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Fourier transform infrared (FT-IR) spectroscopy is a rapid, noninvasive technique 

with considerable potential for application in the food and related industries. We 
show here that this technique can be used directly on the surface of food to 
produce biochemically interpretable “fingerprints.” Spoilage in meat is the result of 
decomposition and the formation of metabolites caused by the growth and 
enzymatic activity of microorganisms. FT-IR was exploited to measure biochemical 
changes within the meat substrate, enhancing and accelerating the detection of 
microbial spoilage. Chicken breasts were purchased from a national retailer, 
comminuted for 10 s, and left to spoil at room temperature for 24 h. Every hour, FT-
IR measurements were taken directly from the meat surface using attenuated total 
reflectance, and the total viable counts were obtained by classical plating methods. 
Quantitative interpretation of FT-IR spectra was possible using partial least-squares 
regression and allowed accurate estimates of bacterial loads to be calculated 
directly from the meat surface in 60 s. Genetic programming was used to derive 
rules showing that at levels of 10

7 

bacteria·g�1 

the main biochemical indicator of 
spoilage was the onset of proteolysis. Thus, using FT-IR we were able to acquire a 
metabolic snapshot and quantify, noninvasively, the microbial loads of food 
samples accurately and rapidly in 60 s, directly from the sample surface. We believe 
this approach will aid in the Hazard Analysis Critical Control Point process for the 
assessment of the microbiological safety of food at the production, processing, 
manufacturing, packaging, and storage levels.  

The last decade has seen an exponential increase in the consumer demand for poultry and poultry 
products, fueled in part by dietary health considerations. Fears over microbiological food safety issues, 
especially the incidence of Salmonella spp. (23, 49) and Campylobacter spp. (11, 39), in conjunction with 
consumer demand for a product of consistently high quality, have focused attention on a particular area of 
the food production industry, namely, the requirement for a rapid (less than a few minutes) and accurate 
detection system for microbiologically spoiled or contaminated meat (3).  

 
At present, no such technology exists in the food industry within the Hazard Analysis Critical Control Point 

system for the microbiological safety and quality of meat and poultry products (20, 26, 48). 
 

Muscle foods, such as meat and poultry, are described as spoiled if organoleptic changes make them 
unacceptable to the consumer. These organoleptic characteristics may include changes in appearance 
(discoloration), the development of off odors, slime formation, changes in taste, or any other characteristic 
which makes the food undesirable for consumption (25, 26). While endogenous enzymatic activity within 
muscle tissue postmortem can contribute to changes during storage (1, 25, 32, 44), it is generally accepted 
that detectable organoleptic spoilage is a result of decomposition and the formation of metabolites caused 
by the growth of microorganisms (28, 40). The organoleptic changes which take place will also vary ac-
cording to the species of microflora present, the characteristics of the meat, processing methods, product 
composition, and the environment in which the food is stored (25).  

Provided that the atmosphere is moist, a consortium of bacteria is responsible for spoilage of meat stored 
at between -1 and 25°C. It is agreed that spoilage organisms belong primarily to the genus Pseudomonas, 



and these have been observed to attach more rapidly to meat surfaces than other spoilage bacteria (25). 
The other major members of the spoilage flora of meat stored aerobically include Moraxella spp., 
Psychrobacter spp., and Acinetobacter spp. While the gram-negative motile and nonmotile aerobic rods and 
coccobacilli generally dominate the spoilage microflora of meat, the initial population may also contain 
various levels of gram-positive genera, usually represented by micrococci and then lactic acid bacteria and 
Bronchothrix thermosphacta (13).  

To date, in excess of 40 methods have been proposed to measure and to detect bacterial spoilage in 
meats (13, 26). These include enumeration methods based on microscopy, ATP bioluminescence, and the 
measurement of electrical phenomena (10, 45), as well as detection methods based on either immunological 
or nucleic acid-based procedures (42). The major drawback with the range of protocols available is that they 
are time-consuming and labor-intensive and give retrospective information. However, in a modern food-
processing environment, monitoring procedures need to give results in real time so that corrective action can 
be taken as soon as possible. 

