are actually scored. 
 This then is the subject of this paper. How do human 
beings structure space to promote the occurrence of 
desirable events, and inhibit undesirable ones? 
 The benchmark of computer chess reached a 
scientifically inconclusive crescendo in 1997 when IBM’s 
Deep Blue computer beat the world champion, Garry 
Kasparov. Nonetheless, there is much to learn from chess 
as played by humans and machines, since it is 
quintessentially concerned with structuring space.  
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 (a) structured space in chess       (b) the knight-fork 
 
Figure 1.  Structured space in chess 
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This is illustrated in Figure 1(a), where we give names to 
configurations of squares on the chess board. In Figure 
1(b) the spatial structure of the three pieces forms a 
structure called the knight fork in which the knight checks 
the opponent’s king, and threatens the more valuable rook. 
These structures were known long before the invention of 
electronic computers, and the way that humans understand 
and manipulate them has long been held as an indicator of 
human intelligence. Small wonder then that Alan Turing 
and others at the forefront of computer technology and 
Artificial Intelligence should seize on chess as a test of 
machine intelligence. 
 From the perspective of today, it can be seen that one 
of the very attractive features of chess for testing machine 
intelligence is the simplicity of its form and its rules. A 
grid of sixty four squares and thirty two pieces is a ‘small’ 
system. The rules of the system are also relatively 
straightforward, determining how the pieces can move, and 
what constitutes a win or draw. Crucially the dynamics of 
chess are very simple seen from a modern viewpoint: chess 
has a very simple time structure, and it is non-chaotic. In 
other words, (i) time in chess is governed by simple 
alternate move events (although human players are 
constrained to another time governed by the clock, 
bringing in an element of psychology), and (ii) when a 
chess game is started from the same position, and the same 
moves are played, the same outcome will be observed as 
on previous occasions. 
 In contrast, the new benchmark problem of robot 
soccer is an order of magnitude more complex. The robot 
soccer pitch on a computer screen has millions of squares, 
and the granularity of real robot soccer is of the order of 
molecular distances, if not actually continuous. Similarly, 
the time of robot soccer is measured in fractions of a 
second according to digital computer clocks, while the 
embodied behaviour of the robots exists in the micro-time 
of physics. If chess has combinatorial explosion in its 
space-time structure, robot soccer has hyper-combinatorial 
explosion. Furthermore, real robots are undoubtedly 
chaotic in their dynamics, and simulated robots are also 
very sensitive to initial conditions. 
 Robot soccer, as a physical system, is subject to the 
space-time laws of physics. So are humans. Humans 
exhibit great intelligence in the way that they handle space 
and time, although how we do it remains mysterious, and it 
is the spur for much research in AI. Those who have 
played soccer will know that spatial configurations are 
very important, and that a player can make a great 
contribution to his or her team without touching the ball at 
all.  To be in the right place at the right time is everything. 
 Figure 2(a) shows how individual players command 
parts of the pitch, while Figure 2(b) shows the composite 
picture for the teams. In this example the winning team 
consistently controlled most of the pitch, and this is clearly 
a great advantage. However, as we can learn from chess, 

sometimes the important thing is to be able to control 
special parts of the system at just the right time. 
 The example shown in Figure 2 is taken from the 2002 
finals of the RoboCup simulation league.  As we studied 
this example, we have been struck that the underlying 
problem in robot soccer, and much of ‘intelligent human 
activity’, is the ability to structure space. For that reason 
we have tried to strip away particular contexts such as 
chess or soccer, and create a universe that focuses purely 
on structuring space and time. 
 

 
 
(a) relationship between players and grid squares 
 

 
 
(b) the winning team ‘owns’ most of the pitch 
 

Figure 2  Structuring space in robot soccer. 
 
 We will use a cellular automaton in our preliminary 
experiments.  Such systems have been used reliably in path 
planning for robot football [3], and multi-agent 
cooperation [4]. 
 

