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Abstract: Recent research has shown that using spectral–spatial information can considerably 

improve the performance of hyperspectral image (HSI) classification. HSI data is typically presented 

in the format of 3D cubes. Thus, 3D spatial filtering naturally offers a simple and effective method 

for simultaneously extracting the spectral–spatial features within such images. In this paper, a 3D 

convolutional neural network (3D-CNN) framework is proposed for accurate HSI classification.  

The proposed method views the HSI cube data altogether without relying on any preprocessing or 

post-processing, extracting the deep spectral–spatial-combined features effectively. In addition, it 

requires fewer parameters than other deep learning-based methods. Thus, the model is lighter, less 

likely to over-fit, and easier to train. For comparison and validation, we test the proposed method 

along with three other deep learning-based HSI classification methods—namely, stacked 

autoencoder (SAE), deep brief network (DBN), and 2D-CNN-based methods—on three real-world 

HSI datasets captured by different sensors. Experimental results demonstrate that our  

3D-CNN-based method outperforms these state-of-the-art methods and sets a new record. 

Keywords: hyperspectral image classification; deep learning; 2D convolutional neural networks;  

3D convolutional neural networks; 3D structure 

 

1. Introduction 

By capturing digital images in hundreds of continuous narrow spectral bands spanning the 

visible to infrared wavelengths, hyperspectral remote sensors produce 3D hyperspectral imagery 

(HSI) containing both spectral and spatial information. The rich spectral information of HSI is 

powerful, and has been widely employed in a range of successful applications in agriculture [1], 

environmental sciences [2], wild-land fire tracking, and biological threat detection [3]. Classification 

of each pixel in HSI plays a crucial role in these applications. Thus, a large number of HSI 

classification methods have been proposed over the recent decades. 

Conventional HSI classification methods are often based only on spectral information. Typical 

classifiers include those based on distance measure [4], k-nearest-neighbors [5], maximum likelihood 

criterion [6], and logistic regression [7]. The classification accuracy of these methods is usually 

unsatisfactory due to the well-known “small-sample problem”: a sufficient number of training 

samples may not be available for the high number of spectral bands. This unbalance between the high 

dimensionality of spectral bands and the limited number of training samples is known as the Hughes 

phenomenon [8]. Spectral redundancy is also observed, as certain spectral bands of hyperspectral 

data can be highly correlated. Furthermore, classification algorithms exploiting only the spectral 

information fail to capture the important spatial variability perceived for high-resolution data, 
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generally resulting in lower performance. To improve classification performance, an intuitive idea is 

to design classifiers using both spectral and spatial information, incorporating the spatial structure 

into the pixel-level classifiers. Spatial information provides additional discriminant information 

related to the shape and size of different structures, which—if properly exploited—leads to more 

accurate classification maps [9].  

Spectral–spatial classification methods can be generally divided into two categories. The first 

exploits the spectral and spatial contextual information separately. In other words, the spatial 

dependence is extracted in advance through various spatial filters, such as morphological profiles 

[10–12], entropy [13], attribute profiles [14], and low-rank representation [15,16]. Then, these 

transformed spatial features are combined with the spectral features, where dimensionality reduction 

(DR) may be applied (when appropriate) to perform pixel-wise classification. One can also use spatial 

information to refine the classification results through a regularization process such as Markov 

random field (MRF) [17] and graph cut [18] at the post-processing stages. In addition, optimization 

approaches—including Hopfield neural networks [19] or simulated annealing [20,21]—have been 

adopted to capture both spatial and spectral information on remote sensing images. The second 

category usually conjunctively fuses spatial information with spectral features to produce joint 

features [22]. For example, a series of 3D wavelet filters [23], 3D Gabor filters [24], or 3D scattering 

wavelet filers [25] generated at different scales and frequencies are applied on hyperspectral data to 

extract spectral–spatial-combined features. Again, DR techniques may be utilized to extract low 

dimensional spectral–spatial features while preserving the discriminative information, such as tensor 

discriminative locality alignment (TDLA)-based feature extraction [26] and sparse low-rank 

approximation-based feature embedding [27]. Since HSI data are typically presented in 3D cubes, the 

second type of approach can result in a large number of feature cubes containing important 

information about local signal changes in space, spectrum, and joint spatial/spectral correlations, 

which are essential for better performance. 

Most conventional feature extraction methods are, however, based on handcrafted features and 

“shallow” learning models, highly relying on domain knowledge. Handcrafted features may fail to 

address the need to consider the details embedded in the real data; it is challenging to achieve an 

optimal balance between discriminability and robustness for many types of HSI data [28]. Most 

recently, deep learning has emerged as the state-of-the-art machine learning technique with great 

potential for HSI classification [28–33]. Instead of depending on shallow manually-engineered 

features, deep learning techniques are able to automatically learn hierarchical features (from low-

level to high-level) from raw input data. Such learned features have achieved tremendous success in 

many machine vision tasks. For example, Chen et al. applied unsupervised deep feature  

learning—including stacked autoencoder (SAE) [28] and deep brief network (DBN) [31]—for 

spectral–spatial feature extraction and classification. While SAE and DBN can extract deep features 

hierarchically in a layer-wise training fashion, the training samples composed of image patches have 

to be flattened to one dimension in order to meet the input requirement of such models. 

Unfortunately, the flattened training samples do not retain the same spatial information that the 

original image may contain. Moreover, SAE and DBN are unsupervised, and do not directly make 

use of the label information when learning the features. Zhao, Yue, Makantasis, and Liang et al. [32–35] 

have utilized convolutional neural networks (CNN) for HSI classification, where the spatial features 

are obtained by a 2D-CNN model by exploiting the first few principal component (PC) bands of the 

original HSI data. The CNN-based models have the ability to detect local features that are shown to 

be capable of achieving improved classification performance over the fully connected SAE and DBN 

models of Chen et al. A drawback is that these methods work by firstly employing principal 

component analysis (PCA) to reduce the HSI data to a manageable scale prior to the training of the 

2D-CNN model. As the spatial features and spectral features are extracted separately, they may not 

fully exploit the joint spatial/spectral correlations information, which can be important for 

classification. 

