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Abstract

Studying coevolutionary systems in the context of simplified models (i.e. games
with pairwise interactions between coevolving solutions modelled as self plays) re-
mains an open challenge since the rich underlying structures associated with pairwise-
comparison-based fitness measures are often not taken fully into account. Although
cyclic dynamics have been demonstrated in several contexts (such as intransitivity in
coevolutionary problems), there is no complete characterization of cycle structures
and their effects on coevolutionary search. We develop a new framework to address
this issue. At the core of our approach is the directed graph (digraph) representation
of coevolutionary problem that fully captures structures in the relations between can-
didate solutions. Coevolutionary processes are modelled as a specific type of Markov
chains – random walks on digraphs. Using this framework, we show that coevolu-
tionary problems admit a qualitative characterization: a coevolutionary problem is
either solvable (there is a subset of solutions that dominates the remaining candi-
date solutions) or not. This has an implication on coevolutionary search. We further
develop our framework that provide the means to construct quantitative tools for
analysis of coevolutionary processes and demonstrate their applications through case
studies. We show that coevolution of solvable problems corresponds to an absorbing
Markov chain for which we can compute the expected hitting time of the absorbing
class. Otherwise, coevolution will cycle indefinitely and the quantity of interest will
be the limiting invariant distribution of the Markov chain. We also provide an index
for characterizing complexity in coevolutionary problems and show how they can be
generated in a controlled manner.
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1 Introduction

In this study we focus on coevolutionary systems that are specified by the: (1) coevolu-
tionary problem – the set of all alternatives (e.g. strategies in a two-player game) and a
pairwise preference relation indicating the superior alternative (e.g. whether when play-
ing the game one strategy defeats another one), and (2) coevolutionary process – the
population of alternatives undergoing a process of selection and variation that is guided
only by their interaction outcomes. Coevolutionary systems are often used in competi-
tive settings where the lack of absolute fitness measures necessitates that one exploit the
strategic nature of interactions in coevolving populations. In this context, coevolution-
ary systems provide a natural alternative for solving test-based problems (Hillis, 1990;
de Jong and Pollack, 2004) that include two-player strategic games whereby opponent
strategies provide test cases for fitness evaluations (Runarsson and Lucas, 2005). In turn,
game-theoretic-based frameworks have been developed to provide tools for analysis of
coevolutionary systems (Ficici et al., 2005; Tiňo et al., 2013).

The use of relative and dynamic fitness evaluations in coevolutionary systems in-
troduces unique challenges that make these systems difficult to analyze and understand
in comparison to evolutionary systems. They are collectively referred as coevolutionary
pathologies. In the classic example of two-population predator-prey coevolution, the
Red Queen effect is coined to describe the interdependence in the fitness evaluations of
members in one population to the other even though there is no exchange of genetic ma-
terials (Cliff and Miller, 1995; Janssen et al., 2016). Disengagement occurs when there
are large gaps in competence level between the populations, leading to a loss of selection
pressure, decoupling of the coevolutionary system, and then onset of random drift in
the populations (Cartlidge and Bullock, 2004). For problems with intransitivity in the
relationships between the solutions, cyclic dynamics have been observed whereby the
population overspecializes to copies of a solution that is exploited by another solution
later in the coevolutionary process (Darwen and Yao, 1997). In the more extreme case,
coevolution forgets a solution it has discovered earlier – the solution that is driven to
extinction is adaptively found later (Rosin and Belew, 1997).

Although there are broader implications in design of effective coevolutionary sys-
tems, pathologies are usually associated with the selection part of the coevolutionary
process particularly on the use of pairwise-comparison-based fitness measures. Most
studies would frame the pathologies in specific settings for which relevant methodolo-
gies can be used for analysis. These include measurements for monitoring progress of
coevolutionary systems using generational samples of test cases (Cliff and Miller, 1995;
Stanley and Miikkulainen, 2002; Bader-Natal and Pollack, 2005) and those where one
has a global view and can objectively measure performance of solutions (Floreano and
Nolfi, 1997; Chong et al., 2012). In (Ficici et al., 2005; Tiňo et al., 2013), a formal
approach is taken to study coevolutionary dynamics. Under the usual evolutionary
game theoretic setting such as the use of an infinite population, a full characterization
is given on coevolutionary dynamics (as changes to the ratio of individuals adopting a
pure strategy) for various dynamical maps modelling different selection operations.

Here, we focus on coevolutionary systems that use pairwise-comparison-based fit-
ness measures. However, it remains an open challenge to study this restricted class of
coevolutionary systems since the rich underlying structures associated with pairwise-
comparison-based fitness measures are often not taken fully into account. Although
cyclic dynamics have been shown in coevolutionary systems, most past studies such as
(Samothrakis et al., 2013) would focus on short cycles (of length three). Longer length
cycles can occur in coevolution. Crucially, there is no complete characterization of cycle
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structures and their effects on coevolution. Our motivation is to develop a new frame-
work to address this issue formally. Our approach uses the digraph representation for
coevolutionary problems to capture the full structures in the binary relations between
candidate solutions. Coevolutionary processes are modelled naturally as discrete time
Markov chains operating on discrete state spaces (the sets of vertices of digraphs). In
this manner, different coevolutionary algorithms would correspond to different imple-
mentations of random walks on digraphs.

We first show that coevolutionary problems admit a qualitative characterization:
a coevolutionary problem is either solvable (the digraph is reducible with a subset of
solutions that dominates the remaining solutions of the solution space) or not. This
has an implication on coevolutionary search where we further develop the framework to
construct quantitative tools for appropriate analysis and demonstrate their applications
through case studies. We will show that coevolution of solvable problems corresponds to
an absorbing Markov chain for which we can compute the expected hitting time of the
absorbing class. Otherwise, coevolution will cycle indefinitely and the quantity of interest
will be the limiting invariant distribution of the Markov chain. We also suggest an index
for characterizing complexity in coevolutionary problems and show how a hierarchy of
increasingly complex coevolutionary problems can be generated in a controlled manner.

This paper is organized as follows. In Section 2, we formulate the digraph repre-
sentation and provide several results characterizing cycle structures in coevolutionary
problems. Section 3 formulates coevolutionary processes as random walks on digraphs
and provides examples how specific Markov chains are constructed from coevolutionary
algorithms operating on digraphs. Section 4 introduces relevant quantitative character-
izations for coevolutionary systems (expected hitting times and stationary distributions
of Markov chains). These quantitative tools will be demonstrated through theoretical
and computational case studies. Section 5 will discuss the main findings and wider
implications of our framework with remarks for future studies.

2 Digraph Representation of Coevolutionary Problem

We first present basic definitions and facts on digraphs relevant to formulating our
framework to make this paper self-contained. Our notation and terminology follow
standard digraph theory texts and readers can refer (Bang-Jensen and Gutin, 2009)
for detailed expositions of the following. Our focus is to show how digraphs provide
appropriate mathematical structures that fully capture the pairwise preference relations
between objects of interest that one would encounter in typical coevolutionary problems
such as games. Later, we would exploit classic results in digraph theory to provide a
complete characterization of cycle structures in coevolutionary problems.

2.1 Digraphs - Definition, Notation and Terminology

Definition 2.1.1. A digraph D = (V,A) consists of two sets: (i) a non-empty, finite set
V (D) of elements called vertices, and (ii) a finite set A(D) of elements corresponding
to ordered pairs (u, v) of distinct vertices, u, v ∈ V (D), called arcs (or directed edges).
The arc set is a binary relation on the vertex set (A is a subset of the Cartesian product
of V with itself, A ⊂ V × V ).

Definition 2.1.2. The order of a digraph D = (V,A) is given by the number of vertices
∣V ∣ (often denoted as ∣D∣). The size of D is given by the number of arcs ∣A∣.

Definition 2.1.3. A graph G = (V,E) consists of: (i) a non-empty, finite vertex set
V (G), and (ii) a finite set E(G) corresponding to unordered pairs {x, y} of distinct
vertices, x, y ∈ V (G), called edges. The underlying graph UG(D) of a digraph D = (V,A)
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is the graph with the same vertex set V and the corresponding edge set E whereby arcs
are replaced by edges with no parallel edges and loops.

We often use a simpler notation and denote the arc (u, v) as uv. The tail u and
head v are the end-vertices of uv. Adjacency between end-vertices u and v implies an
arc uv or vu. As in (Bang-Jensen and Gutin, 2009), we consider the digraph D = (V,A)
without parallel arcs between adjacent end-vertices (arcs having the same tail and same
head) and loops (the arc uu where the tail and head is the same vertex).1

The definition of digraphs and in particular the binary relation on the vertex set
that can be constructed allows for rich structures to be captured. We will consider
notions of orientation, biorientation, complete, and semicomplete.

Definition 2.1.4. The orientation of a graph is the digraph where each edge corre-
sponding to a pair of adjacent vertices u, v ∈ V is connected by an arc (either uv or
vu only). The biorientation of a graph is the digraph where each edge in the graph is
replaced by the arc uv or vu or both arcs uv and vu.

Obviously, any digraph is a biorientation. An oriented graph is a specific biorienta-
tion since any pair of adjacent vertices is connected by an arc only. In a complete graph,
every pair of distinct vertices is adjacent.

Definition 2.1.5. A semicomplete digraph is a biorientation of a complete graph (since
not all pairs of distinct vertices are completely bioriented, in which case they are only
oriented). A tournament is a complete oriented graph.

Tournaments form a special and well-studied class of semicomplete digraphs (Bang-
Jensen and Gutin, 2009). Tournaments and their generalizations (semicomplete di-
graphs) would be the focus later in this paper.

2.2 Neighbourhoods and Degrees

Definition 2.2.1. A neighbourhood of a vertex u ∈ V , ND(u), refers to the subset of V
whereby its elements are adjacent to u. It consists of the union of the out-neighbourhood
N+
D(u) and in-neighbourhood N−

D(u) of u:

N+
D(u) = {v ∈ V − {u} ∶ uv ∈ A}, N−

D(u) = {w ∈ V − {u} ∶ wu ∈ A}.

We note V − {u} ⊂ V results from the set difference between V and u in the usual
manner. The vertices in N+

D(u), N−
D(u), and ND(u) = N+

D(u) ∪N−
D(u) are called out-

neighbours, in-neighbours, and neighbours, respectively (Bang-Jensen and Gutin, 2009).
A related notion of neighbourhoods is the degrees in a digraph.

Definition 2.2.2. The sets of outgoing arcs (u,V −u)D and incoming arcs (V −u,u)D
are defined, respectively, as

(u,V − {u})D = {(u, v) ∈ A ∶ v ∈ V − {u}}, (V − {u}, u)D = {(w,u) ∈ A ∶ w ∈ V − {u}}.

The out-degree d+D(u) (in-degree d−D(u)) of a vertex u is the number of outgoing (incom-
ing) arcs in the digraph D where u is the tail (head) for each of these arcs. They are
given by d+D(u) = ∣(u,V − {u})D ∣ and d−D(u) = ∣(V − {u}, u)D ∣. The degree of u is given
by dD(u) = d+D(u) + d−D(u).

1We do consider loops later when we introduce Markov chains, which essentially are weighted di-
graphs with specific constraints.
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2.3 Walks, Paths, and Cycles

Consider a digraph D = (V,A), whereby vertices vi and arcs ai from D are labelled
in a manner such that the tail and head of ai is vi and vi+1, respectively, for every
i = 1,2,3, . . . , k − 1 (Bang-Jensen and Gutin, 2009).

