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 2 

Abstract 25 

 26 

Fishes often live in environments characterized by complex flows. To study the 27 

mechanisms of how fishes interact with unsteady flows, the periodic shedding of vortices behind 28 

cylinders has been employed to great effect. In particular, fishes that hold station in a vortex 29 

street (i.e. Kármán gaiting) show swimming kinematics that are distinct from their patterns of 30 

motion during freestream swimming in uniform flows, although both behaviors can be modelled 31 

as an undulatory body wave. Kármán gait kinematics are largely preserved across flow 32 

velocities. Larger fish have a shorter body wavelength and slower body wave speed than smaller 33 

fish, in contrast to freestream swimming where body wavelength and wave speed increases with 34 

size. The opportunity for Kármán gaiting only occurs under specific conditions of flow velocity 35 

and depends on the length of the fish; this is reflected in the highest probability of Kármán 36 

gaiting at intermediate flow velocities. Fish typically Kármán gait in a region of the cylinder 37 

wake where the velocity deficit is about 40% of the nominal flow. The lateral line plays a role in 38 

tuning the kinematics of the Kármán gait, since blocking it leads to aberrant kinematics. Vision 39 

allows fish to maintain a consistent position relative to the cylinder. In the dark, fish do not show 40 

the same preference to hold station behind a cylinder though Kármán gait kinematics are the 41 

same. When oxygen consumption level is measured, it reveals that Kármán gaiting represents 42 

about half of the cost of swimming in the freestream. 43 

 44 

Introduction  45 

Understanding how fishes swim in unsteady flows has attracted attention from many 46 

disciplines, ranging from biologists interested in fish ecology to engineers working on the 47 
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principles of efficient propulsion 
1-5

. Because the hydrodynamics of a cylinder wake is well-48 

characterized 
6
, examining how fish interact with cylinder vortices has provided a tractable way 49 

to begin to understand fish-fluid interactions under complex, yet predictable flow conditions 
7-9

. 50 

This is because the relationships between flow velocity, cylinder diameter, and vortex shedding 51 

frequency are already known. Flow moving past the cylinder creates vortices that shed 52 

alternately from each side of the cylinder, with the vortices staggered as two columnar arrays 
6,10

. 53 

For Reynolds numbers of 40 – 100,000 in which many fishes swim, the Strouhal number (St) for 54 

cylinders is 0.2, where f is the vortex shedding frequency, d is the diameter of the cylinder, and U 55 

is the nominal flow velocity.  56 

 57 

   
  

 
   (1) 58 

 59 

The spacing of the vortices, or wake wavelength (λ) can be calculated from the flow velocity 60 

divided by the vortex shedding frequency. 61 

 62 

λ= U/f  (2) 63 

 64 

This enables experimenters the ability to control the frequency and spacing of vortices by 65 

altering the flow speed and cylinder size, and has provided a unique opportunity to study how 66 

fish behave in an unsteady, periodic environment.  67 

Previous studies revealed that fishes adopt novel body kinematics behind a cylinder, 68 

termed the Kármán gait. Kármán gaiting can save energy for station holding fishes, and occurs 69 

under certain conditions of flow velocity, body length, and cylinder size 
8,11-13

. To identify 70 
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Kármán gaiting, five criteria are used: 1) the fish is holding station and not drifting upstream or 71 

downstream, 2) there is a traveling wave along the body, 3) the body displays a large lateral 72 

displacement (> ½ L), 4) the body posture adopts a long wavelength (>1 L), and 5) there are no 73 

transient small-amplitude, high-frequency tail beats. 74 

 75 

Body wave kinematics of Kármán gaiting versus freestream swimming 76 

A travelling wave along the body can describe both freestream swimming and Kármán 77 

gaiting kinematics for subcarangiform swimming fishes. This equation, with an arbitrary initial 78 

phase   ), takes the form: 79 

 80 

                    
  

 
            (3)  81 

 82 

where t and x denote time and position along the body, respectively.  The wave initiation point 83 

varies with the locomotor mode (thunniform, carangiform, anguilliform), which is defined 84 

according to how much of the body participates in the undulatory wave 
14

. Tail beat frequency (f) 85 

and body wavelength (λ) define the temporal and spatial periodicity of the equation. The speed of 86 

the travelling wave (V) is defined by 87 

  88 

      (4) 89 

 90 

The amplitude envelope (    ) also depends on the locomotor mode. For subcarangiform 91 

swimmers such as rainbow trout and mackerel, it is described by a second order polynomial 92 

              
  