In this paper, we present a novel approach, introducing 3D-CNN into HSI classification. By 

applying 3D kernels to 3D HSI, 3D-CNN can learn the local signal changes in both the spatial and the 
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spectral dimension of the feature cubes, exploiting important discrimination information for 

classification. As the spectral features and the spatial features are extracted simultaneously, this work 

takes full advantage of the structural characteristics of the 3D HSI data. Note that 3D-CNN has been 

proposed in computer vision—mainly for video-based applications [36,37]—to learn spatiotemporal 

features. In particular, the 3D-CNN method developed in [36] applied a set of hardwired kernels to 

generate multiple channels (denoted by gray, gradient-x, gradient-y, and so on) of information from 

the input frames. In contrast, our proposed approach takes full spectral bands as inputs, and does 

not require any preprocessing or post-processing. The resulting deep classifier model is trained in an 

end-to-end fashion. At the same scale, our 3D-CNN involves fewer parameters than other deep 

learning-based methods, which is more appropriate for HSI classification problems that typically 

have limited access to training samples. We compare our 3D-CNN-based approach with the 

aforementioned state-of-the-art deep learning based techniques on three real HSI datasets which 

were captured by different remote sensors. Experimental results demonstrate that the proposed 

approach outperforms the compared.  

The remainder of this paper is organized as follows. Section 2 first provides an introduction to 

the relevant background, and then presents our 3D-CNN-based HSI classification framework. We 

describe the datasets and experimental setup in Section 3 and discusses the experimental results in 

Section 4, empirically comparing the proposed method with three other deep learning-based HSI 

classification approaches—namely SAE-LR (logistic regression) [29], DBN-LR [31] and 2D-CNN [33]. 

Finally, we summarize the work and conclude this paper in Section 5. 

2. Proposed Method 

In this section, we explain the basic operations of our 3D-CNN-based classification method in 

detail, elaborate on how to train this network, and analyze what the 3D-CNN model extracts from 

HSI. 

2.1. 3D Convolution Operation 

2D-CNN has been demonstrated with great promise in the field of computer vision and image 

processing, with applications such as image classification [38–40], object detection [41,42], and depth 

estimation from a single image [43]. The most significant advantage of 2D-CNN is that it offers a 

principled way to extract features directly from the raw input imagery. However, directly applying 

2D-CNN to HSI requires the convolution of every one of the network’s 2D inputs, and each with a 

set of learnable kernels. The hundreds of channels along the spectral dimension (network inputs) of 

HSI require a large number of kernels (parameters), which can be prone to over-fitting with increased 

computational costs.  

In order to deal with this problem, DR methods are usually applied to reduce the spectral 

dimensionality prior to 2D-CNN being employed for feature extraction and classification [33–35]. For 

instance, in [33], the first three principal components (PCs) are extracted from HSI by PCA, and then 

a 2D-CNN is used to extract deep features from condensed HSI with a window size of 42 × 42 in order 

to predict the label of each pixel. Randomized PCA (R-PCA) was also introduced along the spectral 

dimension to compress the entire HSI in [34], with the first 10 or 30 PCs being retained. This was 

carried out prior to the 2D-CNN being used to extract deep features from the compressed HIS (with 

a window size of 5 × 5), and subsequently to complete the classification task. Furthermore, the 

approach presented in [35] requires three computational steps: The high-level features are first 

extracted by a 2D-CNN, where the entire HSI is whitened with the PCA algorithm, retaining the 

several top bands; the sparse representation technique is then applied to further reduce the high level 

spatial features generated by the first step. Only after these two steps are classification results 

obtained based on learned sparse dictionary. A clear disadvantage of these approaches is that they 

do not preserve the spectral information well. To address this important issue, a more sophisticated 

procedure for additional spectral feature extraction can be employed as reported in [32]. 

To take the advantage of the capability of automatically learning features in deep learning, we 

herein introduce 3D-CNN into HSI processing. 3D-CNN uses 3D kernels for the 3D convolution 
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operation, and can extract spatial features and spectral features simultaneously. Figure 1 illustrates 

the key difference between the 2D convolution operation and the 3D convolution operation. 

 

Figure 1. (a) 2D convolution operation, as per Formula (1). (b) 3D convolution operation, as per 

Formula (2). 

In the 2D convolution operation, input data is convolved with 2D kernels (see Figure 1a), before 

going through the activation function to form the output data (i.e., feature maps). This operation can 

be formulated as 

1 1

( )( )
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j jH W
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   (1) 

where l  indicates the layer that is considered, j  is the number of feature maps in this layer, 
xy

ljv  

stands for the output at position ( , )x y  on the j th feature map in the l th layer, b  is the bias, and 

( )f  is the activation function, m  indexes over the set of feature maps in the ( 1)l  th layer 

connected to the current feature map, and finally, 
hw

ljmk  is the value at position ( , )h w  of the kernel 

connected to the j th feature map, with 
lH  and 

lW  being the height and width of the kernel, 

respectively. 

In conventional 2D-CNN, convolution operations are applied to the 2D feature maps that 

capture features from the spatial dimension only. When applied to 3D data (e.g., for video analysis 

[36]), it is desirable to capture features from both the spatial and temporal dimensions. To this end, 

3D-CNN was proposed [36], where 3D convolution operations are applied to the 3D feature cubes in 

an effort to compute spatiotemporal features from the 3D input data. Formally, the value at position 

( , , )x y z  on the j th feature cube in the l th layer is given by: 

1 1 1
( )( )( )
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xyz hwr x h y w z r
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m h w r
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  (2) 

where 
lR  is the size of the 3D kernel along the spectral dimension, j  is the number of kernels in 

this layer, and 
hwr

ljmk  is the ( , , )h w r th value of the kernel connected to the m th feature cube in the 

preceding layer.  