Definition 2.3.1. A (v1, vk)-walk W in the digraph D from v1 to vk is the alternating
sequence of vertices and arcs v1a1v2a2v3. . .ak−1vk. The set of vertices of the walk is
V (W) = {v1, . . . , vk} while the set of arcs of the walk is A(W) = {a1, . . . , ak−1}. W is
said to be closed if v1 = vk, otherwise it is open. The length of a walk is the number of
arcs in it and by definition of W is simply k.

Definition 2.3.2. A (v1, vk)-path P is a walk where all the vertices in it are distinct.
A k-cycle C is a closed (v1, vk)-walk of length k ≥ 3 on the (v1, vk−1)-path.2

We usually denote W, P, and C without the arcs, v1v2v3. . .vk, since ai is defined in
the context of vivi+1 (Bang-Jensen and Gutin, 2009). P and C on D are by definition
subdigraphs of D, e.g., V (P) ⊆ V (D), A(P) ⊆ A(D), and A(P) = {uv ∶ u, v ∈ V (P)}.

Definition 2.3.3. The path P is said to be Hamilton if V (P) is the same as V (D). A
Hamilton cycle C has V (C) = V (D). A digraph D is said to be hamiltonian if it contains
a Hamilton cycle.

2.4 Classes of Coevolutionary Problems as Digraphs

We state how coevolutionary problems can be represented as digraphs in the following.

Definition 2.4.1. A coevolutionary problem is defined as an ordered pair C = (S,R)
where S represents the solution set and R is the pairwise preference relation on S.
This is represented as the digraph DC = (VS ,AR). The vertex set is the solution set
VS = S (each distinct vertex corresponds to a single unique solution). The arc set is the
binary relation on S, AR = R, (each biorientation corresponds to the pairwise preference
relationship between each pair of solutions).

The underlying graph UG(DC) is complete since there is a relationship between
every pair of solutions in a coevolutionary problem. Each problem is specified by the
number of unique solutions and associated preference relation on those solutions, which
is described by the biorientations on UG(DC). We use the term coevolutionary digraph
to emphasize the digraph representation of a coevolutionary problem. It should be clear
from the context of subsequent presentations whether we are referring to coevolutionary
problems or just the digraphs as mathematical structures.

For this study, we consider two general classes of coevolutionary problems with their
corresponding digraph representations.

Definition 2.4.2. Consider the coevolutionary problem where VS(n) is the solution set
with ∣VS(n)∣ = n. Its underlying graph UG(DC) is complete. Then: (i) a coevolutionary
tournament is an orientation of UG(DC), and (ii) a coevolutionary semicomplete digraph
is a biorientation of UG(DC). For each n = 3,4,5, . . ., let T (VS(n)) and SD(VS(n)) be
the sets of all tournaments and semicomplete digraphs of order n, respectively. T (VS(n))
and SD(VS(n)) represent the family of all coevolutionary tournaments and semicomplete
digraphs with n candidate solutions, respectively.3 SD(VS(n)) generalizes T (VS(n))
since adjacent vertices in VS(n) can be completely bioriented. That is, T (VS) ⊂ SD(VS).

2Cycles of lengths two and one can be defined as well and usually in context of digraphs that admit
specific connectivity structures. A 2-cycle is the case whereby two adjacent vertices u, v ∈ V is completely
bioriented via uv and vu. A 1-cycle is simply the case of a self-loop uu.

3Implicit in our notation are the corresponding sets of arcs in T (VS(n)) and SD(VS(n)) satisfying
constraints for tournaments and semicomplete digraphs, respectively.
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To provide a direct context, there is a wide range of coevolutionary problems that
can be modelled as two-player strategic games. In each case, the game consists of a set of
pure strategies and a dominance relation on those strategies. Both players have access to
the same strategy set. Each player will select a single pure strategy from the strategy set
and then implements that strategy during game-play. The game outcome is decided by
the dominance relation on the two pure strategies implemented for the game-play. Some
games have only win-lose game outcomes – the winning strategy is said to dominate the
losing strategy. Other games (two-player board games such as chess) have a win, lose,
or draw outcome. Digraphs naturally represent these coevolutionary problems. The set
of vertices of the digraph is the strategy set. The dominance relation is captured and
described by the set of arcs. We do not consider game-plays between copies of the same
pure strategy for simplicity – there is no self-loop in the digraph.

Definition 2.4.3. For any pair of strategies u, v ∈ VS , the winning strategy v dominates
a losing strategy u. This relation is represented by the orientation v←u (or u→v if we
say u is dominated by v).4 A draw is represented by the complete biorientation u⇄v.

The notion of domination can be extended to subsets of VS (a vertex is a subset
of VS with a single element). Consider two disjoint subsets of VS , V 1

S and V 2
S , whereby

V 1
S ∩V

2
S = ∅. V 2

S ⇐ V 1
S denotes that all vertices v ∈ V 2

S dominate all vertices u ∈ V 1
S . We

say V 2
S is the dominant subset with respect to V 1

S . Conversely, V 1
S ⇒ V 2

S ≡ ∀v ∈ V 1
S ∀u ∈

V 2
S (v → u). The tournament provides a representation for all strategic games with win-

lose game outcomes. Semicomplete digraph as a further generalization of the tournament
can be used to represent any strategic game with win, lose, or draw outcomes.5

2.5 Structures and Higher Organizations in Coevolutionary Digraphs

In practice, one often is confronted with a very large coevolutionary digraph with little
(connectivity) information. A coevolutionary tournament with ∣V ∣ candidate solutions
has 2(∣V ∣)(∣V ∣−1)/2 pairs of comparisons. This exponential increase in pairwise comparisons
is further compounded by a high (and possibly exponential) growth rate in the number of
parametric representations of candidate solutions. Consider a simple normal form game
such as the iterated prisoner’s dilemma restricted to just memory-one, reactive (self and
opponent’s past plays) strategies. If one uses a direct look-up table representation, a

q-choice game would generate qq
2+1 different combinations of strategy tables (Chong

et al., 2012). A two-choice game would generate eight strategy tables and 784 pairwise
comparisons, which increase to at least 6.18×1028 strategy tables and 3.66×10114 pairwise
comparisons for a six-choice game in a full tournament.

Performing a brute-force computation on a very large coevolutionary digraph (e.g.
decide if the problem has a single dominant solution) quickly becomes a very expensive
task. Instead, we study specific structures leading to some form of higher organizations
in coevolutionary digraphs that can provide useful characterizations of coevolutionary
problems. These structures emerge from constraints that could be placed on the biori-
entations of coevolutionary digraphs.

4Standard digraph terminology define domination in the reverse order, i.e., u dominates v is denoted
as u→v. Our choice to define domination in this manner becomes clear in the next section when we
discuss coevolutionary processes on digraphs and their Markov chain models.

5We are not describing how one can find the best strategy but how relations of strategies can be
captured, e.g., transitive strategic games represented by acyclic orientations of complete graphs.
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2.6 Connectivity Structures in Digraphs

We first define basic connectivity structures in digraphs before introducing qualitative
characterizations of tournaments having specific connectivity conditions.

Definition 2.6.1. A digraph D is said to be strongly connected (or strong) if for each
pair of distinct vertices u, v ∈ V (D) there exist both (u, v)-path and (v, u)-path.

Given a pair of distinct vertices u, v ∈ V (D), v is said to be reachable from u if and
only if there is an (u, v)-path in D. A vertex is reachable from itself and so by definition
a digraph with a single vertex is strong. A strong digraph will have each vertex reachable
from all other vertices. There exists a closed Hamilton walk that cover all vertices in
the digraph. The following describes strong digraphs having specific cycle structures.

Definition 2.6.2. A digraph D = (V,A) of order n that has k-cycles of all lengths
k = 3,4,5, . . . , n is said to be pancyclic. The digraph is further said to be vertex-pancyclic
if for every v ∈ V (D) and every k ∈ {3,4,5, . . . , n}, there is a k-cycle containing v.

Acyclic digraphs are those without cycles and are defined formally as follows.

Definition 2.6.3. Let v1, v2, v3, . . . , vn be an ordering of V (D). If v1, v2, v3, . . . , vn is
such that for all arcs (vi, vj) ∈ A(D), i < j, the digraph D = (V,A) is said to have an
acyclic ordering. Every acyclic digraph has a vertex with zero in-degree d−D(v1) = 0 and
a vertex of zero out-degree d+D(vn) = 0.

Every acyclic digraph has an acyclic ordering (Bang-Jensen and Gutin, 2009).

Definition 2.6.4. A digraph D = (V,A) is transitive if for every pair of distinct arcs
(u, v), (v,w) ∈ A(D), u ≠ w and (u,w) ∈ A(D).

A tournament is transitive if and only if it is acyclic (Bang-Jensen and Gutin, 2009).
For each n = 3,4,5, . . ., let T (VS(n)) be the set of all tournaments of order n. Vertices

for each tournament T (VS(n),A) ∈ T (VS(n)) can be labelled (indexed) in a manner so
that v1, v2, v3, . . . , vn is ordered according to d−T (v1) ≤ d−T (v2) ≤ d−T (v3) ≤ ⋯ ≤ d−T (vn).
This is done using the score sequence.

Definition 2.6.5. The score sequence of a tournament T (VS(n),A) ∈ T (VS(n)) is the
n-tuple (s1, s2, s3, . . . , sn) with the constraints s1 ≤ s2 ≤ s3 ≤ ⋯ ≤ sn. Each si, i =
1,2,3, . . . , n, corresponds to the number of vertices that vi dominates, i.e., si = d

−
T (vi).

The following two definitions (Moon, 1968) are crucial in the next subsection where
we present our results on how vertices in a digraph can be grouped or classified in some
manner that reveal useful structures.

Definition 2.6.6. Consider a vertex partition of vertices VS(n) of a tournament
T (VS(n),A) into two disjoint, nonempty subsets V 1

S(n) and V 2
S(n) whereby V 1

S(n)∩V
2
S(n) =

∅ and V 1
S(n)∪V

2
S(n) = VS(n). T (VS(n),A) is reducible if it can be vertex-partitioned such

that V 1
S(n) ⇒ V 2

S(n) (V 2
S(n) is the dominant subset). Otherwise, it is irreducible.

Some reducible digraphs further admit vertex partition (decomposition) into mul-
tiple, disjoint subdigraphs, which is defined as follows.

Definition 2.6.7. A digraph D can be decomposed into subdigraphs
D(1),D(2),D(3), . . . ,D(l) where V (D(1)) ∪ V (D(2)) ∪ V (D(3)) ∪ ⋯ ∪ V (D(l)) = V (D)

and V (D(i)) ∩ V (D(j)) = ∅ when i ≠ j.

2.7 Qualitative Characterizations of Coevolutionary Digraphs

We first summarize several classic results of tournament theory on connectivity struc-
tures in tournaments. The results will be presented in the original form of the (refer-
enced) primary texts (slightly restated for consistency with our notations).

Evolutionary Computation Volume x, Number x 7
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Theorem 2.7.1 (Rado (1943) (Moon, 1968)). A tournament T (VS(n),A) is strong if
and only if it is irreducible.

Theorem 2.7.2 (Camion (1959) (Bang-Jensen and Gutin, 2009)). Every strong tour-
nament is hamiltonian.

Theorem 2.7.3 (Moon (1968) (Moon, 1968)). Let T (VS(n),A) be a strong tournament
on n ≥ 3 vertices. For every v ∈ VS(n)(T ) and every integer k ∈ {3,4,5, . . . , n}, there
exists a k-cycle through v in T (VS(n),A). In particular, T (VS(n),A) is hamiltonian if
and only if it is strong.