15
.  93 
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Whether the travelling wave is generated actively through muscular activity or passively 94 

due to flow-induced motions varies depending on the flow regime. In freestream swimming, an 95 

antero-posterior wave of red muscle activity drives the propagation of the wave 
16

. In contrast, 96 

during Kármán gaiting undulatory waves are generated passively as a result of lateral 97 

acceleration while the fish is being buffeted from side to side by the fluid 
8
. Several findings 98 

support this argument. First, muscle recordings indicate that Kármán gaiting fish activate only 99 

the anterior red axial muscles 
12

. Second, dead trout temporarily generate a mechanical wave 100 

similar to live fish 
17

. Third, there is a high correlation between the lateral acceleration and tail 101 

beat amplitude of the fish.   102 

Freestream swimming and Kármán gaiting differ in that they are separated in the 103 

parameter space; the amplitude, wavelength and frequency values of the travelling wave 104 

equation are substantially different for each behavior 
18

. During Kármán gaiting, the wave is 105 

initiated at the body centre, which is 0.2 L (where L = total body length) further down the body 106 

compared to the initiation point in freestream swimming. Fourier analysis on the motions of a 107 

dead trout towed behind a cylinder shows that in a completely passive body, the wave starts at 108 

the base of the cranium similar to freestream swimming (Fig. 1). This suggests that the location 109 

of the wave initiation point during Kármán gaiting is not due to the passive fish-fluid 110 

interactions. When live fish Kármán gait they activate their anterior muscles in order to adopt a 111 

straight posture in the mid-body region; as a result this arrangement changes the location of the 112 

initiation point. In this way, the interaction between fish and fluid in the mid-body region is more 113 

critical than the posterior region. Fish appear to keep the mid-body region from bending in order 114 

to provide a local axial control surface to harness the appropriate fluid forces. In addition to 115 
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undulation, Kármán gaiting fish also exhibit substantial lateral translations and body rotations, 116 

which can constitute up to 75% of the behavior.  117 

 118 

Body wave speed  increases with flow speed  119 

Kármán gaiting fish respond to increasing flow speed by increasing the speed of their 120 

traveling body wave. To do so, fish increase tail-beat frequency while keeping body wavelength 121 

and amplitude constant. Why does tail-beat frequency change and not body wavelength? Kármán 122 

gaiting is a flow-dominated behavior, where cylinder wake wavelength and vortex shedding 123 

frequency drives the body wavelength and tail-beat frequency. The cylinder vortex shedding 124 

frequency, but not wavelength, increases with flow speed, setting up a condition where the body 125 

wavelength is preserved across flow speed.  126 

Experiments have shown that even a rigid foil positioned in a vortex street can generate 127 

thrust 
17

. What, then, is the role of the traveling wave in Kármán gait? In uniform flow, the ratio 128 

of the traveling wave to the forward body speed (i.e. slip) approaches unity when swimming is 129 

efficient because more momentum is directed towards forward thrust. This concept is less useful 130 

in a vortex street environment, where the contributions of passive versus powered thrust 131 

generation are harder to differentiate.  The traveling wave is not entirely passive, given that 132 

across flow velocities body wave speed is consistently 25% greater than the speed of the vortices 133 

drifting at the nominal flow speed 
19

.  134 

The effect of fish length on body wavelength  135 

Fish relate to the vortex street in different ways depending on their body length. Kármán 136 

gaiting fish require cylinder-to-body length ratios that range from 1:2 to 1:4 
11,19

. The body 137 

wavelength of the fish affects its ability to properly interact with vortices to produce thrust. In 138 
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order to Kármán gait, small fish interact differently with cylinder vortices than larger fish. When 139 

small fish Kármán gait, they have a longer body wavelength than larger fish, reflecting the 140 

relatively larger size and spacing of the cylinder vortices. Hypothetically, a larger fish may be 141 

able to adopt a shorter wavelength because the body spans to interact with two successive 142 

vortices, while a smaller fish must adopt a longer wavelength because its body can only interact 143 

with one vortex. This is the opposite of what is found in freestream swimming, where body 144 

wavelength increases with fish size 
20

. As mention above, during the Kármán gait less of the 145 

body participates in the traveling wave than observed for freestream swimming. Therefore, a 146 

longer body length does not correspond to a longer body wavelength as it seems to do for 147 

freestream swimming (Fig. 4).  148 

Regardless of body size, Kármán gaiting fish possess a body wavelength that is longer 149 

than the wake wavelength at intermediate flow speeds. This relationship seems critical to hold 150 

station and likely orients the body to create more thrust-generating interactions with passing 151 

vortices.  152 

Probability of Kármán gaiting depends on flow speed  153 

One of the most important factors determining how often fish prefer to Kármán gait is the 154 

nominal flow speed to which the cylinder is exposed. Figure 2 shows that the highest probability 155 

of Kármán gaiting  occurs at intermediate flow speeds between 2-5 body lengths per second 
19