In our 3D-CNN-based HSI classification model, each feature cube is treated independently. Thus, 

m is set to 1 in Equation (2), and the 3D convolution operation can be (re-)formulated as 

1 1 1
( )( )( )

( 1)

0 0 0

l l lH W D
xyz hwd x h y w z d

lij lj l i lj

h w d

v f k v b
  

  



  

 
  

 
  (3) 

where 
lD  is the spectral depth of the 3D kernel, i  is the number of feature cubes in the previous 

layer, j  is the number of kernels in this layer, 
xyz

lijv  is the output at the position ( , , )x y z  that is 
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calculated by convolving the i th feature cube of the preceding layer with the j th kernel of the l th 

layer, and 
hwd

ljk  is the ( , , )h w d th value of the kernel connected to the i th feature cube in the 

preceding layer. As such, the output data of the l th convolution layer contains i j  3D feature 

cubes.  

The non-saturating activation function Rectified Linear Units (ReLUs) (as proposed by 

Krizhevsky et al. [38]) form a type of the most popular choice for activation functions. In particular, 

in terms of training time with gradient decent, ReLUs tend to be faster than other saturating activation 

functions. Here we also adopt ReLUs as the activation function. Its formula is shown below: 

( ) max(0, )f v v  (4) 

In summary, for HSI classification, the 2D convolution operation convolves the input data in the 

spatial dimension, while the 3D convolution operation convolves the input data in both the spatial 

dimension and the spectral dimension simultaneously. For the 2D convolution operation, regardless 

of whether it is applied to 2D data or 3D data, its output is 2D. If 2D convolution operations were 

applied to HSI, substantial spectral information would be lost, while 3D convolution can preserve 

the spectral information of the input HSI data, resulting in an output volume. This is very important 

for HSI, which contains rich spectral information.  

2.2. 3D-CNN-Based HSI Classification 

A conventional 2D-CNN is usually composed of convolutional layers, pooling layers, and fully 

connected layers. Being different from 2D-CNN, the 3D-CNN used here for HSI classification consists 

of only convolution layers and a fully connected layer. We do not apply pooling operations, which 

are known for reducing the spatial resolution in HSI. Compared to the image-level classification 

models of [36,37], our 3D-CNN model is utilized for pixel-level HSI classification. It extracts image 

cubes consisting of pixels in a small spatial neighborhood (not the whole image) along the entire 

spectral bands as input data, to convolve with 3D kernels in order to learn the spectral–spatial 

features. Thus, the resolution of the feature maps is further reduced via the pooling operations. The 

reason for utilizing the neighboring pixels is based on the observation that pixels inside a small spatial 

neighborhood often reflect the same underlying material [24] (as with the smoothness assumption 

adopted in Markov random fields).  

The proposed 3D-CNN model has two 3D convolution layers (C1 and C2) and a fully-connected 

layer (F1). According to the findings in 2D CNN [44], small receptive fields of 3 × 3 convolution 

kernels with deeper architectures generally yield better results. Tran et al. have also demonstrated 

that small 3 × 3 × 3 kernels are the best choice for 3D CNN in spatiotemporal feature learning [37]. 

Inspired by this, we fix the spatial size of the 3D convolution kernels to 3 × 3 while only slightly 

varying the spectral depth of the kernels. The number of convolution layers is limited by the space 

size of the input samples (or image cubes), with the window is empirically set to 5 × 5 in this work. 

Performing the convolution operation twice with a space size of 3 × 3 reduces the size of the samples 

to 1 × 1. Therefore, it is sufficient for the proposed 3D-CNN to contain only two convolution layers. 

In addition, the number of kernels in the second convolution layer is set to be twice as many as that 

in the first convolution layer. Such a ratio is commonly adopted by many CNN models (e.g., those 

reported in [37,38]). The input data is convolved with the learnable 3D kernels at each 3D convolution 

layer; the convolved results are then run through the selected activation function. The output of the 

F1 layer is fed to a simple linear classifier (e.g., softmax) to generate the required classification result. 

Note that the network is trained using the standard back propagation (BP) algorithm [44]. In this 

paper, we take softmax loss [44] as the loss function to train the classifiers. Hence, the framework is 

named as 3D-CNN. In this section, we explain in detail how to use 3D-CNN to effectively and 

efficiently classify HSI data. 

To classify a pixel, relevant information of that pixel is extracted by running the 3D-CNN model. 

Figure 2 outlines the computational process. For illustration purposes, we divide the 3D-CNN into 

three steps: 
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Step 1: Training sample (image cube) extraction. S × S × L image cubes are extracted together with 

the category labels of the central pixels of these cubes as the training samples. S × S is the spatial size 

(window size), and L denotes the number of spectral bands.  

Step 2: 3D-CNN-based deep spectral–spatial feature extraction. A sample with size S × S × L is used 

as the input data. The first 3D convolution layer C1 contains two 3D kernels, each of a size 
1 1 1

1 2 3K K K   producing two 3D data cubes with size 1 1 1

1 2 3( 1) ( 1) ( 1)S K S K L K         (according 

to 3D convolution formula Equation (3)). Each 3D kernel results in one 3D data cube. Taking the two 
1 1 1

1 2 3( 1) ( 1) ( 1)S K S K L K         3D data cubes of the first C1 as input, the second 3D convolution 

layer C2 involves four 3D kernels (size of 2 2 2

1 2 3K K K  ), and produces eight 3D data cubes each with 

a size of 1 2 1 2 1 2

1 1 2 2 3 3( 2) ( 2) ( 1)S K K S K K L K K           . The eight 3D data cubes are flattened into 

a feature vector and fit forward to a fully-connected layer F1, of which the output feature vector 

(named as Feature 3 in Figure 2) contains the final learned deep spectral–spatial features. 