We exploit these theoretical results and provide useful qualitative characterizations
to the family of coevolutionary tournaments T (VS(n)). In this paper, we state and
show that a coevolutionary problem is either solvable (its corresponding tournament is
reducible) or not (the tournament is irreducible).

Lemma 2.7.4. A coevolutionary tournament T (VS(n),A) ∈ T (VS(n)) on n ≥ 3 is either
reducible or irreducible.

Proof. This is simply a direct consequence of the definition of reducibility and irre-
ducibility of tournaments (as given by Definition 2.6.6).6

We next show that a solvable coevolutionary problem has a subset of solutions that
are preferred over the remaining solutions.

Lemma 2.7.5. A reducible coevolutionary tournament T (VS(n),A) ∈ T (VS(n)) of order
n ≥ 2 can be vertex-partitioned into two disjoint nonempty subsets V 1

S(n) and V 2
S(n).

The dominant subset V 2
S(n) contains solutions that dominate all remaining solutions in

the other subset V 1
S(n) = VS(n) − V

2
S(n). The minimal dominant subset contains a single

solution.

Proof. The first part of the lemma is simply a direct consequence of the definition of
reducibility of tournaments. It remains to prove the second part. We first make note that
every tournament can be decomposed into subtournaments T i(i = 1,2,3, . . . , l) whereby
(Moon, 1968):

a) Every vertex in T (j) dominates every vertex in T (i) if 1 ≤ i < j ≤ l.

b) Every subtournament T (i) is either irreducible or transitive.

c) No two consecutive subtournaments T (i) and T (i+1) are both transitive.

Consider the trivial case whereby the tournament is transitive, l = 1. As a consequence
of Theorem 2.7.3, a tournament T (VS(n),A) ∈ T (VS(n)) of order n > 2 is transitive if and
only if it is acyclic. Obviously, we can always vertex partition a transitive tournament by
taking the vertex with in-degree n−1 as V 2

S(n) and all the remaining n−1 vertices as V 1
S(n)

so that V 1
S(n) ⇒ V 2

S(n). For a reducible tournament, assume that it can be decomposed

into two subtournaments (l = 2). Since the two subtournaments T (1) and T (2) cannot be
both transitive, then one of them must be irreducible. Let V (T (1))⇒ V (T (2)). V (T (2))
with a single vertex is by definition strong and as such irreducible.

6A coevolutionary tournament with one vertex is irreducible since it is a strong tournament by
definition. A tournament with two vertices is reducible since there is always one vertex that dominate
the remaining vertex in the tournament.
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We only need to show the case above where the dominant subset is minimal. There
are other cases as well, for example, T (2) is transitive and T (1) is irreducible. Here, even
though V (T (1)) ⇒ V (T (2)), the single dominant vertex in a transitive T (2) obviously
dominates all other vertices in T (2) and T (1) as well. In another case, we have both irre-
ducible subtournaments. For these coevolutionary tournaments, the maximal dominant
subset that induces T (2) and for which V (T (1))⇒ V (T (2)) is of order n − 1.

For coevolutionary problems that are not solvable, we have the following result.

Lemma 2.7.6. An irreducible coevolutionary tournament T (VS(n),A) ∈ T (VS(n)) is
strongly connected. It is hamiltonian and furthermore, vertex-pancyclic.

Proof. This is simply a direct consequence of Theorems 2.7.1, 2.7.2, and 2.7.3.

The main implication is that an irreducible coevolutionary tournament does not
have a subset of dominant solutions. In addition to every u, v,w ∈ VS(n)(T ) contained in
a 3-cycle, this coevolutionary tournament is vertex-pancyclic. One can find the solution
vn that dominates all other solutions v2, v3, v4, . . . , vn−1 but is dominated by v1, which
in turn is dominated by v2, v3, v4, . . . , vn−1 (see Figure 1). This is a consequence of
the Hamilton cycle in the tournament. In the context of a game and optimality of a
strategy that is defined in terms of the number of opponent strategies it defeats, one
finds the situation whereby the best strategy defeats all but the worst strategy. The
lack of dominant solutions becomes more apparent in the case of regular coevolutionary
tournaments whereby each solution v has the same score with d−D(v) = d+D(v), which
generalize T (VS(3),A) with u→ v → w → u (as in the game rock-paper-scissors).

(a) (b)

Figure 1: A vertex-pancyclic coevolutionary (a) tournament and (b) semicomplete di-
graph of order n.

Our results can be extended to the family of coevolutionary semicomplete digraphs
SD(VS) as well. The arguments behind Theorems 2.7.1, 2.7.2, and 2.7.3 for tournaments
can also be made for their simple generalization in the form of semicomplete digraphs.
For example, Theorem 2.7.3 on strong connectivity and vertex pancyclicity for tourna-
ments has been restated for semicomplete digraphs in (Bang-Jensen et al., 1997). The
original argument (Moon, 1968) that makes use of a proof by induction of a k-cycle
(where 3 ≤ k ≤ n) containing a vertex v and the existence of a (k + 1)-cycle containing v
remains unchanged if one replaces instances of tournaments with semicomplete digraphs.
One can make an observation (e.g., see Figures 1 (a) and (b)) that the introduction of
2-cycles does not make a semicomplete digraph vertex pancyclic. Instead, it arises from
the presence of 3-cycles and the Hamilton cycle.

Unlike the case of irreducible coevolutionary digraphs, one can employ search pro-
cedures to discover the dominant subset in a reducible coevolutionary digraph. We first
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introduce the following notion on strong connectivity of subdigraphs D(i) of D (Bang-
Jensen and Gutin, 2009). Then, we conclude with a useful description of structural
properties in reducible coevolutionary digraphs that we apply later.

Definition 2.7.7. The strong component of D is a maximal induced strong subdigraph
of D. It is maximal in the sense that if a strong D(i) and strong D(j) are connected
by arcs in both directions, in which case there exists both (u, v)-path and (v, u)-path
for every u ∈D(i) and v ∈D(j), then they belong to the same strong subdigraph D(k) =
D(i) ∪D(j). Obviously a single-vertex D(i) is strong by definition. A digraph D can
be decomposed into its strong components D(1),D(2),D(3), . . . ,D(l), with each strong
component being distinct by definition of it being a maximal induced subdigraph.

Lemma 2.7.8. A reducible coevolutionary semicomplete digraph SD(VS(n),A) ∈

SD(VS(n)) of order n ≥ 2 has a strong decomposition V (D(1)) ∪ V (D(2)) ∪ V (D(3)) ∪

. . .∪V (D(l)) with a unique ordering D(1),D(2),D(3), . . . ,D(l) whereby D(i) ⇒D(j) when

i < j. D(1) (D(l)) is the initial (terminal) strong component. In particular, the dominant
solutions of SD(VS(n),A) are contained in its terminal strong component.

Proof. As with the case of tournaments, we first note that a reducible semicomplete
digraph can be decomposed into strong components Di(i = 1,2,3, . . . , l). Let the strong
components be ordered as D(1) ⇒ D(2) ⇒ D(3) ⇒ . . . ⇒ D(l) with D(i) ⇒ D(j)

when i < j (Bang-Jensen et al., 1996). One can perform a contraction operation on
the strong components that replaces D(i) with a single vertex g(D(i)) and remove all
parallel arcs (Bang-Jensen and Gutin, 2009). When contraction is applied to all the
strong components of D, the resulting digraph is called the strong component digraph
SC(D). Note that SC(D) is now g(D(1)) → g(D(2)) → g(D(3)) → ⋯ → g(D(l)) with

g(D(i)) → g(D(j)) when i < j, i.e., it has an acyclic ordering. The initial (terminal)
strong component of D is obviously the strong component whose corresponding vertex
in SC(D) has zero in-degree (out-degree). The same argument can be made for tour-
naments. However, with a reducible tournament one may have to apply contraction on
transitive subtournaments, in which case the resulting digraph will be acyclic as well.

2.8 Quantitative Characterizations of Coevolutionary Digraphs

In demonstrating several structural results relating to cycle structures in coevolutionary
digraphs crucial to characterizing their dichotomy in solvability, we make no assumption
on availability of prior information relevant to uncovering those structures. Where more
information becomes available, we can make quantitative characterizations relevant to
the complexity of those cycle structures and further uncover their higher organizations.
In particular, we first study how those cycles of various lengths can be packed in a
manner that results in a strong decomposition of the coevolutionary tournament. We
present the following result.

Lemma 2.8.1. Let (s1, s2, s3, . . . , sn) be the sequence of integers satisfying s1 ≤ s2 ≤
s3 ≤ ⋯ ≤ sn. (s1, s2, s3, . . . , sn) is the score sequence of a coevolutionary tournament
T (VS(n),A) ∈ T (VS(n)) of order n if and only if

k

∑
i=1

si ≥ (
k

2
), k = 1,2,3, . . . , n, with equality when k = n.

In particular, T (VS(n),A) ∈ T (VS(n)) of order n ≥ 3 is irreducible if and only if for each
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k, 1 ≤ k ≤ n − 1
k

∑
i=1

si > (
k

2
) and

n

∑
i=1

si = (
n

2
).

Otherwise, T (VS(n),A) ∈ T (VS(n)) is reducible whereby for some k, 1 ≤ k ≤ n − 1

k

∑
i=1

si = (
k

2
).

Proof. The first statement on score sequences of coevolutionary tournaments is a direct
consequence of a theorem by Landau (1953) (Bang-Jensen and Gutin, 2009).7 The
second statement on score sequences of irreducible coevolutionary tournament is a direct
consequence of a theorem by Moser and Harary (1966) (Bang-Jensen and Gutin, 2009).
The final statement immediately follows from the second statement, thereby providing
conditions for reducibility of coevolutionary tournaments (Moon, 1963).

Lemma 2.8.1 makes the only assumption of a labelled tournament (its score se-
quences are known). There are several consequences to this result. A coevolutionary
tournament of order n is transitive if it has a score sequence of (0,1,2, . . . , n−1) whereby

∑
k
i=1 si = (k

2
) for each k, 1 ≤ k ≤ n. Lemma 2.8.1 can be used to identify strong compo-

nents in a reducible coevolutionary tournament. The idea is that to look for successive
values of k for which the equality ∑

k
i=1 si = (k

2
) holds. This follows from Lemma 2.7.5 on

the decomposition of tournaments into subtournaments T j(j = 1,2,3, . . . , l). A strong
subtournament T (j) will be sandwiched between strong or transitive subtournaments,
T (j−1) ⇒ T (j) ⇒ T (j+1).

One can formalize this as follows. We consider a coevolutionary tournament
T (VS(n),A) ∈ T (VS(n)) with its solution set VS(n) indexed according to its score se-

quence. Then, let ∑
p
i=1 si = (p

2
), ∑

q
i=1 si = (q

2
), and ∑

k
i=1 si > (k

2
) for p + 1 ≤ k ≤ q − 1

with 0 ≤ p < q ≤ n. The subtournament induced by the subset {vp+1, vp+2, vp+3, . . . , vq}
is a strong subtournament T (j). Furthermore, the score sequence that is restricted to
the strong subtournament T (j) itself is given by (sp+1 − p, sp+2 − p, sp+3 − p, . . . , sq − p)
(Pirzada, 2012). If T (VS(n),A) is irreducible, the procedure will just return a single
strong component – the entire tournament itself.