2. THE SPACE-TIME POSSESSION GAME 
 
Our interest is in how humans structure space in useful 
ways. To investigate this we wanted to get away from the 
details of robot soccer, and tactics regarding moving ball 
around in order to score goals. This led us to define the 
space-time possession game described below. 
 Let G be a grid of cells. For simplicity we’ll assume G 
is composed of squares, although other planar tessellations 
are possible. Each cell has eight neighbours in the usual 
way.  Let A and B be two sets of players. Each player 



occupies a cell at any given time, which will be 
represented by the notation (x, y, z), where z is a member 
of A or B, or a symbol ‘a’, ‘b’, or ‘c’ denoting unoccupied 
areas ‘claimed’ by team A or B, or both ‘c’.  We assume 
that the system has a discrete clock. When the clock ticks 
any player can move to an adjacent unoccupied cell. 
 A player’s claimed area is a function of distance.  
Each player possesses all the squares which are closer to it 
than any other player, such that the whole grid is owned by 
one or both teams (Figure 3).  Squares equidistant from 
either team are considered shared, with distances measured 
using chessboard distances i.e. 
 

( )2 1 2 1max ,ChessD x x y= − − y  

 
a A a c c 
c c c c a 
b B b a a 
b b b a A 
b b c a a 

 
Figure 3.  Grid possession by teams A and B 
 
Figure 3 shows the convention for pitch ownership.  The 
two squares marked ‘A’ are players from one team and 
posses areas of the grid marked ‘a’.  ‘B’ is an opposition 
member, and its claimed area is notated ‘b’.  Furthermore, 
‘c’ are the squares equidistant from both teams, and so 
jointly claimed by both sides. 
 The objective of the game is to control strategic areas 
of pitch, by outmanoeuvring the opposition.  Initially, each 
team starts in an opposing half of the pitch, with players 
able to take up any position in their team’s half.  At every 
time step, the players are free to move a distance of one 
square in any direction, unless it is already occupied by 
another player.  Player movements are controlled by a 
team strategy, in the same way as in robot soccer, with two 
strategy programmes pitted against one another.  The 
winning team is that which meets the following criteria, 
only one of which will be applicable to each game: 
 

i. The team that holds the largest distributed area 
after Nd clock ticks. 

ii. The team that holds the largest contiguous area 
after Nc clock ticks. 

iii. The first team to hold Md distributed grid squares. 
iv. The first team to hold Mc contiguous grid squares. 
v. The first team to hold Md distributed grid squares 

for Nd clock ticks. 
vi. The first team to hold Mc contiguous grid squares 

for Nc clock ticks 
vii. The first team to link either end of the pitch with 

one contiguous set of claimed grid squares. 
 

These simplified objectives and the constraints of the 
environment, combined with the competitive nature of the 
game, provide ideal conditions for developing advanced 
multi-agent controllers, and investigating complex 
interacting systems. 
 The goals also represent generalisations of wider 
problems.  Possible applications for game strategies 
include network science, mapping, search and rescue, 
surveillance, planetary robotics and mine sweeping. For 
our research we will begin by focusing on developing 
distributed control strategies for the first winning 
condition. 
 

3. EXPERIMENTAL RESULTS 
 
We have programmed the possession game in MATLAB, 
and implemented three simple strategies. In our game, 
players take it in turn to move, with Team A moving first.  
Each team consists of 5 players. The strategies run once at 
every time frame, and are based on the state of the pitch in 
the moving player’s neighbourhood. They are: 
 

1. Random - the moving player is assigned a random 
direction to move in. This can be into any of its 8-
neighbours, or it can remain stationary. 

2. Local player maxima (LPM) - the player’s pitch 
possession is calculated for its current position, 
and for moves to every available 8-neighbour.  
The move which results in the player owning the 
largest area is taken.  If there will be no change, 
the player remains stationary. 

3. Local team maxima (LTM) - for each of the nine 
moves a player can make, its effect on the global 
team area is calculated.  The player moves to the 
cell which gives maximum benefit to the team.  If 
there will be no change, the player remains 
stationary. 

 
We have experimented with playing each strategy against 
one another, on either team.  There are nine combinations 
with each team adopting random, local, and global 
maximising strategies.  Each run began with the players in 
the same symmetrical opening positions. 
 The following comments describe our observations.  
The accompanying graphs show the change in area 
occupied by both teams, during the course of each match.  
Each graph shows a single game, conducted with a 
different set of competing strategies: 
 
Team A random strategy – Team B random strategy 
Results are radically different for each match. Either team 
may end up with a larger area, irrespective of who moves 
first.  No graphical data is given for this pair of strategies, 
since the areas owned by either team fluctuate randomly. 
 