Step 3: Deep spectral–spatial feature-based classification. We use the softmax loss [44] to train the 

deep classifier. As in the case of 2D-CNN, the loss of the network is minimized using stochastic 

gradient descent with back propagation [44]. The kernels are updated as: 

1 0.9 0.0005

i
i

i i i

w
D

L
m m w

w



    


 (5) 

1 1i i iw w m    (6) 

where i  is the iteration index, m  is the momentum variable,   is the learning rate, L

w wi Di





 is the 

average over the i th batch 
iD  of the derivative of the objective with respect to w , and w  is the 

parameters of 3D-CNN, including 3D kernels and biases. 

 

Figure 2. Illustration of the three-dimensional convolutional neural network (3D-CNN)-based 

hyperspectral imagery (HSI) classification framework. 

2.3. Feature Analysis 

Feature analysis is important to understand the mechanism of deep learning. In this section, we 

illustrate what features are extracted by the proposed 3D-CNN. Taking the HSI Pavia University 

Scene as an example, the learned features are visualized with respect to different layers of the  

3D-CNN. 

The HSI Pavia University Scene contains 103 bands. One data cube was extracted with size  

50 × 50 × 103 from the original HSI, and then four bands of this data cube were randomly selected 

and are shown in Figure 3a. After 3D convolution operation with the first convolution layer, the data 

cube was converted into two data cubes, each with a spatial size of 48 × 48, eight bands of which were 
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selected and are shown in Figure 3b. Taking the output of the first convolution layer as the input to 

the second convolution layer, we extracted eight bands from the output of the second convolution 

layer and present them in Figure 3c. Together, the feature images in Figure 3 suggest the following: 

(1) Different feature images are activated by different object types. For example, the eight feature 

images in Figure 3c are basically activated by eight different contents.  

(2) Different layers encode different feature types. At higher layers, the computed features are more 

abstract and distinguishable.  

 

Figure 3. (a) Input HSI. (b) Feature images extracted from C1. (c) Feature images extracted from C2. 

In general, the number of feature images produced may be very large, and a feature image can 

be seen as a high-level representation of the input image. A certain representation is hardly complete 

in capturing the underlying image information, and a large number of feature images are often 

necessary to represent the image well. 

3. Datasets and Experimental Setup 

3.1. Datasets 

In order to evaluate the efficacy of the proposed method, we compare it with three other deep 

learning-based HSI classification methods, using three different HSIs and two natural multispectral 

images. 

3.1.1. Pavia University Scene 

The Pavia University scene was acquired by the Reflective Optics System Imaging Spectrometer 

(ROSIS) sensor in 2001, during a flight campaign over Pavia, northern Italy. The uncorrected data 

contains 115 spectral bands ranging from 0.43 to 0.86 μm, and has a spatial resolution of 1.3 m per 

pixel. The corrected data has 103 bands after the 12 noisiest ones are removed, and is 610 × 340 pixels 

in size. The image is differentiated into nine ground truth classes. We randomly chose 50% labeled 

samples as training data, and the rest was used for testing, as displayed in Table 1 and Figure 4. 
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Table 1. Color coding and sample size for Pavia University scene. 

Class Samples 

No. Name Training Testing 

1 Asphalt 3330 3192 

2 Meadows 8933 8974 

3 Gravel 1051 997 

4 Trees 1492 1547 

5 Painted Metal Sheets 677 668 

6 Bare Soil 2450 2579 

7 Bitumen 656 674 

8 Self-Blocking Bricks 1836 1846 

9 Shadows 500 447 

Total 20,925 20,924 

 

Figure 4. (a) False-color composite. (b) Ground truth, black area represents unlabeled pixels. 

3.1.2. Botswana Scene 

The second dataset was collected by Hyperion sensor on EO-1 over the Okavango Delta, 

Botswana in 2001. The acquired data originally consisted of 242 bands covering the 400–2500 nm 

portion of the spectrum in 10 nm windows with 30 m pixel resolution. Only 145 bands were used 

after uncalibrated and noisy bands that cover water absorption were removed. The data used in this 

paper consist of 1476 × 256 pixels with observations from 14 identified classified classes representing 

the land cover types. These labeled samples were randomly divided into training set and testing set 

with a ratio of 1:1, as shown in Table 2 and Figure 5. 

 

Figure 5. (a) False-color composite. (b) Ground truth; black area denotes unlabeled pixels. 
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Table 2. Color coding and sample size for Botswana scene. 

Class Samples 

No. Name Training Testing 

1 Water 145 125 

2 Hippo grass 52 49 

3 Floodplain grasses 1 125 126 

4 Floodplain grasses 2 104 111 

5 Reeds 123 146 

6 Riparian 140 129 

7 Fire scar 126 133 

8 Island interior 106 97 

9 Acacia woodlands 142 172 

10 Acacia shrublands 136 112 

11 Acacia grasslands 151 154 

12 Short mopane 86 95 

13 Mixed mopane 141 127 

14 Exposed soils 47 48 

Total 1624 1624 

3.1.3. Indian Pines Scene 

The third dataset was acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 

sensor over the Indian Pines test site in north-western Indiana in 1992. The uncorrected data contains 

224 spectral bands, ranging from 0.4 to 2.5 μm. It consists of 145 × 145 pixels with a moderate spatial 

resolution of 20 m. The number of bands of corrected data was reduced to 200 by removing bands 

covering the region of water absorption: 104–108, 150–163, and 220. The ground truth dataset was 

randomly separated into two equal parts. One was used as training data, and the other for testing, as 

displayed in Table 3 and Figure 6. 

Table 3. Color coding and sample size for Indian pines scene. 

Class Samples 

No. Name Training Testing 

1 Alfalfa 22 24 

2 Corn-notill 721 707 

3 Corn-mintill 390 387 

4 Corn 124 113 

5 Grass-pasture 237 231 

6 Grass-trees 363 367 

7 Grass-pasture-mowed 9 19 

8 Hay-windrowed 244 234 

9 Oats 8 12 

10 Soybean-notill 482 485 

11 Soybean-mintill 1187 1226 

12 Soybean-clean 316 277 

13 Wheat 82 123 

14 Woods 632 633 

15 Buildings-Grass-Trees-Drives 180 158 

16 Stone-Steel-Towers 46 47 

Total 5043 5043 
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Figure 6. (a) False-color composite. (b) Ground truth; black area denotes unlabeled pixels. 