  
The ideal method for the on-line microbiological analysis of meat would be rapid, noninvasive, 

reagentless, and relatively inexpensive, and these requirements can be met via the application of a 
spectroscopic approach, in combination with any appropriate data deconvolution strategy based on statistics 
or machine learning. Such statistical methods include partial least-squares (PLS) regression (36), while a 
popular and powerful series of machine learning strategies (37) are based on methods of evolutionary 
computing (4), such as genetic algorithms (GAs) (4, 19, 24) and genetic programming (GP) (6, 33). Fourier 
transform infrared (FT-IR) spectroscopy involves the observation of vibrations of molecules that are excited 
by an infrared beam, and an infrared absorbance spectrum represents a “fingerprint” which is characteristic 
of any chemical or biochemical substance (18, 43). This technique is also very rapid (taking seconds) and 
has been shown to be a valuable tool for the characterization of axenically cultured bacteria (22, 34, 38, 47), 
including single-gene knockout strains (41).  

With the prior knowledge that organoleptic spoilage is the result of decomposition and the formation of 
metabolites caused by the growth of microorganisms, this information can be exploited through 
spectroscopic analysis. Therefore, rather than measuring exclusively the presence of bacteria per se on the 
meat surface, vibrational spectroscopy can also be used to measure biochemical changes within the meat 
substrate, enhancing and accelerating the detection of microbial spoilage. The objective of the present study 
was to establish this technology through a series of experiments undertaken on chicken breast muscle at 
room temperature and analyzed by horizontal attenuated total reflectance (HATR) FT-IR spectroscopy with 
PLS analysis. Our research demonstrates the utility of a novel analytical approach based on FT-IR that can 
enhance and accelerate the detection of microbial spoilage, providing rapid, accurate, and quantitative 
results. PLS methods are not always transparent as to which variables are used (2), whereas certain other 
methods use input variables explicitly and directly in the construction of the relationship between the spectra 
observed and the property of interest. GA and GP analyses fall into this category and are used here to 
suggest that proteolysis is the key indicator for the onset of spoilage.  

MATERIALS AND METHODS  

Sample preparation. Fillets of prepacked fresh chicken breast meat were purchased from national retail 
outlets on the morning of each experiment. No prepreparation of the meat, such as removal of fat or 
connective tissue, washing, or inoculation with bacteria, was undertaken. In order to accelerate the spoilage 
process, the meat was first weighed and divided aseptically into 30-g subsamples and comminuted for 10 s 
in a Moulinex type 505 180-W coffee mill (Moulinex UK Ltd., Birmingham, United Kingdom). The bowl of the 
coffee mill was washed and dried with a paper towel between samples. The sample was removed from the 
coffee mill and placed in the upturned lid of a 90-mm-diameter petri dish and pressed manually to a 
thickness of ~5 mm, using the inverted base of a petri dish as the press. A sterile upturned petri dish base 
was used to cover the prepared sample, and once 25 samples had been obtained, they were randomized, 
numbered, and stored on the bench top at ambient temperature (typically 22 ± 1°C).  
 

HATR FT-IR spectroscopy. FT-IR analysis was undertaken using a ZnSe HATR accessory 
(Spectroscopy Central Ltd., Warrington, United Kingdom) on a model IFS28 infrared spectrometer (Bruker 
Ltd., Coventry, United Kingdom) equipped with a deuterated triglycine sulfate detector. The ZnSe HATR 
crystal was capable of 10 external reflections, with the evanescent field (5) effecting a depth of 1.01 µm 



(Spectroscopy Central Ltd.). At 1-h intervals, six replicates were individually excised with a scalpel from a 
petri dish sample and placed in contact with the ZnSe crystal, and a spectrum for each replicate was 
collected. The replicates measured approximately 60 by 10 by 5 mm and were inverted so that the aerobic 
upper surface of the comminuted meat was placed in intimate contact with the HATR crystal.  
 

The crystal surface was cleaned with distilled water and a soft tissue following collection of each spectrum 
and washed thoroughly with acetone, rinsed with distilled water, and dried with a soft tissue at the end of 
each sampling interval. The IBM-compatible personal computer (PC) used to control the IFS28 spectrometer 
was also programmed (using OPUS version 2.1 software, running under OS/2 Warp, provided by the 
manufacturers) to collect spectra over the wavenumber range 4,000 to 600 cm

-1
. The reference spectra 

were acquired from the cleaned blank crystal prior to the presentation of each sample replicate. All spectra 
were collected in reflectance mode with a resolution of 16 cm

-1
, and to improve the signal-to-noise ratio, 256 

scans were coadded and averaged. The collection time for each sample spectrum was 60 s, and a total of 
450 spectra were collected over the series of three experiments, all of which were undertaken within a 42-
day period. At each 1-h sampling interval, a 1-g subsample of meat was also taken and vortexed for 60 s in 
9 ml of 0.9% physiological saline, and the pH was recorded. A dilution series was undertaken, and plates of 
Lab M blood agar base (IDG PLC, Lancashire, United Kingdom) were lawned in triplicate with 50 µl of 
homogenate and incubated for 48 h at 25°C, and the total viable counts (TVC) were recorded as CFU.  
 