Finally, we will exploit Lemma 2.8.1 to construct an index relevant to characterizing
complexity of cycle structures in coevolutionary digraphs. We give a precise definition
for the index as follows.

Definition 2.8.2. Consider a coevolutionary tournament T (VS(n),A) ∈ T (VS(n)) of
order n. The vertices of T (VS(n),A) is indexed as v1, v2, v3, . . . , vn according to
the score sequence (s1, s2, s3, . . . , sn). Let the two integers i, j = 1,2,3, . . . , n. The
tournament is associated with two sequences S = (s1,∑

2
i=1 si,∑

3
i=1 si, . . . ,∑

n
i=1 si) and

L = (0, (2
2
), (3

2
), . . . , (n

2
)). We write the ith element of the S as Si (similarly, for L we

write Li). Then, we define the index ν as follows

ν =
n

∑
i=1

I{Si = Li}, (1)

7Landau’s theorem can be generalized further. For example, Reid and Zhang provided in (Reid and
Zhang, 1998) necessary and sufficient conditions for a sequence of integers to be the score sequence of
semicomplete digraphs. Moon (1963) showed that the original theorem can be extended to the case
whereby one can assign a real number [0,1] to the outcome of the pairwise comparison (game) between
a pair of vertices (strategies). That is, for a game between two strategies i and j, αij is the score for i
and αji = 1 − αij is the score for j.
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where

I{Si = Li} =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 if ∑
i
j=1 sj = (

i

2
)

0 if ∑
i
j=1 sj ≠ (

i

2
).

The index ν ranges from 1 to n. Essentially, it is a count of the number of strong
components in the coevolutionary tournament. When this index is used together with
structural results such as Lemma 2.7.8 that provide qualitative descriptions of tour-
nament decomposition, it provides a useful macro-scale indication of cycle structure
complexity in coevolutionary tournaments that is summarized as a simple quantity.
ν = 1 if and only if the tournament is strong, while ν = n if and only if the tournament
is transitive (each vertex is a strong component and all these vertices have an acyclic
ordering). A value of ν closer to n indicates the presence of many shorter length cycles
that can be grouped separately into different subtournaments. When ν is close to one,
the tournament has longer length cycles between n/2 to n−1. ν can be computed quickly
(the computation cost is linear with the order of the tournament with precomputed Ls).
Later, we demonstrate how this index is used in computational studies.

3 Coevolutionary Processes on Digraphs

We introduce the second part of our framework and show that coevolutionary processes
can be formulated naturally as sampling processes on digraphs. For simplicity and to
allow for in-depth analysis, we consider population-one coevolutionary systems, which
corresponds to random walks on digraphs. These would cover various coevolutionary
systems such as those that are used in the context of learning game-playing strategies
through self play. We will formulate these random walks as discrete time Markov chains
operating on coevolutionary digraphs. This will allow us to study how specific structures
in coevolutionary digraphs can affect the dynamics of coevolutionary processes.

3.1 Coevolutionary Processes as Random Walks on Digraphs

Algorithm 1 describes a standard random walk on labelled digraphs D. It starts at
a random vertex and in each subsequent step, randomly moves to an out-neighbour
of the current vertex. This requires prior information on connectivity structures (out-
neighbourhoods of all vertices in D). In practice, one would implement a random walk
on unlabelled digraphs such as the (1+1)CEA (Algorithm 2). In the (1+1)CEA, the
random move in each step is made through a two-stage process of variation (generates a
random offspring from the neighbourhood of the parent vertex) and selection (moves to
the offspring vertex if it dominates the parent vertex). Unlike a random walk, there is a
chance the (1+1)CEA stays at the current vertex in a step because it chooses one of its
in-neighbours (the probability is proportionate to the order of the in-neighbourhood).
Note as well that in practice a (1+1)CEA can apply an arbitrary stopping criterion
(finite number of steps as in Algorithm 2).

3.2 Formulating the Coevolutionary Markov Chain

Regardless of how random walks on digraphs are implemented algorithmically, our focus
is on the underlying stochastic processes that generate those walks. We can exploit
various tools for quantitative analysis of coevolutionary processes consistent with the
qualitative characterizations we have presented earlier on coevolutionary problems. We
first motivate formulating coevolutionary processes on digraphs as a specific class of
stochastic processes – discrete time Markov chains. We will refer readers to (Norris, 1998)
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Algorithm 1 Random Walk on Digraph

1: procedure RWALKD(D,u)
2: Initialization
3: v ∈ V (D) chosen (uniformly) at random.
4: u ∶= v.
5: repeat
6: if N+

D(u) ≠ ∅ then
7: v ∈ N+

D(u) chosen uniformly at random. ▷ With probability 1/∣N+
D(u)∣.

8: end if ▷ Else u remains as it is.
9: u ∶= v.

10: until Forever
11: end procedure

Algorithm 2 (1+1)CEA on Digraph D

1: procedure CEA(D,u, tstop)
2: Initialization
3: t ∶= 0.
4: vt ∈ V (D) chosen (uniformly) at random.
5: u ∶= vt.
6: Generational Process
7: while t ≤ tstop do
8: Variation
9: vt ∈ V (D) − u chosen uniformly at random.

10: Selection
11: if vt ← u then
12: u ∶= vt.
13: end if ▷ Else u remains as it is.
14: t ∶= t + 1.
15: end while
16: end procedure

as an introductory text and (Meyn and Tweedie, 2009) for more advance materials in
Markov chains. We will provide relevant materials to ensure the paper is self-contained.

Definition 3.2.1. A discrete time stochastic process Φ is a collection of {Φt ∶ t ∈ N0}
of random variables with each Φt taking values in a countable set X at time t. N0 is
the set of natural numbers that include 0. A random walk is a discrete time process
Φ = {Φt ∶ t ∈ N0} that takes a step on the digraph from Φt to Φt+1. Each Φt takes values
from the state space X corresponding to the finite set of vertices V (D) of the digraph
D = (V,A). Each state x ∈X is the distinct vertex v ∈ V .

Constructing coevolution as a discrete time process is technically involved as one
needs to work on probability spaces. In general, one first prescribes the structural defi-
nition for the sample path behaviors and the dynamics of steps on the digraph through
time to define the probability laws that govern the evolution of the chain Φ. Even in
the usual case where sequences {Φ0,Φ1,Φ2, . . .} take discrete values in X, developing a
complete, functional description of the distribution of the random walk on most digraphs
other than those with structures that strictly constrain its sample path behaviors (e.g.,
acyclic tournaments) is difficult. Instead, we use the observation that coevolutionary
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processes satisfy the Markov property – the step to a future state only depends on the
current state.8 We exploit this to define and construct the probabilistic motion of the
coevolutionary process on digraphs.

We first note the following definition and facts of a Markov chain.

Definition 3.2.2. The stochastic process Φ = {Φt ∶ t ∈ N0} is a Markov chain if for
every n and any sequence {Φ0,Φ1,Φ2, . . . ,Φn},

Pµ(Φn+1 = xn+1 ∣ Φn = xn,Φn−1 = xn−1, . . . ,Φ0 = x0) = P(xn, xn+1), (2)

given µ is the initial distribution of the Markov chain.9

One can immediately observe that this definition incorporates two main character-
istics: (i) time homogeneity (Theorem 1.1.1, page 2 in (Norris, 1998)) whereby

Pµ(Φ0 = x0,Φ1 = x1,Φ2 = x2, . . . ,Φn = xn) = µ(x0)P(x0, x1)P(x1, x2)⋯P(xn−1, xn), (3)

with the probabilities P(xt, xt+1) depending only on the pairs (xt, xt+1), and (ii) memory
loss (Theorem 1.1.2, page 3 in (Norris, 1998)) whereby the probabilities P(xt, xt+1) are
independent of the time step t.

We formulate and define the Markov chain for a coevolutionary process on digraphs
as follows.

Definition 3.2.3. Let D(VS(n),A) ∈ D(VS(n)) be a coevolutionary digraph having a
finite vertex set VS(n). A coevolutionary Markov chain is a random walk on D(VS(n),A)
with initial distribution µ over and Markov transition matrix P on the state space
X = VS(n) satisfying

(i) µ = (µx ∶ x ∈X), where 0 ≤ µx ≤ 1 and ∑x∈X µx = 1, and

(ii) P = (P(x, z) ∶ x, z ∈X), where for every row is a distribution whereby 0 ≤ P(x, z) ≤
1 and ∑y∈X P(x, y) = 1.

Guarantees that such a coevolutionary Markov chain Φ = {Φt ∶ t ∈ N0} defined on
the state space X = VS(n), initial distribution µ and transition matrix P are given by
the Existence Theorem of Markov chains on countable state space (Chung, 1960). By
definition a coevolutionary digraph D(VS(n),A) has a discrete VS(n) with finite number
of elements, which is a countable set.

The distribution describing a coevolutionary Markov chain is computed from its µ
and P . We start the Markov chain with the initial distribution being fixed (point mass)
at x0 ∈X. Subsequently, for each x0 ∈X, we define Px0 of the Markov chain inductively:

Px0(Φ0 = x0) = 1,
Px0(Φ0 = x0,Φ1 = x1) = P(x0, x1),

Px0(Φ0 = x0,Φ1 = x1,Φ2 = x2) = P(x0, x1)P(x1, x2),

8Loosely speaking, the dynamics of the coevolutionary process as it walks on the digraph is such
that it restarts in every step. For example, with the (1+1)CEA, the probability that it steps from
a particular vertex xt = u ∈ V (D) to an out-neighbour xt+1 = v ∈ N+D(u) is independent of the time
(generational) step t, i.e., the probability is the same whether it is x0 = u at the start or xt = u, which
is t generations later.

9Usually one will take the initial distribution µ as the point mass δx0 at x0. The point mass at x is
written as δx = (δxy ∶ y ∈ X) whereby

δxy = {
1 if x = y
0 if x ≠ y.
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and so forth, using P that gives the chain’s one-step transition probabilities P(xt, xt+1)
(Meyn and Tweedie, 2009). Other useful computations can be made, for example, the
probabilities starting from x after n steps that the chain is at y, Pµ(Φn = y ∣ Φ0 =
x) = Pn(x, y). One first sets P 0 = I (the identity matrix), which corresponds to the
initial conditions P0(x,x) = 1 for all x ∈ X. Then, the n-step transition matrix given
by the iterates P n = (Pn(x, y) ∶ x, y ∈ X) for n ≥ 0 can be defined inductively through
P n+1 = P nP using the following expression

Pn+1(x, z) = ∑
y∈X

Pn(x, y)P(y, z). (4)

3.3 Coevolutionary Markov Chain Examples

We construct four coevolutionary Markov chains (two for each case of transitive and
regular tournaments). The initial distribution can be arbitrary so we just need to con-
struct the appropriate Markov transition matrix. These examples highlight cases where
we can do the constructions formally and later in Section 4.4 to perform quantitative
analysis without resorting to sampling and large-scale computations as is often the case
in real-world problems. The first example is the random walk on labelled transitive co-
evolutionary tournaments. Let T (VS(m),A) be a transitive coevolutionary tournament
with vertices (v1, v2, . . . , vm) indexed according to its score sequence (s1, s2, . . . , sm). We
simplify our notation and let Pm×m = (pij ∶ i, j ∈ {1,2, . . . ,m}) be the Markov transition
matrix for this coevolutionary Markov chain on T (VS(m),A).

(a) (b)

Figure 2: The coevolutionary Markov chain for a (a) random walk on labelled transitive
tournaments T (VS(n+1),A) and (b) (1+1)CEA on transitive tournaments T (VS(n+1),A).