3.2. Experimental Setup 

In order to evaluate the efficacy of the proposed 3D-CNN method, we compared it with three 

deep learning HSI classification approaches: SAE-LR [29], DBN-LR [31], and 2D-CNN [33]. Overall 

accuracy (OA), average accuracy (AA) and kappa statistic (K) were adopted to assess the 

classification performance of each model. The OA was calculated by the ratio between the correctly 

classified samples in the test data and the total number of test samples, the AA is the mean value of 

each category’s accuracies, and the measurement metric K was calculated by weighting the measured 

accuracies. The last measure incorporates both the diagonal and the off-diagonal entries of the 

confusion matrix, and is a robust indicator of the degree of agreement. To obtain a more convincing 

estimate of the capabilities of these methods, we run the experiment 10 times for each test dataset. 

Each time, the ground truth data were equally split with random sampling. 

4. Experimental Results and Discussion 

Four deep learning-based classification methods, including SAE-LR, DBN-LR, 2D-CNN, and 

3D-CNN were evaluated and compared. SAE-LR and DBN-LR were implemented with the MATLAB 

deep learning toolbox [45]. 2D-CNN and 3D-CNN were implemented based on MatConvNet [46], a 

MATLAB toolbox for training CNN models. In this section, detailed results are shown and discussed. 

4.1. Comparison with State-of-the-Art Methods 

4.1.1. Results for Pavia University Scene 

In the first experiment with the Pavia University scene (which contains 103 bands), we extracted 

5 × 5 × 103 cubes to compute the original spectral–spatial features (please refer to step 2 of Section 2, 

with S = 5, L = 103), and used them as the input for 3D-CNN. For SAE-LR and DBN-LR, the original 

HSI was reduced to four bands and five bands along the spectral dimension via PCA, respectively. 

Then, a 5 × 5 × 4 cube and a 5 × 5 × 5 cube were used to form the spatial features. Finally, the resulting 

spatial features were combined with 103 spectral features. For 2D-CNN, three principal components 

were generated from the 103 channels by PCA, and a 42 × 42 × 3 cube was extracted to form the 

original features. The network contained three convolution layers and two pooling layers. The three 

convolution layers contained thirty-six 5 × 5 kernels, seventy-two 6 × 6 kernels, and seventy-two  

4 × 4 kernels for the first, second, and third layers, respectively. On this dataset, the proposed 3D-

CNN model contained two 3D convolution layers (C1, C2)—one fully connected layer (F1) and one 

classification layer (with the architecture specification given in Table 4). C1 contained two  

3 × 3 × 7 kernels (again, please refer to step 2 of Section 2, with 1

1K  = 3, 1

2K  = 3, 1

3K  = 7), and C2 contained 
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four 3 × 3 × 3 kernels ( 2

1K  = 3, 2

2K  = 3, 2

3K  = 3). The 3D-CNN was trained over 100,000 iterations, 

and each iteration randomly took 20 samples. The results are listed in Table 5, averaged over ten runs, 

and the standard deviation is also reported. The visual classification results are shown in Figure 7. 

Detailed mappings with different methods are displayed in Figure 8. The convergence curves of the 

training samples are shown in Figure 9. 

The 3D-CNN model obtained the best result, with a 99.39% overall accuracy, 0.36% higher than 

the second best (99.03%) achieved by 2D-CNN. It is clear from Figure 8 that all four methods suffered 

from similar misclassification problems, such as bitumen (class 7, purple) being misclassified as 

Asphalt (class 1, title blue) and bare soil (class 6, chocolate) being misclassified as meadow (class 2, 

green). However, comparatively, 3D-CNN achieved less misclassifications overall. As shown in 

Figure 9, 3D-CNN was trained over 100,000 iterations, while 2D-CNN was trained over about  

200,000 iterations, and both SAE-LR and DBN-LR were trained over 600,000 iterations, which means 

that 3D-CNN is relatively less difficult to converge; this could be the result of using fewer parameters 

in 3D-CNN. 

Table 4. Architecture of 3D-CNN in Pavia University scene. 

Layer Kernel Size Kernel Number Stride Output Size Feature Volumes 

Input - - - 5 × 5 × 103 1 

C1 3 × 3 × 7 2 1 3 × 3 × 97 2 

C2 3 × 3 × 3 4 1 1 × 1 × 95 8 

F1 - - - 1 × 1 × 1 144 

Classification - - - 1 × 1 × 1 9 

Table 5. Classification results (%) of Pavia University scene. AA: average accuracy; OA: overall accuracy; 

SAE-LR: stacked autoencoder-logistic regression; DBN-LR: deep belief network-logistic regression. 

 Methods 

Class SAE-LR [29] DBN-LR [31] 2D-CNN [33] 3D-CNN 

1 98.73   0.0344 99.05   0.2968 99.68   0.0151 99.65   0.0049 

2 99.55   0.0119 99.83   0.0068 99.87   0.0038 99.83   0.0059 

3 93.87   1.5622 95.15   2.1337 96.31   1.1068 94.65   2.1480 

4 98.63   0.0201 98.83   0.1274 98.01   0.2650 99.09   0.5543 

5 100   0 99.93   0.0065 100   0 100   0 

6 97.87   0.3816 98.71   0.1035 97.61   0.1862 99.93   0.0028 

7 93.74   0.9172 96.36   1.1547 95.63   0.2008 97.75   1.7837 

8 96.76   0.9861 98.20   0.5798 99.35   0.1605 99.24   0.1096 

9 99.90   0.0133 99.71   0.0350 97.25   0.6590 99.55   0.2557 

OA 98.46   0.0190 98.99   0.0922 99.03   0.0142 99.39   0.0098 

AA 97.67   0.0382 98.38   0.1881 98.19   0.0268 98.85   0.0609 

K 97.98   0.0342 98.68   0.1596 98.71   0.0021 99.20   0.0169 
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Figure 7. Classification results of Pavia University scene. (a) False-color composite. (b) Ground truth. (c) 

SAE-LR, OA = 98.46%. (d) DBN-LR, OA = 98.99%. (e) 2D-CNN, OA = 99.03%. (f) 3D-CNN, OA = 99.39%. 