. 156 

The body center of the fish is typically located 4-6 cylinder diameters downstream from the 157 

cylinder regardless of flow velocity level (Fig. 3A). This region corresponded to a velocity 158 

deficit of about 40% of the nominal velocity (Fig. 3B). At low flow velocities fish did not 159 

Kármán gait often and their motions resembled freestream swimming. This is because vortical 160 

flows must be sufficiently developed before fish can exploit them 
8,11-13

. Kinematic results 161 
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support this interpretation; at lower flow speeds the tail-beat frequency was considerably higher 162 

than the vortex shedding frequency
19

. The tail-beat frequency at the low flow speed was identical 163 

to that of a freestream swimming fish 
20

. Furthermore, body wavelength and tail-beat amplitude 164 

were very similar to those found in freestream swimming fish. At the highest speeds, trout do not 165 

hold station continuously and are either drawn upstream into the suction zone behind the 166 

cylinder, or ejected laterally from the vortex street. Under these higher Reynolds number flow 167 

conditions the wake can adopt complex, three-dimensional vortex dynamics such as braid 168 

vortices and other hydrodynamic instabilities 
21

. Merging and pairing between initial shear layer 169 

vortices can give rise to secondary structures that contribute to irregular vortex shedding 170 

frequencies and amplitudes 
6,22

. The resulting turbulent vortex street exceeds the stabilization 171 

abilities of fishes.  172 

 173 

Sensory feedback during the Kármán gait 174 

 What roles do vision and the lateral line play in the ability to exploit vortices in a cylinder 175 

wake? Theoretically, the hydrodynamic conditions of an oscillating wake make it possible for 176 

any foil-shaped object of the appropriate size to generate thrust passively 
23,24

. Experimental 177 

evidence shows that a dead trout towed behind a cylinder can momentarily synchronize its body 178 

kinematics to the oscillating flow of a vortex street to generate thrust 
12,17

. However, for a fish to 179 

remain in the cylinder wake for sustained periods requires sensory feedback from the visual and 180 

lateral line systems. 181 

 In general fishes rely heavily on both visual 
25,26

 and hydrodynamic 
27-29

 cues to adapt 182 

their swimming movements to their immediate environment. Kármán gait kinematics change 183 

when the lateral line is blocked, indicating that hydrodynamic feedback is used to alter motor 184 
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output accordingly in turbulent flows. The greater variability in body wavelength for trout with a 185 

blocked vs. intact lateral line underscores the importance of detecting local flow along the body 186 

in adjusting Kármán gait kinematics to maintain a favorable posture to facilitate vortex capture. 187 

In addition, trout with a blocked lateral line hold station further downstream from the cylinder 188 

than fish with an intact lateral line. These lines of evidence reiterate that a proportion of Kármán 189 

gait kinematics are under active control and are not the sole result of passive buffeting of the 190 

body by vortices. Longer body wavelength and faster wave speed suggest that Kármán gaiting is 191 

less efficient or more energetically costly without a functional lateral line. The fact that trout in 192 

the light with a blocked lateral line do not spend as much time Kármán gaiting as trout with a 193 

functional lateral line (Fig. 5) provides behavioral evidence in support of this hypothesis. 194 

Whether altered Kármán gait kinematics reflect muscle activity and changes in energy 195 

expenditure for the individual is currently not known. When lateral line functionality is held 196 

constant (i.e. within fish with an intact or blocked lateral line), the presence or absence of light 197 

does not change Kármán gait kinematics. This provides further evidence that when trout hold 198 

station in a vortex street the lateral line, rather than vision, plays a larger role in body kinematics.  199 

 One exception occurs where vision alone can alter Kármán gait kinematics. Fish with a 200 

blocked lateral line in the dark have a greater variability in body wavelength than fish in the 201 

light. These fish seem to have more difficulty exploiting vortices, often drifting position within 202 

the vortex street, displaying “corrective” motions, or switching to traditional undulatory 203 

swimming such as seen in uniform flow. Vision allows fish to maintain a consistent position 204 

relative to the cylinder. This may minimize the exposure to flow variation and thus variation in 205 

body wavelength, since the predictability and energy of the vortices decreases with downstream 206 

distance from the cylinder. 207 
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Energetics of Kármán gaiting 208 

The cost of Kármán gaiting can be measuring directly and non-invasively in live fishes 209 

by employing the technique of respirometry, which measures the oxygen consumed during a 210 

particular behavior. There are several regions around a cylinder that fish choose to hold station. 211 