Pm×m is defined inductively as follows. The basis (n = 0) is T (VS(m),A) of order
m = n+ 1 = 1. Since T (VS(m),A) has one vertex that is also its winning vertex, vm = v1,
it has a corresponding transition probability corresponding to the self-loop pmm = 1. As
such, P 1×1 = [p11] = [1]. The induction step (n + 1) adds an additional vertex so that
the tournament is of order m = n + 1. This additional vertex is indexed v1. There are
n =m−1 vertices indexed from v2 to vm that dominates v1 (see Figure 2(a)). This gives
equal probability of transitions from v1 to each of {v2, v3, . . . , vm} so that

p11 = 0,
p1j = 1/(m − 1), j = 2,3, . . . ,m,
pi1 = 0, i = 2,3, . . . ,m.

We can then construct the Markov transition matrix for the random walk on labelled
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transitive tournaments T (VS(n+1),A) of order n + 1 inductively on m = 1,2, . . . , n + 1

pii = 0, i =m
pij = 1/(n + 1 −m), i =m, j = i + 1, i + 2, . . . , n + 1,
pij = 0, i = j + 1, j + 2, . . . , n + 1, j =m,

and p(n+1)(n+1) = 1. This will result in

P (n+1)×(n+1) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1
n

1
n

. . . 1
n

1
n

1
n

0 0 1
n−1

. . . 1
n−1

1
n−1

1
n−1

0 0 ⋱ ⋱ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋱ ⋱ 1
3

1
3

0 0 0 . . . 0 1
2

1
2

0 0 0 . . . 0 0 1

0 0 0 . . . 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5)

where the last row indicates transition probabilities for the tournament’s single dominant
vertex, with a drawn horizontal line for emphasis.

The next example is the (1+1)CEA on unlabelled transitive coevolutionary tour-
nament. Previously, the Markov transition matrix has a nice inductive structure (the
lower right submatrix induces a random walk on the corresponding labelled subtourna-
ment). Here, the (1+1)CEA requires that one computes its Markov transition matrix for
transitive coevolutionary tournaments of different orders. Fortunately, the computation
for the transition probabilities is straightforward. Consider a transitive coevolutionary
tournament T (VS(n+1),A) of order n+1. The transition probabilities are given as follows:

Upper triangle: pij = 1/n, i < j + 1, i = 2,3, . . . , n + 1,
Diagonal: pii = m/n, m = i − 1, i = 2,3, . . . , n + 1,

Lower Triangle: pij = 0, i > j − 1, i = 2,3, . . . , n + 1,

P (n+1)×(n+1) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1
n

1
n

. . . 1
n

1
n

1
n

0 1
n

1
n

. . . 1
n

1
n

1
n

0 0 2
n

⋱ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋱ 1
n

1
n

1
n

0 0 0 . . . n−2
n

1
n

1
n

0 0 0 . . . 0 n−1
n

1
n

0 0 0 . . . 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (6)

with the corresponding Markov chain illustrated in Figure 2(b).
We now consider two irreducible coevolutionary Markov chains. Let T (VS(n),A)

be a regular coevolutionary tournament of odd order n ≥ (3 + 2m), m = 0,1,2, . . .. Its
adjacency matrix Madj can be constructed as follows (Brualdi, 2010):

Madj = Ln +L2
n +L3

n + . . . +L(n−1)/2
n ,

where Ln is the permutation matrix that is obtained from the permutation vector
(2,3,4, . . . , n,1). The permutation vector (r1, r2, r3, . . . , rm) specifies the row permu-
tation operations on a m ×m identity matrix. For the first row, 1 in the first column is
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exchanged with 0 in the r1-th column, and so forth, ending with the m-th row where 1
in the m-th column is exchanged with 0 in the rm-th column.10

The value adj(i, j) = 1 in the adjacency matrix specifies the arc i → j of the cor-
responding digraph. The Markov transition matrix requires that we calculate from the
digraph’s domination matrix Mdom where dom(i, j) = 1 means i ← j. Note that Mdom

is the transpose of Madj, Mdom = MT
adj. We can then compute the Markov transition

matrix for a random walk on labelled regular coevolutionary tournament as

P =
2

(n − 1)
Mdom, (7)

while for (1 + 1)CEA on unlabelled regular coevolutionary tournament, it is

P =
1

2
I +

1

(n − 1)
Mdom. (8)

4 Quantitative Characterizations of Coevolutionary Markov Chains

In this section, we first demonstrate the link between structural properties in the coevo-
lutionary digraphs and their impact on coevolutionary processes that operate on those
digraphs. Subsequently, we will introduce and develop quantitative characterizations
that are relevant to those coevolutionary Markov chains.

4.1 Class Structures

One fundamental notion that can help us understand the dynamics of a coevolutionary
Markov chain is the communication classes on its state space. We can analyze a large and
complex coevolutionary Markov chain by breaking it into smaller pieces having shared
properties (states within them are equivalent in some sense). Let D(VS(n),A) be a
coevolutionary digraph. P is the Markov transition matrix of the coevolutionary Markov
chain operating on D(VS(n),A). Let x and y be two distinct states x, y ∈X = VS(n).

Definition 4.1.1. x↝ y (x leads to y) if and only if there is a positive probability that

starting at x the Markov chain reaches y after n-steps, p
(n)
xy > 0 for some n ≥ 0.

The relation ↝ is transitive given the property of the n-step transition probability

(as indicated by Equation 4) so that one can compute p
(m+n)
xz ≥ p

(m)
xy p

(n)
yz > 0 for some

m ≥ 0 and n ≥ 0. By definition, x↝ x, in which case the relation is reflexive.

Definition 4.1.2. x↭ y (x communicates with y) if and only if x↝ y and y ↝ x.

In this case, the relation is symmetric and transitive. As such, the relation ↭ forms
an equivalence relation on X, and allows one to partition X into disjoint subsets that
are called communicating classes (or equivalence classes) (Chung, 1960).

Definition 4.1.3. Let C(x) be the class containing x ∈X. A state space X consisting of
a single class C(x) =X (and the Markov chain operating on X) is said to be irreducible.

There are intimate relationships between the class structure of a coevolutionary
Markov chain and the connectivity structure of the coevolutionary digraph that the
chain operates on. One obvious connection is the notion of irreducibility.

10For example, the permutation matrix for a permutation vector (2,3,1) is

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0
0 0 1
1 0 0

⎤
⎥
⎥
⎥
⎥
⎦

.
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Lemma 4.1.4. A coevolutionary Markov chain is irreducible if it operates on an irre-
ducible coevolutionary digraph.

Proof. An irreducible digraph D is strongly connected whereby for every x, y ∈ V (D),
there is an (x, y)-path and (y, x)-path. This implies that x ↭ y for all x, y ∈ X for a
coevolutionary Markov chain operating on X = V (D). There is only a single communi-
cating class C(x) =X, in which case the coevolutionary Markov chain is irreducible.

Definition 4.1.5. States can be classified as essential or inessential. A state x is
essential if and only if for all y, x ↝ y implies y ↝ x. Otherwise, x is inessential when
there is a y such that x↝ y but y   x.

The property that a state is essential or inessential is a class property (all the states
in a communicating class share the same property). An essential state cannot lead to
an inessential state. Crucially, an essential class is by definition minimal closed – it
is closed in the sense that ∀y ∈ C(x) P(y,C(x)) = 1 and minimal in that it does not
contain a proper subset that is closed (Chung, 1960). In other words, a coevolutionary
Markov chain will be absorbed into an essential class upon entering it (i.e., it will be
unable to leave it once it first enters it). This leads to the following lemma.

Lemma 4.1.6. For a reducible coevolutionary Markov chain, there is only one absorbing
class. The absorbing class consists of states corresponding to dominant solutions in the
coevolutionary digraph.

Proof. A coevolutionary Markov chain operating on a reducible coevolutionary digraph
is reducible. By Lemma 2.7.8, a reducible coevolutionary semicomplete digraph will
have a terminal strong component that dominates all other remaining vertices. States
corresponding to the terminal strong component form an essential communication class
C(x) = {y ∶ x↭ y} that is also absorbing.

One consequence is that the state space can be partitioned into two disjoint subsets:
(i) the absorbing class (C) of essential states and (ii) the class of inessential states (B).
One can reindex the Markov transition matrix from essential to inessential states and
obtain the following decomposition of P (Meyn and Tweedie, 2009)

P =

⎛
⎜
⎜
⎜
⎜
⎝

0 . . . 0
C ⋮ ⋱ ⋮

0 . . . 0

B

⎞
⎟
⎟
⎟
⎟
⎠

,

which would allows us to identify and analyze the behaviors of the reducible coevolu-
tionary Markov chain separately on the states in C and B. We have the following for a
reducible coevolutionary Markov chain.

Lemma 4.1.7. Consider a reducible coevolutionary Markov chain with Markov transi-
tion matrix P having an absorbing class C. Let PC be the matrix restricted to states in
C. Then, there exists an irreducible coevolutionary Markov chain ΦC with state space
restricted to C and a Markov transition matrix given by PC .

Proof. This is a direct consequence of Proposition 4.1.2 (page 79 in (Meyn and Tweedie,
2009)).

It remains then to investigate the behavior of the coevolutionary Markov chain on
B and the manner in which it gets absorbed to C. The next section will provide the
means for which this can be done quantitatively.
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4.2 Hitting Times

The analysis of the behaviors of the chain Φ is often concerned with its distributions at
certain random times as it evolves on X. Additional tools are needed for which these
behaviors can be described in a precise and quantitative manner. One of the quantities
refers to the random times with which Φ visits certain states in X.

Definition 4.2.1. Let A ⊂ B(X), where B(X) is the set of all subsets of X. The first
hitting time of A is the random variable τA ∶X → N0 ∪ {∞}, which is given by

τA = inf{t ≥ 0 ∶ Φt ∈ A}. (9)

The first hitting time of a state x ∈X is simply τx = inf{t ≥ 0 ∶ Φt = x}. The first hitting
time of an empty set ∅ is defined as ∞ by convention (Norris, 1998).

One can also define the first visit to A to only consider positive times τ+A = inf{t ≥
1 ∶ Φt ∈ A} (Meyn and Tweedie, 2009).

Definition 4.2.2. The first return time is defined as

%A = inf{t ≥ 1 ∶ Φt ∈ A}. (10)

Obviously, %A is the case of τ+A with Φ0 ∈ A.11 Another quantity relates to the
number of visits to some states.

Definition 4.2.3. The occupation time ηA is defined as

ηA =
∞
∑
t=1

I{Φt ∈ A}, (11)

where I is the indicator function whereby

I{Φt ∈ A} = {
1 if Φt ∈ A
0 if Φt ∉ A.

The occupation time ηA counts the number of visits of a coevolutionary Markov
chain Φ to A after time zero. It is crucial in the following characterization of the set A.

Definition 4.2.4. A is uniformly transient if there is a finite Ex(ηA) for all x ∈ A.
Otherwise, A is recurrent if Ex(ηA) =∞ for all x ∈ A.

This can be extended to individual states as well, i.e., a state is recurrent if Ex(ηx) =
∞ (Meyn and Tweedie, 2009). This leads to the following lemma.

Lemma 4.2.5. Consider an irreducible coevolutionary Markov chain Φ on X. Every
state x ∈X is recurrent.