 

Figure 8. Zoom of classified region. (a) False-color composite. (b) Ground truth. (c) SAE-LR,  

OA = 98.46%. (d) DBN-LR, OA = 98.99%. (e) 2D-CNN, OA = 99.03%. (f) 3D-CNN, OA = 99.39%. 

 

Figure 9. Convergence curves of training samples. 
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4.1.2. Results for Botswana Scene 

In the Botswana scene, feature extraction procedures and the structure of 2D-CNN remain the 

same as above, but the architecture of the 3D-CNN is slightly different (with C1 containing two  

3 × 3 × 2 kernels and C2 containing four 3 × 3 × 2 kernels), as given in Table 6 . On this dataset, 3D-

CNN was trained for about 8000 iterations, and 20 samples were randomly taken from each iteration. 

The Botswana scene is easier to classify, compared to the other two datasets. The detailed results are 

listed in Table 7, and shown in Figures 10 and 11. 

Botswana contains 1476 × 256 pixels. However, ground truth samples were only about three 

thousand. In Figure 10, the classification results do not qualitatively show much difference among 

these methods. Quantitatively however, it is shown in Table 5 that 3D-CNN achieved the best result 

with an overall accuracy of 99.55%, which is 0.67% higher than the second best (98.88%) obtained by 

2D-CNN, and is 1.06% higher than the result of 98.49% by SAE-LR. In Figure 11, it can be clearly seen 

that 3D-CNN had almost no misclassified pixels in the zoomed-in area. 

Table 6. Architecture of 3D-CNN in Botswana scene. 

Layer Kernel Size Kernel Number Stride Output Size Feature Volumes 

Input - - - 5 × 5 × 145 1 

C1 3 × 3 × 2 2 1 3 × 3 × 144 2 

C2 3 × 3 × 2 4 1 1 × 1 × 143 8 

F1 - - - 1 × 1 × 1 112 

Classification - - - 1 × 1 × 1 14 

Table 7. Classification results (%) of Botswana scene. 

 Methods 

Class SAE-LR [29] DBN-LR [31] 2D-CNN [33] 3D-CNN 

1 100 ± 0 100 ± 0 99.18 ± 0.3786 99.64 ± 0.1440 

2 100 ± 0 100 ± 0 100 ± 0 100 ± 0 

3 100 ± 0 100 ± 0 100 ± 0 100 ± 0 

4 99.58 ± 0.4906 100 ± 0 99.16 ± 1.2225 99.45 ± 1.3444 

5 94.70 ± 1.1443 94.84 ± 2.3406 99.54 ± 0.3159 98.60 ± 0.6820 

6 92.96 ± 9.3873 95.33 ± 12.401 97.36 ± 1.2054 98.72 ± 0.2930 

7 99.88 ± 0.0938 100 ± 0 100 ± 0 99.68 ± 0.3014 

8 100 ± 0 99.74 ± 0.2704 100 ± 0 100 ± 0 

9 96.68 ± 1.3994 96.98 ± 2.0501 94.99 ± 0.203 99.67 ± 0.2277 

10 99.74 ± 0.4004 100 ± 0 100 ± 0 99.70 ± 0.1500 

11 99.47 ± 0.3915 99.67 ± 0.1476 100 ± 0 99.87 ± 0.1823 

12 100 ± 0 100 ± 0 96.63 ± 1.1139 99.63 ± 1.3690 

13 99.52 ± 0.1387 99.82 ± 0.1332 100 ± 0 99.43 ± 0.5453 

14 99.26 ± 1.3152 100 ± 0 97.44 ± 2.1112 100 ± 0 

OA 98.49 ± 0.1159 98.81 ± 0.0436 98.88 ± 0.0009 99.55 ± 0.0140 

AA 98.70 ± 0.1017 99.03 ± 0.0315 98.88 ± 0.0214 99.60 ± 0.0122 

K 98.36 ± 0.1374 98.72 ± 0.0510 98.78 ± 0.0012 99.51 ± 0.0165 
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Figure 10. Classification results of Botswana scene. (a) False-color composite. (b) Ground truth.  

(c) SAE-LR, OA = 98.49%. (d) DBN-LR, OA = 98.81%. (e) 2D-CNN, OA = 98.88%. (f) 3D-CNN,  

OA = 99.55%. 

 

Figure 11. Zoom of classified region. (a) False-color composite. (b) Ground truth. (c) SAE-LR,  

OA = 98.49%. (d) DBN-LR, OA = 98.71%. (e) 2D-CNN, OA = 98.88%. (f) 3D-CNN, OA = 99.55%. 

4.1.3. Results for Indian Pines Scene 

On this dataset, we extracted spectral–spatial features for 3D-CNN, SAE-LR, and DBN-LR in the 

same way as we did for the first two datasets. The structures of 2D-CNN and 3D-CNN (shown in 

Table 8) are nearly identical to those used in the Pavia University scene. The 3D-CNN model was 

trained for about 100,000 iterations on this dataset. At each iteration, 20 samples were randomly 

selected from the training set. The detailed results are listed in Table 9, and are shown in Figure 12. 
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Table 8. Architecture of 3D-CNN in Indian Pines scene. 

Layer Kernel Size Kernel Number Stride Output Size Feature Volumes 

Input - - - 5 × 5 × 200 1 

C1 3 × 3 × 7 2 1 3 × 3 × 194 2 

C2 3 × 3 × 3 4 1 1 × 1 × 192 8 

F1 - - - 1 × 1 × 1 128 

Classification - - - 1 × 1 × 1 16 

Table 9. Classification results (%) of Indian pines scene. 