Team A local player maxima – Team B random strategy 
Initially Team A collects most ground (Figure 4).  
However, team mates begin to compete against each other, 
rather than cooperate.  This causes the rate of accumulation 
of pitch to slow down between 100-200 clock cycles.  
Pairs of same-team players are then repelled from the 
randomly moving opponents, which then retake ground 
from Team A during clock cycles 200-300. 
 

 

Figure 4. A-Local player max, B-Random 
 
Team A local team maxima – Team B random strategy 
Team A rapidly collects most of the pitch and holds it 
(Figure 5).  As time progresses the space occupied by 
Team A fluctuates, since it is not building ‘robust’ 
structures, and the random motion of Team B may 
fortuitously gain ground for one clock tick, only to have 
Team A recapture it after the next clock tick.  In the first 
75 cycles only two Team A players are in a position to take 
pitch from team B, causing the initial gains.  At cycle 75, 
two more players become actively involved, causing the 
renewed growth in pitch possession. The fifth player 
finally joins the attack around cycle 275. 

 
Figure 5. A-Local team max, B-Random 

Team A random strategy – Team B local player maxima 
Observations show similar effects of play to those 
described for the strategies reversed (shown opposite in 
figure 4).  However, in this game the competition between 
Team B players allowed opportunistic advances by the 
randomly moving Team A players around cycle 150.  The 
resulting pitch possession is shown in figure 6. At cycle 
160, Team B manages to re-take the lost ground, but only 
because of unfortunate movements by Team A.  

 
Figure 6. A-Random, B-Local player maximum 
 
Team A local player maxima-Team B local player maxima 
Initially team A takes most ground. Over time, possession 
evens out, as pairs of team mates compete against each 
other. The remaining two players, one each from Team A 
and Team B account for most of the changes. Play and 
possession of space oscillate after 130 ticks, with each 
team gaining the advantage at alternating ticks due to the 
action of the mixed pair.  There is no obvious winner 
(Figure 7).  The magnitude of oscillations in pitch 
possession occurring after cycle 80 are different for each 
team since Team B always moves last, and Team A only 
protects the neutral ground on every other move. 

 
Figure 7. A-Local player max, B-Local player max 



Team A local team maxima – Team B local player maxima 
During the first 40 clock cycles, Team A rapidly takes 
ground whilst Team B competes against itself (Figure 8).  
The aggressive movements of Team A manage to split up 
the competing pairs in Team B, allowing them to gain 
ground between cycles 40-60.  The lone Team B players 
then begin to compete with Team A players and mimic 
their moves, causing the constant difference in possessed 
areas from cycle 60.  Although Team A wins overall, it 
does not maintain its promising initial success due to its 
beneficial effect on Team B’s strategy (Figure 8).  

 
Figure 8. A-Local team max, B-Local player max 
 
Team A Random Strategy – Team B local team maxima 
Team B rapidly collects most of the pitch (Figure 9). The 
fluctuations shown in Team A’s ownership in figure 5 are 
not repeated here.  This is due to Team B moving second, 
so any fortuitous gains made by Team A are recaptured by 
Team B before the pitch possession is calculated.  For the 
first 100 cycles, only two Team B players actively 
contribute to the cells owned by B.  As they slow down, 
two more players begin to get drawn out, and fully join the 
attack at cycle100, causing the surge in pitch ownership. 

Figure 9. A-Random, B-Local team maximum 

Team A local player maxima - Team B local team maxima 
After an even start, team B eventually takes more ground 
(Figure 10).  Mirroring the events shown in figure 8, Team 
A competes against itself allowing Team B to advance 
between cycles 30-40.  Between 40-60 Team B breaks 
apart the Team A pairs, which then cause it to loose 
ground rapidly during cycles 60-80.  From cycle 80 
onward, Team A mimics the movements of Team B.  Play 
reaches a stable state after 130 ticks, and Team B wins.  
Play is comparable to that given by swapping the strategies 
between A and B. 