Proof. From Lemma 4.1.4, an irreducible Φ operates on X that coincides with an
irreducible coevolutionary digraph D = (V,A). Such a digraph is hamiltonian from
Lemma 2.7.6, in which case there is a closed finite-length (x,x)-path for all x ∈ V (D).
This implies that Px(%A < ∞) = 1 for all x ∈ X. Applying Proposition 8.1.3 in (Meyn
and Tweedie, 2009), we have that Ex(ηx) =∞. As such, all x is recurrent.

11First hitting and return times are stopping times in the sense that the event {τ = t} depends only on
Φ0,Φ1,Φ2, . . . ,Φt for t = 0,1,2, . . ., which follows from the strong Markov property (e.g., Theorem 1.4.2
in (Norris, 1998)). The Markov property is then said to hold for those random times. Furthermore,
given that the coevolutionary Markov chain is discrete time, the strong Markov property always hold
(by Proposition 3.4.6 in (Meyn and Tweedie, 2009)).
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How about the case of a reducible coevolutionary Markov chain? Obviously, its
state space can be partitioned into two classes – a closed absorbing class of recurrent
states and another consisting of transient states only. As in the context of analysis
of Evolutionary Algorithms (EAs) (He and Yao, 2003), studying the expected (mean)
hitting time of an absorbing coevolutionary Markov chain Φ is crucial. Unlike EAs,
complete connectivities in the coevolutionary digraph means τ+A = 1 although it is a rare
event for Φ to make a one-step walk to A. The following gives a precise definition for
this quantity (Norris, 1998).

Definition 4.2.6. The expected hitting time of A starting from x ∈X is

Ex(τA) = ∑
t<∞

tPx(τA = t) +∞Px(τA =∞),

which is simplified to

Ex(τA) = ∑
t<∞

tPx(τA = t) (12)

for non-empty, reachable A (i.e. Px(τA = ∞) = 0). Px(τA = t) is the probability that
starting for state x ∈X that Φ hits A at time t.

To compute Ex(τA), one reindexes the states in the reducible Markov chain and
make the appropriate simplification to produce the canonical form of its Markov tran-
sition matrix, P ∗ (Meyer, 2000):

P ∗ = [
I 0
R Q

] .

R represents transition probabilities from transient states to the absorbing class. Q
represents transition probabilities among transient states. 0 is a row vector of zeroes.
The following summarizes our results.

Lemma 4.2.7. Consider a reducible coevolutionary Markov chain with Markov transi-
tion matrix in its canonical form P ∗. Let i ∈ Q be the transient states. Let the column
vector h = [hi]i∈Q where hi = Ei(τA) is the expected hitting time starting from a transient
state i to the absorbing class A. Then,

h = (I −Q)−11, (13)

where 1 is a column vector of ones.

Proof. This is a direct consequence of Theorem 3.2 in (Iosifescu, 1980) for absorbing
Markov chains. In our case, it follows from Lemma 4.1.6 that a reducible coevolutionary
Markov chain is an absorbing Markov chain with one absorbing class.

For an absorbing Markov chain, the matrix (I−Q)−1 exists and is called the funda-
mental matrix of the Markov transition matrix P . One can perform direct computation
of the expected hitting time of any reducible coevolutionary Markov chain by first com-
puting its fundamental matrix (Theorem 11.4 in (Grinstead and Snell, 1997)):

(I −Q)−1 = I +Q +Q2 +Q3 +⋯.

We note that this series converges given that Qn → 0 as n → ∞ (Theorem 11.3 in
(Grinstead and Snell, 1997)).
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4.3 Invariant Measures - Stationary Distribution

This section is concerned with characterizing the coevolutionary Markov chain Φ in the
context of the long-time properties of Φ. This is relevant for irreducible coevolutionary
Markov chains as well as reducible chains (after the chain enters the absorbing class).
We first introduce the notion of an invariant measure (Norris, 1998).

Definition 4.3.1. Let the row vector π = (πx ∶ x ∈ X) be a probability measure on X
and P be the Markov transition matrix. Then, π is said to be invariant if

πP = π.

A π that is defined on X and satisfies the invariant property would represent the
long-term limiting distribution of the coevolutionary Markov chain. In addition, such a
distribution can be described in the following equivalent terms:

(i) Stationary - If (Φn)n≥0 is a coevolutionary Markov chain with µ = π and P , then
(Φm+n)n≥0 having P(Φm = x) = (πPm)x = πx for all x ∈X is also a coevolutionary
Markov chain with µ = π and P (Theorem 1.7.1 in (Norris, 1998)).

(ii) Equilibrium - For all x ∈X,12 Pn(x, y)→ πy as n→∞ for all y ∈X (Theorem 1.7.2
in (Norris, 1998)).

It is known that for an irreducible Markov chain Φ on countable state space X, its
stationary distribution can be calculated from the expected return times Ex(%x) (Levin
et al., 2009). The general intuition is that if one breaks up the trajectory of Φ into
identically distributed segments through visits to and from some arbitrary states, the
average fraction of time that is spent on a state x ∈X by each segment would be similar
to the long-term fraction of time spent on x by Φ. Furthermore, starting from any
arbitrary distribution µ, the chain would converge to its stationary distribution in the
long run (Norris, 1998; Levin et al., 2009). For coevolutionary Markov chains, we have
the following results.

Lemma 4.3.2. Consider an irreducible coevolutionary Markov chain with Markov tran-
sition matrix P . Then, there is a unique invariant probability distribution π = (πx ∶
x ∈ X) on X where 0 ≤ πx ≤ 1 and ∑x∈X πx = 1 such that πP = π. Furthermore,
πx = 1/Ex(%x).

Proof. This is a direct consequence of Theorems 1.7.7 in (Norris, 1998) whereby an
irreducible and positive recurrent Markov chain on a finite state space has a unique
invariant probability measure π = (πx ∶ x ∈ X) on X with πx = 1/Ex(%x). A state x is
positive recurrent if its expected return time Ex(%x) is finite. By Lemma 4.1.4, obviously
all x ∈Xs are positive recurrent since Ex(%x) is finite.

Lemma 4.3.3. Consider a reducible coevolutionary Markov chain with Markov transi-
tion matrix P . For all inessential states y ∈X, πy = 0. Then, there is a unique invariant
probability distribution π concentrated on the absorbing class C of essential states in X.

Proof. Let B be the set of all inessential states y ∈X. The first statement on πy = 0 for all
inessential states y is a direct consequence of Proposition 1.25 (page 16 in (Levin et al.,
2009)). This implies that the probability distribution is concentrated on the remaining
essential states of the absorbing class C. From Lemma 4.1.7, we can study the irreducible

12Given the complete connectivities of coevolutionary digraphs.
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coevolutionary Markov chain with PC separately and obtain πC = (πx ∶ x ∈ C(x)) as a
result of Lemma 4.3.2. Since X = C ∪B and C ∩B = ∅, then π = (πC ,πB) whereby all
elements in πB are zero.

Lemma 4.3.4. Consider an irreducible coevolutionary Markov chain Φ with Markov
transition matrix P and any arbitrary initial distribution µ. Let x, y ∈ X. Let π be the
unique invariant probability distribution of Φ. Since P is irreducible and aperiodic,

P(Φn = y)→ πy as n→∞ for all y.

Furthermore,
Pn(x, y)→ πy as n→∞ for all x, y.

Proof. This is a direct consequence of the Convergence to Equilibrium Theorem (given
as Theorem 1.8.3 in (Norris, 1998)). We just need to show that an irreducible coevo-
lutionary Markov chain Φ is aperiodic. By Lemma 2.7.6, irreducible coevolutionary
digraphs are vertex pancyclic, in which case the greatest common divisor to the cycle
lengths is one. As such, Φ is aperiodic.

4.4 Case Studies on Quantitative Measures of Coevolutionary Markov
Chains

We first provide analytic expression for the expected hitting time of specific coevolu-
tionary Markov chains. This case study considers both the random walk and (1+1)CEA
on transitive coevolutionary tournaments. We note that the Markov transition matrices
given by Equations 5 and 6 are in the form of an upper triangle matrix. It requires
relabelling the indices in P so that it becomes a lower triangle matrix. For these two
cases, Qs are also in the form of a lower triangle matrix. Crucially, each of the n × n
matrices (I −Q) has a rank(I −Q) = n so its inverse exists (Meyer, 2000).

It is straightforward to obtain the following for the random walk on labelled tran-
sitive coevolutionary tournament of order n + 1

I −Q =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 . . . 0 0

− 1
2

1 0 . . . 0 0

− 1
3

− 1
3

⋱ ⋱ ⋮ ⋮

⋮ ⋮ ⋱ ⋱ ⋱ ⋮

− 1
n−1

− 1
n−1

⋱ − 1
n−1

1 0

− 1
n

− 1
n

. . . − 1
n

− 1
n

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (14)

It is possible to exploit the inductive structure of P . We apply the Gauss-Jordan method
to obtain the m ×m fundamental matrix, and then use this result to partially fill the
m×m submatrix of the (m+ 1)× (m+ 1) fundamental matrix. Starting from m = 2 and
applying this iteratively, we obtain the following form:

(I −Q)−1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 . . . 0 0
1
2

1 0 . . . 0 0
1
2

1
3

⋱ ⋱ ⋮ ⋮

⋮ ⋮ ⋱ ⋱ ⋱ ⋮
1
2

1
3

⋱ 1
n−1

1 0
1
2

1
3

. . . 1
n−1

1
n

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (15)
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To demonstrate the inductive structure, note that as the fundamental matrix increases
in size, a new row is added to the bottom and a new column is added to the left. Observe
that the element in the first column and last row of (I −Q)−1 always add to 1/2. For
2× 2, it is obviously 1/2 due to Gauss-Jordan operations. Increasing the matrix in size,

3 × 3 ∶ 1
3
× 1

2
+ 1

3
× 1 = 1

3
× ( 3

2
)

= 1
2

4 × 4 ∶ 1
4
× 1

2
+ 1

4
× 1

2
+ 1

4
× 1 = 1

4
× ( 4

2
)

= 1
2

5 × 5 ∶ 1
5
× 1

2
+ 1

5
× 1

2
+ 1

5
× 1

2
+ 1

5
× 1 = 1

5
× ( 5

2
)

= 1
2
.

For (n + 1) × (n + 1), we note that

n−1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

1
n+1

× 1
2
+ 1

n+1
× 1

2
+ ⋯ + 1

n+1
× 1

2
+ 1
n+1

× 1

= 1
n+1

× (n+1
2

)

= 1
2
.

It is then a simple but laborious matter to compute and verify that (I−Q)(I−Q)−1 =
I. We apply Lemma 4.2.7 to calculate the expected hitting time and then obtain

h = (I −Q)−11 = (1,
1

2
+ 1,

1

2
+

1

3
+ 1, . . . ,

n

∑
i=1

1

n
)

T

. (16)

For the case of the (1+1)CEA, direct calculation reveals:

I −Q =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
n

0 0 . . . 0 0

− 1
n

2
n

0 . . . 0 0

− 1
n

− 1
n

3
n

⋱ ⋮ ⋮

⋮ ⋮ ⋱ ⋱ ⋱ ⋮

− 1
n

− 1
n

⋱ − 1
n

n−1
n

0

− 1
n

− 1
n

. . . − 1
n

− 1
n

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (17)

(I −Q)−1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n 0 0 . . . 0 0
n
2

n
2

0 . . . 0 0
n
2

n
2(3)

n
3

⋱ ⋮ ⋮

⋮ ⋮ ⋱ ⋱ ⋱ ⋮
n
2

n
2(3) ⋱ n

(n−2)(n−1)
n
n−1

0
n
2

n
2(3) . . . n

(n−2)(n−1)
n

(n−1)(n) 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (18)

h = (I −Q)−11 = (n,n,n, . . . , n)T . (19)

In this second part of our case study, we calculate the stationary distribution of a
specific class of coevolutionary Markov chain – those operating on regular tournaments.
We can make use of structural results from digraph theory to obtain a general result on
the stationary distribution of regular coevolutionary Markov chains.
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Lemma 4.4.1. Consider a coevolutionary Markov chain operating on a regular coevo-
lutionary tournament T (VS(n),A) ∈ T (VS(n)) of odd order n ≥ (3 + 2m), m = 0,1,2, . . ..
This regular coevolutionary Markov chain has a unique invariant probability measure
π = (πx ∶ x ∈X) on X = VS(n) whereby πx = 1/n for all x.