 Methods 

Class SAE-LR [29] DBN-LR [31] 2D-CNN [33] 3D-CNN 

1 85.56 ± 1.3195 80.90 ± 2.1058 86.11 ± 2.2222 95.89 ± 2.8881 

2 90.72 ± 2.5262 93.97 ± 1.0502 91.37 ± 1.5399 98.46 ± 0.1412 

3 91.58 ± 5.8134 95.13 ± 1.0701 95.37 ± 3.9835 98.99 ± 0.7959 

4 89.81 ± 9.5761 85.14 ± 2.0225 98.54 ± 1.9192 99.14 ± 0.3120 

5 96.16 ± 3.3383 98.05 ± 1.8262 91.40 ± 2.6639 99.29 ± 0.5117 

6 98.98 ± 0.5110 100 ± 0 98.05 ± 0.6324 99.92 ± 0.0170 

7 95.29 ± 1.0912 94.92 ± 4.9651 97.73 ± 20.657 100 ± 0 

8 98.75 ± 0.7893 100 ± 0 98.44 ± 1.2281 100 ± 0 

9 100 ± 0 100 ± 0 50.87 ± 5.0596 92.31 ± 5.2565 

10 94.52 ± 1.0791 97.37 ± 0.4709 93.53 ± 5.0951 98.12 ± 0.5533 

11 94.79 ± 0.4464 97.70 ± 0.1939 97.62 ± 0.2358 98.96 ± 0.2035 

12 86.43 ± 1.0475 84.72 ± 7.7210 94.89 ± 3.3988 98.99 ± 0.3265 

13 99.80 ± 0.1640 99.35 ± 2.0866 100 ± 0 99.82 ± 0.1440 

14 97.48 ± 0.6172 100 ± 0 99.29 ± 0.6455 99.81 ± 0.0259 

15 84.35 ± 1.4027 84.64 ± 3.9929 99.59 ± 0.2764 99.56 ± 0.6405 

16 96.76 ± 9.0504 95.33 ± 8.1276 98.88 ± 1.6992 99.38 ± 0.9888 

OA 93.98 ± 0.0838 95.91 ± 0.0123 95.97 ± 0.0938 99.07 ± 0.0345 

AA 93.81 ± 0.4858 94.20 ± 0.0568 93.23 ± 0.7629 98.66 ± 0.0345 

K 93.13 ± 0.1067 95.34 ± 0.0147 95.40 ± 0.1215 98.93 ± 0.0450 

 

 

Figure 12. Classification results of Indian Pines scene. (a) False-color composite. (b) Ground truth.  

(c) SAE-LR, OA = 93.98%. (d) DBN-LR, OA = 95.91%. (e) 2D-CNN, OA = 95.97%. (f) 3D-CNN,  

OA = 99.07%. 

According to Table 6, 3D-CNN obtained the best result of 99.07% overall accuracy, which is 3.1% 

higher than the second best (95.97%) achieved by 2D-CNN. Compared with the Indian Pines scene, 

this scene contains more classes, so the misclassification rate increased. In Figure 13, it can be seen 

that all three existing methods misclassified a number of pixels. For examples, SAE-LR misclassified 
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certain corn-notill pixels (class 2, red) as Soybean-notill (class 10, yellow). 3D-CNN also misclassified 

certain corn-notill as soybean-notill, but overall, the 3D-CNN-based HSI classification method 

achieved the lowest misclassification. 

 

Figure 13. Zoom of classified region. (a) False-color composite. (b) Ground truth. (c) SAE-LR,  

OA = 93.98%. (d) DBN-LR, OA = 95.91%. (e) 2D-CNN, OA = 95.97%. (f) 3D-CNN, OA = 99.07%. 

4.2. Influence of Parameters 

With the 3D-CNN classification framework, the classification efficiency is mainly influenced by 

three factors: the number of kernels, the spectral depth of kernels, and the spatial size (window size) 

of the samples to be classified. In this section, we investigate the effects of these factors experimentally. 

4.2.1. Effect of the Numbers of Kernels 

In this section, a series of 3D-CNN models with different numbers of kernels but the same 

structure (two convolution layers and one fully-connected layer) are trained. We analyze the results, 

trying to understand how the number of kernels may affect the overall classification accuracy. We 

divide the experiments into three parts: (1) the number of 3D kernels is kept the same for C1 and C2; 

(2) the number of 3D kernels for C1 is half of that for C2; and (3) the ratio is decreased to 1:3. We vary 

the number of 3D kernels of C1 from 1 to 3, and investigate how the final classification accuracy is 

affected. The results are shown in Figure 14, where (x–y) represents the network’s structure, with x 

and y denoting the number of kernels for C1 and C2, respectively. 

 

Figure 14. Overall accuracy by varying the number of kernels for the two convolution layers. 

In performing the parameter investigation, in order to quickly obtain the appropriate parameters, 

3D-CNNs are trained over a smaller number of iterations. For Pavia University and Indian Pines 
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scenes, the training iterations were set to 10,000 (they were set to 100,000 in the studies reported in 

Section 4.1). So, the OA values for the Pavia University and Indian Pines datasets are lower than 99% 

in Figure 14, but the results can still illustrate the problem. For all three datasets, the best performance 

was achieved for the cases where the first layer contains two 3D kernels. This indicates that a larger 

number of kernels may degrade the accuracy, as the training becomes more difficult and the model 

may be more likely to over-fit the training data. Regarding the HSI classification on the three datasets, 

it is observed that the model works well if the ratio of kernels between the C1 and C2 is set to be 1:2. 

In particular, the structure with two 3D kernels in the first layer and four 3D kernels in the second 

layer offers the best 3D-CNN configuration.  