Figure 6 illustrates that for a given flow speed, oxygen consumption during Kármán gaiting is 212 

higher than entraining near the suction region, but lower than bow waking in the front of the 213 

cylinder 
13

. Kármán gaiting represents about half of the cost (47%) of swimming in the 214 

freestream away from the cylinder. When compared to freestream swimming in flow equivalent 215 

to the reduced velocity behind the cylinder (which is about 40% of the nominal flow velocity), 216 

Kármán gaiting represents about 79% of the cost 
11

. Therefore, by exploiting vortices Kármán 217 

gaiting fish used significantly less oxygen than predicted if there were only benefiting from 218 

swimming in the reduced velocity of the cylinder wake. 219 

 220 

Future directions 221 

Our work on the midline kinematics of Kármán gaiting, sensory biology and energetics 222 

can be used by roboticists to develop control algorithms that can move bio-inspired robots and 223 

by computational fluid dynamics modelers to simulate fluid-structure interactions. Given that the 224 

majority of the body waves during Kármán gaiting are generated passively, it is more important 225 

for a flexible robot to control its head and the anterior body than control its posterior body. If 226 

hydrodynamic forces are harnessed appropriately at the anterior body, a travelling wave is 227 

generated passively at the posterior body starting from the body centre. This represents a 228 

paradigm shift in the field of autonomous robotics locomotion which traditionally emphasize the 229 

control of the posterior body 
30-32

. What Kármán gaiting studies teach us is that head control is 230 
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critical for steering and improving stability in unsteady flows by counter-balancing body 231 

rotations and lateral translation, and that control functionality can be outsourced to the visco-232 

elastic properties of the body itself. 233 

The study of biological locomotion in unsteady flow regimes is a promising one that 234 

stands to shed light on new mechanisms of hydrodynamic propulsion. Though vortex streets 235 

generated by cylinders has proven to be a production experimental system, overall the responses 236 

of fishes to unsteady flows remains largely unexplored.  Around a single cylinder, already three 237 

distinct energy-saving behaviors are observed. What if the wakes behind three-dimensional 238 

objects, arranged in aggregations, or varying in flexibility, were investigated in more species? It 239 

is apparent that the diversity of maneuvering, wake-exploitation and drag-reduction behaviors 240 

would reflect the inexhaustible number of scenarios between over 33,000 species of fishes and 241 

unsteady flow conditions. Along this vein, experiments into more natural flow conditions stand 242 

to be well rewarded. For example, investigating the behavior of fish holding station behind two 243 

cylinders in tandem, only a slightly more involved experiment than a single cylinder but closer to 244 

mimicking flows from more natural object aggregations such as large woody debris in streams, 245 

already reveals new principles of fluid-solid interactions and wake exploitation that could not be 246 

predicted 
33

. Another promising topic is the investigation of how fishes navigate waves in the 247 

surf zone during foraging. With the application of Digital Particle Image Velocimetry, high 248 

speed videography and physiological techniques such as respirometry and electromyography, 249 

new insights into the mechanisms of fish locomotion are now more accessible to marine 250 

technology applications. 251 

 252 

  253 
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Fig. 4 281 

 282 

 283 

 284 

  285 



 17 

Fig. 5 286 
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Fig. 6 289 

 290 

 291 

 292 

  293 



 19 

Figure Legends 294 

 295 

Fig. 1. Fourier analysis of a dead trout midline kinematics while in the vortex street (L = 17.8 296 

cm, flow speed = 57 cms
-1

 and cylinder diameter = 5 cm 
17

). (A) Normalized frequency spectrum 297 

(black = frequency with smallest lateral amplitude and white = largest amplitude) revealed that 298 

the dominant frequency is 2.20±0.10 Hz, similar to a live Kármán gaiting trout (Ai). (B) Mean 299 

amplitude curve (solid line) across 6 tail beat cycles (gray shaded area shows ± standard error of 300 

the mean) indicated that body amplitudes of dead trout were smaller than those of live trout (Bi). 301 

(C) Increasing phase lag from head to tail in the mean phase curve (solid line, gray shaded area 302 

shows ± standard error of the mean) indicated that the travelling wave along the body was 303 

initiated more anteriorly than in a live trout (Ci). This suggests that live fish actively control the 304 

anterior body to prevent wave formation. (Aii) Normalized frequency spectrum shows both 305 

freestream swimming and Kármán gaiting fish (L = 10.0±0.3 cm) at 4.5 Ls
-1 

exhibited periodic 306 

lateral oscillations, where the dominant frequency was 6.6±0.1 Hz and 2.2±0.05 Hz, 307 

respectively. (Bii) Mean amplitude curves (solid line) at dominant frequency (gray shaded area 308 

shows ± standard error of the mean). In both behaviours, the amplitude of lateral oscillations was 309 

smallest at the mid-body region and increased gradually towards tail. During Kármán gaiting, 310 

body amplitudes at all locations were larger than during freestream swimming. (Cii) Mean phase 311 

curves (solid line) at dominant frequency (gray shaded area shows ± standard error of the mean). 312 