Proof. Every regular coevolutionary tournament is arc-pancyclic, which is a direct con-
sequence of Corollary 6.6.4 in (Bang-Jensen and Gutin, 2009). An arc-pancyclic co-
evolutionary tournament is arc-k-cyclic for all k = {3,4,5, . . . , n}, i.e., each arc of
T (VS(n),A) is contained in a cycle for each length of k = {3,4,5, . . . , n}. Since
d+D(x) = d−D(x) = (n − 1)/2 for all x in a regular T (VS(n),A), this means that there
is an equal number of arcs of various lengths k = {3,4,5, . . . , n} that start and end at
each x ∈ X. Any random walk on T (VS(n),A) would thus spend equal fraction of time
for each x, in which case πx = 1/n for a tournament with n vertices.

One immediate consequence of Lemma 4.4.1 is that any coevolutionary process
(random walk or (1+1)CEA for example) can be defined on a regular tournament of order
n and that π = (1/n,1/n,1/n, . . . ,1/n) since the cycles that start from and return to each
vertex are the same. We can also apply this result with Lemma 4.3.3 to calculate the
stationary distribution of a reducible coevolutionary Markov chain having an absorbing
class that is essentially a regular subtournament.

4.4.1 Absorbing Coevolutionary Markov Chains

Earlier result for (1+1)CEA with uniform expected hitting time for any starting vertex
indicate unique properties (the diagonal elements in the probability transition matrix),
which we can generalize further with the following result.

Theorem 4.4.2. Consider a (1+1)CEA operating on a reducible coevolutionary tourna-
ment T (VS(n+nd),A) ∈ T (VS(n+nd)). Let VS(n+nd) consists of two disjoint subsets V 1

S(n)
and V 2

S(nd), whereby V 1
S(n) ∩ V

2
S(nd) = ∅. Let V 2

S(nd) ⇐ V 1
S(n). Let the coevolutionary

Markov chain be defined with Markov transition matrix in its canonical form P ∗. Let
i ∈ Q be the transient states and that ∣Q∣ = n. Let the column vector h = [hi]i∈Q where
hi = Ei(τA) is the expected hitting time starting from a transient state i to the absorbing
class A = V 2

S(nd). Then, h = [hi]i∈Q = [n,n,n, . . . , n]T .

Proof. It follows from Lemma 2.7.8 that the absorbing class A = V 2
S(nd) must be a strong

component. One can perform a contraction operation on V 2
S(nd) and replace it with a

single vertex and remove all parallel arcs. The resulting coevolutionary tournament is
T (VS(n+1),A). The absorbing class A is now a single absorbing state and that

P ∗ = [
1 0
R Q

] ,

where R is a single column of n elements, Q is a n × n matrix, and 0 is a single row of
n zeroes.

For every transient state i ∈ Q, note that the corresponding vertex i in the co-
evolutionary tournament T (VS(n+1),A) has the same degree dD(i) = d+D(i) + d−D(i) =
(n + 1) − 1 = n. Let R = (ri ∶ i = 1,2,3, . . . , n) and Q = (qij ∶ i, j = 1,2,3, . . . , n).

Given our definition of (1+1)CEA (as in Algorithm 2), for each i: (1) qii =
d−D(i)
dD(i) and

(2) (∑j∈N+
D
(i)∖xa

qij) + ri =
d+D(i)
dD(i) . The one-step transition probability from i to the

single absorbing state xa is given by ri. Since each one-step transition from i to its
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outneighbour j occurs with equal probability, then ∀j ∈ N+
D(i) qij = 1

dD(i) and ri =
1

dD(i) . Note that ∀j ∈ N−
D(i) qij = 0. As such, each row of R1 +Q1 sums to one, i.e.,

∀i (ri +∑
n
j=1 qij) =

dD(i)
dD(i) = 1.

Next, we need to show that the corresponding row sums of (I − Q)−1 = I +
Q + Q2 + Q3 + ⋯ follow a geometric series. We need to prove that Qm

n×n1 =
[(n−1

n
)m, (n−1

n
)m, (n−1

n
)m, . . . , (n−1

n
)m]T . This will give the expected hitting times cal-

culated from the geometric series 1 + n−1
n

+ (n−1
n

)2 + (n−1
n

)3 + ⋯ = 1/(1 − n−1
n

) = n. We
do this by induction. Let the column vector Qm

n×n1 = [Qm]ni=1, with [Qm]i representing
the ith element of [Qm]ni=1. The induction hypothesis is that Qm+1

n×n1 = [QmQ1]ni=1.
Basis (m = 0): By definition Q0

n×n = In×n. Then, Q0
n×n1 = In×n1 = 1.

Inductive step: We need to show that Qm+1
n×n1 = [QmQ1]ni=1. We first note that

Qm+11 = QmQ11. Let Qm
n×n = (xij ∶ i, j = 1,2,3, . . . , n) and Q1

n×n = (yij ∶ i, j =
1,2,3, . . . , n).. Let Qm

n×nQ1
n×n = (zij ∶ i, j = 1,2,3, . . . , n). Qm+1

i = ∑
n
j=1 zij . Since

∀i ri =
1

dD(i) =
1
n

, then ∀i Q1
i = 1 − 1

n
= n−1

n
.

For Qm+1
1 = ∑

n
j=1 z1j , we have

z11 = x11y11 + x12y21 + x13y31 + ⋯ + x1nyn1

z12 = x11y12 + x12y22 + x13y32 + ⋯ + x1nyn2

z13 = x11y13 + x12y23 + x13y33 + ⋯ + x1nyn3

⋮ ⋮ ⋮
z1n = x11y1n + x12y2n + x13y3n + ⋯ + x1nynn.

We can factor the terms out such that

Qm+1
1 = x11(y11 + y12 + y13 +⋯ + y1n)

+ x12(y21 + y22 + y23 +⋯ + y2n)

+ x13(y31 + y32 + y33 +⋯ + y3n)

+

⋮

+ x1n(yn1 + yn2 + yn3 +⋯ + ynn)

= x11Q
1
1 + x12Q

1
2 + x13Q

1
3 +⋯ + x1nQ

1
n

= (x11 + x12 + x13 +⋯ + x1n)
n−1
n

= Qm1
n−1
n

= Qm1 Q
1
1

since each Q1
i = n−1

n
. Similar calculations can be made for all other rows. As such,

∀i Qm+1
i = Qmi Q

1
i , in which case, Qm+1

n×n1 = [QmQ1]ni=1.
From our induction hypothesis, it can be seen that Qm

n×n1 = [Qm]ni=1 = [( n
n+1

)m]ni=1.
Each row sum of h = (I−Q)−11 = (I+Q+Q2+Q3+⋯)1 then follows the geometric series
1+ n−1

n
+ (n−1

n
)2 + (n−1

n
)3 +⋯ = 1/(1− n−1

n
) = n. Thus, h = [hi]i∈Q = [n,n,n, . . . , n]T .

Example: Note that V 1
S(n) itself can be a single strong component of T (VS(n+nd),A)

of any odd order. For the case where it is a strong component of order one, direct
calculations can be made. Consider the (1+1)CEA on an unlabelled coevolutionary
tournament T (VS(n+1),A) with a single dominant vertex and a single dominated strong
component that consists of a regular tournament of odd order n ≥ (3+2k), k = 0,1,2, . . ..
We then have the following:
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P ∗ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 ⋯ 0 0
1
n

1
2
n−1
n

0 1
n

0 ⋯ 0 1
n

1
n

1
n

1
2
n−1
n

0 1
n

⋯ 1
n

0
1
n

0 1
n

1
2
n−1
n

0 ⋯ 0 1
n

⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮
1
n

1
n

0 1
n

0 ⋯ 1
2
n−1
n

0
1
n

0 1
n

0 1
n

⋯ 1
n

1
2
n−1
n

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In particular, we can write Q in the matrix form with a = 1
2
n−1
n

and b = 1
n

:

Q =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a 0 b 0 ⋯ 0 b

b a 0 b ⋯ b 0

0 b a 0 ⋯ 0 b

⋮ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮

b 0 b 0 ⋯ a 0

0 b 0 b ⋯ b a

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Note that the (i+1)th row is a right-shift of the ith row of Q. Furthermore, each of the
ith row sum Qi has the same value and is given by a + (n−1

2
)b = 1

2
n−1
n

+ (n−1
2

) 1
n
= n−1

n
.

This follows from the definition of a regular tournament whereby each vertex i has
d+D(i) = d−D(i). Q1

n×n1 = [n−1
n
, . . . , n−1

n
]T . Obviously, one can obtain the same result by

taking 1 −R1 since R = [ 1
n
, . . . , 1

n
]T and that (R1 +Q1) = 1.

The procedure to show that the row sums of (I−Q)−1 = I+Q+Q2 +Q3 +⋯ follow
a geometric series is the same as in the Theorem 4.4.2. It can be shown that Qm

n×n1 =
[Qm]ni=1 = [(n−1

n
)m]ni=1. Each element of h = (I−Q)−11 then follows the geometric series

1+ n−1
n
+(n−1

n
)2+(n−1

n
)3+⋯ = 1/(1− n−1

n
) = n, in which case, h = [hi]i∈Q = [n,n,n, . . . , n]T .

To verify, note that

I −Q =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − a 0 −b 0 ⋯ 0 −b

−b 1 − a 0 −b ⋯ −b 0

0 −b 1 − a 0 ⋯ 0 −b

⋮ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮

−b 0 −b 0 ⋯ 1 − a 0

0 −b 0 −b ⋯ −b 1 − a

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Each of the ith element of (I − Q)h is exactly one, i.e., (1 − a)n + (n−1
2

)(−b)n = (1 −
1
2
n−1
n

)n + (n−1
2

)(− 1
n
)n = 2n−n+1

2
− n−1

2
= 2

2
= 1.

4.5 Generating Random Coevolutionary Tournaments

We conclude this section with a computational study on generating random coevolution-
ary tournaments in a controlled manner. Potential applications include using random
tournaments as benchmarks to study methodologies estimating quantities of interest in
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more complex and realistic coevolutionary Markov chains. We first note that the simple
approach of randomly orienting edges of the underlying graphs would usually gener-
ate irreducible random tournaments (Moon, 1968). There is more than 50% chance to
generate an irreducible random tournament of order five, which increases to more than
99.9% for random tournaments of order 16! Beyond that, generated random tourna-
ments would almost certainly be irreducible. Another approach is to first generate all
valid score sequences (Hemasinha, 2003), which are used to reconstruct the correspond-
ing tournaments (Moon, 1968).