 
Figure 10. A-Local player max, B-Local team max 
 
Team A local team maxima – Team B local team maxima 
Team B slowly looses out to Team A.  In this pairing, and 
with symmetrical starting positions, it is advantageous to 
move first.  The two front Team A players move toward 
the edges of the pitch, forcing their opposite numbers into 
the centre.  Eventually the movements of Team B bring a 
third Team A member into play, causing the sudden 
increase in A’s superiority at cycle 20 (Figure 11).  With 
an extra active player on Team A, it has no problems 
taking most ground. 

 
Figure 11. A-Local team max, B-Local team max 



LTM is clearly the strongest strategy, winning five of the 
competitions.  LPM comes in second, with three wins, and 
random comes in last.  LTM teams are also most efficient, 
initially only using the foremost players to take ground. 
 When played against random strategies, the LTM 
exhibits herding behaviour.  Players move to cells adjacent 
to the opposition, blocking them from moving forward.  
The majority of random opposition moves therefore have 
to be away from the player, resulting in them being herded 
into small pockets. 
 LPM teams are disadvantaged by their tendency to 
compete against home players.  Against random strategies 
this can be unfavourable, resulting in random players 
herding LPM pairs.  Surprisingly, it fairs better against 
LTM teams, due to the aggressive nature of the LTM 
splitting up the LPM pairs. 
 Future generations of strategies will focus on global, 
rather than local conditions. Following this, strategies 
involving planning will be considered.  We will also 
update the simulation to enable both teams to move at the 
same time. 
 

4. COMPARISON WITH GO 
 

The space-time possession game described here can be 
compared with computer implementations of the game of 
Go [6]. The main difference between our game and Go is 
that the latter has more rules and more game-specific 
structure. In Go the objective is to surround the opponent’s 
‘stones’, or to surround contiguous sets of the opponents 
stones. We have suggested the space-time possession game 
to allow exploration of special features not tied to specific 
objectives such as surrounding pieces in Go, checkmating 
the king in chess, or scoring goals in robot soccer. Thus, 
although research into Go is highly relevant, the space-
time possession game we have proposed is intended to 
allow the investigation of spatial structures in general. 

Both Computer Go and Computer chess can be highly 
tactical, using properties of the particular pieces. Thus 
there are many set-piece openings and gambits which, 
currently, are unknown in the space-time possession game. 
It is our hope that the greater simplicity of the space-time 
possession game will give insights into spatial structures in 
general, rather than into spatial structures that are 
opportunistically useful in particular applications. 
 

5. DISCUSSION AND CONCLUSIONS 
 
Structuring the pitch in a soccer game is essential in that it 
provides a method for identifying good passes.  A good 
pass might be to set up a shot on goal, to move the ball out 
of a dangerous situation, or simply to open up more 
passing possibilities.  Strategic pitch possession is essential 
in implementing these tactics.  In human football games, 
players try to structure the pitch by taking up positions to 

improve their team’s chances of success.  Although players 
take up these positions without explicitly communicating 
their intentions to their team mates, extensive training 
allows the players to recognise tactical opportunities based 
on these positions alone [5].  Furthermore, players can use 
their positions to weaken the opponent’s by using feints, 
just as in the game of chess.  To achieve the goal of 
beating the human world football champions, robot soccer 
will undoubtedly require this type of cooperation. 
 By forming a contiguous area of possessed pitch in the 
possession game, we identify a sequence of passes along 
which a ball could travel, so that it is always closer to 
home players than it is to opponents.  Hence, we aim to 
structure a coordinated set of passes, similar to the way 
real footballers do.  These ideas build on previous work to 
create a strategy as a string of tactics [5].  Continuation of 
the work will focus on linking any ball position to a 
predefined goal area, which can then be implemented as a 
passing strategy in robot football.  Moreover, by 
simultaneously aiming to block opponent paths, we will 
also be forming defensive strategies. 
 The possession game provides a basic environment for 
research into many aspects of multi-agent systems, 
including centralised control, distributed control, planning, 
pattern recognition, machine learning, genetic algorithms, 
adaptive behaviour, and cooperation. Our aim is to develop 
a control architecture which combines both tactical and 
strategic operations in a single multi-agent controller. 
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