Supervised analysis. ASCII data were exported from the Opus software used to control the FT-IR 
instrument and imported into Matlab version 5.3 (The MathWorks, Inc., Natick, Mass.), which runs under 
Microsoft Windows NT on an IBM-compatible PC. To minimize problems arising from unavoidable baseline 
shifts, the spectra were scaled so that the smallest absorbance was set to 0 and the highest was set to +1 
(47).  
 

When the desired responses (targets) associated with each of the inputs (spectra) are known, then the 
system may be supervised. The goal of supervised learning is to find a model that correctly associates the 
inputs with the targets; this is usually achieved by minimizing the error between the target and the model’s 
response (output) (16, 36). For quantitative interpretation of the FT-IR spectra, the multivariate linear 
regression method of PLS was applied as detailed previously (27) following computations given elsewhere 
(36). The input (x) data sets for the supervised-learning method contained the full HATR FT-IR spectra (441 
absorbances representing a band of 16 wavenumbers) and known log10(TVC) values (y data) from the first 
two spoilage experiments, and these were partitioned into training and cross validation sets according to our 
established modeling practices (31, 46). During calibration of the model, the root mean squared (RMS) error 
between the true and desired levels for the cross validation data was calculated, and the lowest RMS error 
from this was used to find the optimal calibration which would give the best general predictive model. 
Following calibration, the PLS model was challenged with the independent test set of data from the entirely 
separate third and final experiment.  
 

Evolutionary computation. Although PLS is an excellent method for the quantitative analysis of biological 
systems (36), the information as to which wave numbers in the infrared spectrum are important is not readily 
available. The use of PLS, therefore, is often perceived as a “black box” approach to modeling spectra and 
so has limited use for the deconvolution of hyperspectral data in chemical or biochemical terms. Therefore, 
in this study, evolutionary computation methods based on GAs and GP were employed to aid in the 
deconvolution of these hyperspectra.  
 

GA. A GA is an optimization method based on the principles of Darwinian selection (24), where, over a 
series of generations, a population of parameter sets evolves until an optimal, or near-optimal, solution to a 
given problem is found.  
 

First, a population of n objects (chromosomes) is created, each chromosome containing a string of 
numbers or binary digits representing the parameters of the problem to be optimized. The population is 
randomized so that n sets of “unique” parameter values can be evaluated and assigned a fitness value 
(usually a single numerical value). Once all n fitness values have been assigned, the next generation of 
chromosomes is created. In order for this new generation to be fitter than the last, principles analogous to 
those of sexual and asexual reproduction are applied. Using a stochastic selection method, based on parent 
fitness, two chromosomes are chosen to reproduce, swapping sections of their respective sequences (the 
probability of a particular parent chromosome being selected for sexual reproduction is proportional to its 
fitness, so chromosomes with a respectively high fitness value will have a greater chance of selection). This 
process creates two new child chromosomes inheriting characteristics of their parents. The child 



chromosomes are then subjected to mutation, where the value of each parameter may be randomly 
changed. The probability of this change is normally very small. The process of selection followed by 
reproduction followed by mutation is then repeated until n new chromosomes are created (i.e., a new popu-
lation to replace the old). The fitness value is then evaluated for each of the new chromosomes, and the 
whole process repeats itself. The algorithm continues until a stopping criterion is reached. For example, the 
criterion may be that a given optimal fitness value is met, a certain number of generations has passed, or 
the chromosomes have converged to similar parameter values.  
 

TABLE 1. Data matrix of results from three spoilage experiments
a 

Expt Initial pH Final pH Initial 
log10(TVC) 

Final 
log10(TVC) 

Room temp 
(ºC) 

Spoilage 
(h) 

1 6.02 6.79 6.86 9.20 21.5 14 

2 5.52 6.05 6.62 8.64 23.1 17 

3 5.94 6.83 6.77 9.04 23.3 10 

Mean (SD) 5.87 6.67 6.76 9.02 22.6 (0.99) 13.6 (3.5) 

  
a 

The onset of spoilage is taken as the point when total bacterial numbers reach 10
8 

CFUg
-1

.  