A travelling wave was evident for both behaviours. In Kármán gaiting, the wave started at the 313 

body centre (0.4 L), which was about 0.2 L posterior to the starting point of freestream 314 

swimming fish. In both behaviours, the wave speed was constant along the posterior body (~60 315 

cms
-1 

for freestream swimming and ~75 cms
-1

 for Kármán gaiting fish). The freestream 316 
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swimming amplitude and phase curves of trout are very similar to those of saithe and mackerel 317 

presented in 
15

.   318 

 319 

Fig. 2. The probability of Kármán gaiting changes with flow speed. Fish Kármán gait the most at 320 

intermediate flow speeds (~30 - 70 cm s
-1 

for trout with total body length of 15.7 ± 0.8 cm) and 321 

the least at extreme speeds. Videos were binned into 5 flow speed categories, where each 322 

category consisted of a minimum of 50 videos from at least 5 different fish.  323 

 324 

Fig. 3. (A) Location of the body centre (BC, black circles) of the body relative to the D-cylinder 325 

for all trials. The x and y axes show the downstream and lateral position, respectively, where 0 326 

corresponds to the cylinder axis. (B) Downstream position of the BC relative to the cylinder as 327 

flow velocity increases. The BC positions are superimposed on a heat map illustrating the 328 

magnitude of the velocity deficit behind the cylinder as a percentage of the freestream velocity, 329 

where red represents the greatest relative flow reduction.  The location of greatest flow reduction 330 

remains in a consistent region downstream of the cylinder across most flow speeds. Note that this 331 

plot does not distinguish the reversal in flow direction that is established in the suction region 332 

directly behind the cylinder. At the lowest speed, flow reduction can equate to no flow (100% 333 

reduction), whereas at higher speeds the largest flow reduction still results in some flow 334 

magnitude. 335 

 336 

Fig. 4. Body wavelength across speed and body size. (A) Body wavelength (solid line) starts 337 

lower than the cylinder wake wavelength (dashed line) and then rises above as flow speed 338 

increases (r
2
 = 0.28, n = 9 fish). At the lowest swimming speeds, the absence of a strong vortex 339 
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street likely requires use of a shorter body wave similar to freestream swimming fish (see text). 340 

(B) At a flow speed of ~50 cm s
-1

, smaller fish have a longer body wavelength than larger fish (p 341 

< 0.05, n = 15 fish). Values shown are the mean ± S.E.M. 342 

 343 

 Fig. 5. Regions around a cylinder in flow that trout will either entrain or Kármán gait (defined as 344 

two rectangular regions on either side of the cylinder, 7x15 cm, or a single rectangle centered 345 

along the midline of the cylinder wake, 10x15cm, respectively). In the light, fish prefer to 346 

Kármán gait in the vortex street downstream from the cylinder (black fill) for the majority of the 347 

time during a 60-minute experiment, especially when the lateral line is intact (V+L+1). Values 348 

for fish in the light with an intact lateral line exposed to the cylinder for two consecutive days 349 

(V+L+2) are almost identical to those exposed for one day (V+L+1), indicating that previous 350 

experience in the flow tank does not alter the preference to Kármán gait. In contrast to 351 

experiments performed in the light, fish in the dark do not spend much time in the vortex street 352 

regardless of lateral line functionality (V-L+1 or V-L-2), preferring to entrain (gray fill) just 353 

downstream and to the side of the cylinder. The time that fish spent exploring other regions of 354 

the flow tank (white) is similar across treatments. 355 

 356 

Fig. 6. Statistical comparison of MO2 values between Kármán gaiting (KG) and other behaviors 357 

at 3.5 L s
-1

.
 
Compared to other behaviors at 3.5 L s

-1
, Kármán gaiting requires significantly less 358 

oxygen than swimming in the free stream (FS, 47%) and bow waking (BW, 73%), but requires 359 

more oxygen than entraining (EN, 116%). Kármán gaiting fish use less oxygen (79%) compared 360 

to fish swimming in the free stream at 1.8 L s
-1 

(asterisk). Values are reported as the mean ± the 361 

standard error. 362 
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