Algorithm 3 Growth-based algorithm to generate random tournaments T (VS(n),A)

1: procedure GROW(T (V,A), ninit, nfinal)
2: n ∶= 0
3: Initialize T (V,A) of order ninit
4: n ∶= ninit

5: Grow Process
6: while n ≤ nfinal do
7: V ′ ∶= V , A′ ∶= A
8: T (V ′,A′) indexed according to its score sequence (s1, s2, s3, . . . , sn).
9: Compute attachment probabilities for VS(n), {P−i }n1 .

10: Add new vertex vn+1 to T (VS(n),A)
11: V ∶= V ′ ∪ vn+1

12: for all vi ∈ V
′ do

13: A ∶= A′ ∪ (vn+1, vi) with probability P−i
14: end for ▷ A ∶= A′ ∪ (vi, vn+1) with probability P+i = 1 − P−i
15: n ∶= n + 1
16: end while
17: end procedure

We will now propose a methodology for generating a hierarchy of random coevo-
lutionary tournaments where a control parameter allows us to move between two com-
plexity extremes – irreducible tournaments and tournaments with prominent transitive
structures. The method is motivated by network growth methodologies via preferential
attachment in the area of complex networks (e.g. (Rudolf et al., 2012)). Algorithm 3
describes a general implementation. The tournament can be seeded with an initial,
small-sized tournament in a random or arbitrary manner (e.g., acyclic ordering). A new
node (vertex) is added to the existing tournament of order n at each iteration n+1. This
requires orienting n+ 1 edges from the new node to the tournament. This orientation is
done randomly and independently but can be biased in a controlled manner towards the
existing vertices with higher scores. This requires computing attachment probabilities:

P−i =
1

1 + e−β(xi−x)
, (20)

where {xi}
n
1 are the relevant statistics of the tournament. Parameter β > 0 controls the

steepness of the sigmoid link function of the Bernoulli distribution. A lower value of β
reduces the steepness of the function with P−i → 1/2 for β → 0 (which is the same as the
case of random orientation discussed above).

This setting can be motivated by statistical physics. Each node of the existing
tournament has an ‘energy’ related to its score (in-degree). The new incoming node n+1
will be more likely to orient edges towards high energy node in the existing tournament.
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Parameter β plays the role of inverse temperature. For high temperature regimes, the
energy of nodes begins to equalize and the probability of edge orientation is the same for
any node in the existing tournament. In contrast, by cooling the system (increasing β),
orientation of edges from the new node n + 1 towards high energy nodes of the existing
tournament becomes more persistent.

We have performed initial experiments to determine appropriate choices for the
parameters involved. We initialize (seed) the graph growth with transitive tournaments.
For the statistics {xi}

n
1 , we use the corresponding node ranks (i)n1 with x = n/2, β ∈

[0,4]. Tournaments of order nfinal = 1000 are generated from initial ones of order ninit ∈
{10,100}. Each experiment set is repeated 100 times, thus generating 100 tournaments
randomly and independently. The results are summarized in Figure 3. Obviously, the
number of strong components are higher when the initial tournament seeds are larger
as shown in Figure 3(b).

We next introduce into our 1000-node tournaments an additional single dominant
(1001-th) node that has all the edges from the original 1000 vertices oriented towards
it. This construction makes the tournaments reducible and so we can compute the
expected hitting time from the weakest node x1 (with the lowest score) to the dominant
(absorbing) node x1001. We now study the impact of increasing transitive structures,
measured by the number of strong components (reflected in the complexity (Landau’s)
Index ν (Equation 1)), on dynamics of the coevolutionary process, measured by the
expected hitting times of the dominant node.

First, we show results for the experiment that uses the standard random walk (Al-
gorithm 1) with initial seed tournament of order 10. We can clearly see signatures of
higher and lower temperature regimes in Figure 4(a). In the high temperature regime
(β ≈ [0,0.001]), all the base 1000-node tournaments are irreducible, hence there is only
one strong component. Together with the dominant 1001-th node, there are two strong
components. There is little variability of hitting times (around 492–497), which reflects
limited variability of the internal structure of the irreducible 1000-node base tourna-
ments. For comparison, the expected hitting time is exactly 500 for a regular 999-node
base tournament. In the low temperature regime (β ≈ [1,4]), prominent transitive struc-
ture dominates the base tournaments and the hitting times range in [7.486,10.659].
For comparison, the expected hitting times would be slightly less than 10 for a vertex
pancyclic 1000-node base tournament (which has the longest transitive structure) and
around 7.4855 for a transitive 1000-node base tournament.

As in most complex systems, in between these two temperature regimes sits an
intermediate temperature regime that exhibits the most interesting behaviour. Full
spectrum of possible values of Landau’s index and expected hitting times can be ob-
served. Indeed, this is the case where transitive structures co-exist with a wide range of
hitting times, reflecting different degrees of cycle structures in the strong components.
Figure 4 illustrates the relationship between the (inverse) temperature β and the hitting
times of the dominant 1001-th node. As expected, while extremely high temperatures
lead to irreducible base tournaments with intricate cycle structures and long hitting
times, very low temperature regimes lead to base tournaments with prominent trivial
transitive structures, yielding minimal hitting times. It is also natural to expect that,
on average, the expected hitting times will decrease with decreasing temperature, since
lower temperatures induce more transitive structures in the base tournaments. The most
‘complex’ and interesting regimes lie in between these two extremes at β ≈ (0.005,0.5).

Theorem 4.4.2 will indicate that the expected hitting times for (1+1)CEA operat-
ing on these generated tournaments to be the same as their orders (1001 in this case),
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Figure 3: Histograms of number of runs generating random tournaments having specific
number of strong components (Landau’s Index). Corresponding experiment sets where
initial transitive tournaments are of order (a) 10 and (b) 100.
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Figure 4: Boxplots with centerline representing the median, the two edges corresponding
to the 25th and 75th percentiles, and outliers are plotted as ’+’ using β set to a range
in (a) [0,2] and (b) [1,4].

which are verified by repeating the experiment with (1+1)CEA. Computations for the
expected hitting times are dependent on the probability transition matrix associated
with the coevolutionary Markov chain under study. Obviously, different constructions
of coevolutionary processes – standard random walk against (1+1)CEA – operating
on the same tournaments can lead to different outcomes in the expected hitting time
analysis. In contrast, a digraph-theoretic-based approach such as the Landau’s index is
unaffected by the specific constructions of coevolutionary processes. There are potential
ramifications on the construction of sampling-based indices (e.g. hitting times) for anal-
ysis of structures in coevolutionary tournaments. Our controlled computational study
suggests that more information related to the structures of the tournaments under study
may need to be incorporated into those indices so that they are able to uncover those
relevant structures. For example, a standard random walk incorporates information of
connectivity structures (i.e. out-neightbourhoods of vertices) directly in contrast to the
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(1+1)CEA.

5 Discussion and Conclusion

In this study, we have addressed the issue of studying rich cycle structures associated
with coevolutionary systems that use pairwise-comparison-based fitness measures. We
have developed a framework that fully captures the underlying structures in coevolution-
ary problems and represent them as cycle structures in digraphs so that we can begin
to uncover their effects on coevolution. The digraph representation allows us to give
precise characterizations of cycles of different lengths (from 3-cycles to Hamilton cycles
that go through every vertex in the digraph) that can occur in coevolutionary problems.

Although these cycle structures appear complex at first given the variety of cycles
of different lengths and the manner they can be oriented in digraphs, our study has
revealed that coevolutionary digraphs admit a simple qualitative characterization – the
corresponding coevolutionary problem is either solvable or not. This has a significant
implication on coevolution when it is used as a search procedure. For non-solvable prob-
lems, the presence of Hamilton cycles in the associated digraphs means that coevolution
will cycle indefinitely. For each solvable coevolutionary problem, there is a subset of so-
lutions that dominate all other solutions in the solution space. In the context of games,
coevolution would be able to search for these dominant strategies in the long run.

The second part of our framework has formalized coevolutionary processes as ran-
dom walks on digraphs. These random walks are formulated as discrete time processes
having the Markov property, which have allowed us to exploit the qualitative characteri-
zations we have made on coevolutionary digraphs to construct relevant quantitative tools
for analysis of those processes. We have shown that coevolution of solvable problems
corresponds to an absorbing Markov chain with a single absorbing class. For this case,
we have shown that the expected hitting time to the absorbing class is the quantity of
interest. The other quantity is the limiting invariant distribution of the Markov chain.
Although this is of principal interest for coevolution of non-solvable problems, the quan-
tity can also be computed for the case of solvable problems as a result of Lemma 4.3.3.

We have demonstrated our quantitative tools through a combination of formal and
computational case studies. We have derived expected hitting times and stationary dis-
tributions of specific coevolutionary Markov chains operating on transitive and regular
tournaments. We have suggested an index for characterizing complexity in coevolution-
ary problems and show how a hierarchy of increasingly complex coevolutionary problems
can be generated in a controlled manner that is motivated by statistical physics.

We believe this framework would provide the foundation for existing and the means
to develop new tools for analysis and design of coevolutionary systems that use pairwise-
comparison-based fitness measures. As a case in point, coevolution could appear to be
trapped in cycles even when it is applied on solvable problems (as observed in vari-
ous studies such as (Chong et al., 2012)). Although the associated reducible coevo-
lutionary digraphs can be decomposed into acyclically ordered strong components (by
Lemma 2.7.8), some of these strong components can be very large digraphs. In the
extreme case, a reducible coevolutionary digraph of order n has a strong component
of n − 1 vertices. One possibility is that coevolution would cycle for a long time be-
fore jumping out and find the single dominant vertex. The other possibility is that the
(n − 1)-sized component is the dominant one, in which case coevolution would seem to
cycle indefinitely even though it has found (parts of) the dominant component. In the
more realistic case, one could reframe the pairwise-comparison-based fitness measure in
the context of pareto dominance and make the appropriate change to coevolution to
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search in the direction of more dominant strong components (pareto fronts with higher
true fitness values in the solution space) (de Jong and Pollack, 2004; de Jong, 2007).

The introduction of this framework for coevolutionary systems provides several di-
rections for future studies. One of them is to provide a more definitive characterization
of problem hardness affecting coevolutionary systems that include studies on local struc-
tures (internal cycle structures within strong components) of coevolutionary digraphs.

Beyond the restricted class of coevolutionary systems we have studied here, the
mathematical methodologies we have introduced could be adopted in other formulations
of coevolutionary systems. For example, those with population size greater than one and
for which coevolutionary fitness measures other than pairwise-comparison (such as the
use of average game payoffs) can be investigated. In this case, the entity of interest is the
individual state (vertex) representing a finite collection (population) of pure strategies
in the context of game-play. The advantage of such an approach is a more informative
state space description. In contrast, in evolutionary game theoretic setting studied in the
framework of continuous dynamical systems, one usually assumes infinite populations.
However, in cases of complex, chaotic coevolutionary dynamics, this can be problematic
(Ficici et al., 2005; Tiňo et al., 2013).

Our study is by no means the first one to consider representation of the structure
of pairwise relations within the problem to be solved through a digraph. For example,
in the multicomponent problems (Bonyadi et al., 2013; Klamroth et al., 2017), the di-
graph represents pairwise coupling between individual optimization problems that define
together the global compound optimization problem to be solved. Typically, one can
expect a small number of sub-problems (vertices) and there may not exist any coupling
between a particular pair of sub-problems. In our case, the vertices represent strategies
from a potentially huge set of strategies that can be chosen. In addition, the strategy set
is fully coupled, i.e. between any two different strategies there exists an arc. Most im-
portantly, direct application of Markov chains on such a digraph has the interpretation
of a random walk on the strategy space following the outcomes of individual games.
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