4.2.2. Effect of the Spectral Depth of Kernels 

In this section, we empirically investigate the effect of a given specification on the architecture 

of 3D kernels. According to [44], small receptive fields of 3 × 3 convolution kernels with deeper 

architectures yield better results. Hence, for all the three datasets, we fixed the spatial size of 3D 

kernels to 3 × 3 and the numbers of kernels of C1 and C2 to be two and four, respectively. Finally, we 

vary the spectral depths of 3D kernels from two to eleven to identify a potential quality depth. With 

cross validation experiments on the training samples, the setting for the spectral depths of the kernels 

was determined as follows: for the Pavia University and Indian Pines scenes, those in C1 and C2 were 

set to seven and three, respectively. For the Botswana scene, both spectral depths of C1 and C2 kernels 

were set to two. 

4.2.3. Effect of the Spatial Size of the Sample 

To find the best cube size of training samples, we also tested the model by extracting the 

spectral–spatial features with a different size: 3 × 3 × L, 5 × 5 × L, 7 × 7 × L, and 9 × 9 × L, where L is 

the number of spectral bands. The structure of the 3D-CNN was set such that each convolution layer 

contained two 3D kernels and each 3D-CNN was trained for about 10,000 iterations. The results are 

shown in Figure 15. 

 

Figure 15. Influence of the spatial size of sample. (a) Pavia University scene. (b) Botswana scene.  

(c) Indian Pines scene. 

Generally speaking, a target pixel and its adjacent neighbors belong to the same class. The 

spectral–spatial features extracted using information in a neighborhood region generally help to 

decrease intra-class variance, thereby aiding in the improvement of classification performance. 

However, an oversized region may present additional noise, especially when the pixel is located in 

the corner or margin of one category. Among these three datasets, on two datasets, the best 

performance was achieved with a size of 5 × 5 × L for extracting the spectral–spatial features, which 

seems to be an appropriate practical choice. 
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4.3. Impact of the Training Sample Size 

In this section, experiments were conducted to explore the performance of 3D-CNN with limited 

training samples. Here, the 3D-CNN models were (deliberately) not well trained, and the number of 

iterations was reduced to one-tenth of what was used in the preceding comparative studies on 

classification performance. We varied the percentage of training samples from 10% to 50%, and 

examined how the final classification OA may be affected. The results are shown in Figure 16. The 

OA value increased rapidly with the increase of training samples at first. For the Pavia University 

dataset, the accuracy plateaued when the sample size reached 30%. For the remaining two datasets, 

when the sample size reached 40%, the modeling accuracy stopped increasing. 

 

Figure 16. Influence of sample proportion. (a) Pavia University scene. (b) Botswana scene. (c) Indian 

Pines scene. 

4.4. Discussion 

According to the experimental results presented above, we can draw the following conclusions. 

First, CNN-based methods obtained better classification results than SAE and DBN-based 

methods. Although SAE-LR and DBN-LR can also extract deep features through the use of deep 

learning architecture, the image patches have to be flattened to one dimension in order to satisfy the 

input requirement of SAE and DBN. The flattening operation fails to exploit the spatial information 

contained in the original HSI, which may lead to a slightly worse performance. More importantly, 

SAE and DBN learn features in an unsupervised fashion, and are not able to take full advantage of 

the label information.  

Second, 3D-CNN works even better for spectral–spatial feature learning as compared to 2D CNN. 

3D-CNN can model finer spectral information attributed to the 3D convolution operations. Note that 

another 3D-CNN-based HSI classification approach has been independently developed in [47], where 

the convolution formula of Equation (2), larger window size (27 × 27), and more complex net 

architecture (three 3D convolution layers with many more kernels) were adopted (albeit also with no 

preprocessing of dimensionality reduction required). By directly applying 3D kernels on 3D HSI, a 3D-

CNN does not rely on any preprocessing, while the method is easy to implement. In SAE-LR [29], DBN-

LR [31] and 2D-CNN [33], PCA is necessary to be employed in an effort to reduce the spectral 

dimensionality to an acceptable level. 

Third, 3D-CNN contains fewer parameters to tune and is easy to converge. For example, in the 

Pavia University scene, the 3D-CNN model contains two convolution layers, with C1 containing  

(3 × 3 × 7 + 1) × 2 = 128 parameters and C2 containing (3 × 3 × 3 + 1) × 4 = 112 parameters (and of course, 

the network being trained over 100,000 iterations). In contrast, the first convolution layer of the  

2D-CNN used to deal with this dataset contains 3 × 36 × 5 × 5 + 36 = 2736 parameters, the second 

convolution layer contains 36 × 72 × 6 × 6 + 72 = 93,384 parameters, and the network is trained over 

about 200,000 iterations. 

Finally, compared with SAE-LR, DBN-LR, and 2D-CNN, the 3D-CNN model achieved a better 

performance on all three datasets. Especially regarding the Indian Pines scene, 3D-CNN obtained the 
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best result of an overall accuracy of 99.07%, which is 3.1% higher than the second best (95.97%) 

obtained by 2D-CNN. This indicates that the 3D approach helps to provide a boost in performance 

as compared to traditional 2D convolutions. Adequate modeling of joint spectral and spatial 

information in HSI data through 3D convolution operations is important for discrimination. 

5. Conclusions 

In this paper, for the purpose of improving HSI classification, a novel 3D-CNN HSI classification 

framework has been proposed that takes full advantage of both spectral and spatial information 

contained within HSI data. It has been shown that 3D-CNN models can be adapted to suit the 3D 

structure of HSI for classification. In particular, we have compared our 3D-CNN approach against 

three state-of-the-art deep learning-based HSI classification methods, on three popular HSI 

benchmark datasets. The experimental studies demonstrated that the proposed method of  

3D-CNN-based HSI classification achieved the best overall accuracy on all the three datasets. It has 

the potential to capture local 3D patterns that help boost the classification performance.  

In terms of future research, we plan to investigate potentially more effective 3D-CNN-based HSI 

classification techniques that can exploit unlabeled samples. In HSI, unlabeled samples are much 

easier to access than labeled samples. Supervised classification methods based on 3D-CNN fail to 

make full use of such unlabeled samples. An integration of unsupervised and semi-supervised 

classification methods based on 3D-CNN is desirable to better address this issue.  
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