 
The GA-multiple linear regression (MLR) wavelength selection methodology (9) uses a GA to determine the 
subset of n wavenumbers, taken from the total spectral data set, which, when applied to an MLR model, will 
optimally discriminate between the HATR spectra and the known log10(TVC). All calculations were 
performed with in-house software which runs under Microsoft Windows NT on an IBM-compatible PC, and 
full details of GA-MLR are given elsewhere (9). Briefly, optimization is achieved by monitoring the RMS error 
of prediction for each model. The GA uses two-point crossover with mutation (19), operating on a population 
of binary-encoded chromosomes, each chromosome representing n candidate wavelengths (9); in this 
study, n was 2, 3, and 5. The selection of parent chromosomes for the next generation is carried out using a 
rank-based scheme (D. Whitley, presented at the proceedings of the Third International Conference on 
Genetic Algorithms, San Mateo, Calif., 1989). No two identical candidates were allowed in a given 
population.  
 

GP. A GP is an application of the GA approach to derive mathematical equations, logical rules, or program 
functions automatically (17, 21, 33). Rather than representing the solution to the problem as a string of 
parameters, as in a conventional GA, a GP usually (as here) uses a tree structure. The leaves of the tree, or 
terminals, represent input variables or numerical constants. Their values are passed to nodes, at the 
junctions of branches in the tree, which perform some numerical or program operation before passing on the 
result further towards the root of the tree. Mutations are performed by selecting a parent and modifying the 
value or variable returned by a terminal or changing the operation performed by a node. Crossovers are 
performed by selecting two parents and swapping subtrees at randomly selected nodes within their trees. 
The new individuals so generated replace less fit members of the population chosen probabilistically on the 
basis of their unfitness.  
 

The GP employed the genomic computing software Gmax-bio (Aber Genomic Computing, Aberystwyth, 
United Kingdom), which runs under Microsoft Windows NT on an IBM-compatible PC. An introduction to 
Gmax-bio is given elsewhere (29), and the default parameter settings for population size (1,000), mutation, 
and recombination rates were used throughout. The operators that were used were +, -, /, *, log10(x), 10

x
, >, 

<, and Tanh(x). The fitness calculation used is F = 1/(0.01 + S/B), where the values of S and B are 
determined by the FITNESS setting. In this expression, S is a statistic derived from the model which ranges 
between 0 and infinity and B is a normalizing quantity. The value of B is chosen such that a perfect model 
yields an F of 100 and a model which performs no better than random chance yields an F of 1. 



 
RESULTS AND DISCUSSION  

The comminution of samples in order to accelerate the spoilage process was successful, as the final mean 
log10(TVC) of 9.02 (Table 1) was an order of magnitude above the 10

8 
CFU g

-1 
generally accepted as the 

point at which organoleptic spoilage becomes readily detectable (13, 15). Using 10
8 

CFU 
-1 

as the indicator 
for postspoilage, the average spoilage time over the series of experiments was 13.6 h (Table 1). The spoil-
age of the samples within 24 h at room temperature was anticipated, as comminution ruptures cell walls, 
releasing a source of nutrients; increases the surface-area-to-volume ratio; and distributes bacteria that 
would normally be restricted to the surface throughout the meat substrate. The initial mean pH range of 
fresh samples during the three experiments (5.7 to 5.9) was within those described previously in the 
literature (13, 15). The use of pH as an indicator of spoilage or remaining shelf life in meats would be 
insufficient, as the pH fluctuates prior to spoilage, only rising significantly when levels of bacte-ria reach ~10

8 

CFU g
-1

. At this level, sensory spoilage is readily detectable, and this is partly a consequence of the 
increase in pH and the production of malodorous substances, such as ammonia, dimethylsulfide, and 
diacetyl, by the catabolic action of the resident microflora (13, 25).  
 

The 150 FT-IR spectra from experiment 1 are shown in Fig. 1 and illustrate the reproducibility of both 
HATR as a sampling method and the experimental protocol that was undertaken over a period of 6 weeks. 
Typical FT-IR spectral data from the 1,750-to 700-cm

-1 
wave number range from measurements of meat at 

the pre-and postspoilage stages are shown in Fig. 2. These spectra are from chicken breast meat carrying 

~7 · 10
6 

and ~2·10
9 

CFU g
�1

, respectively, and are both data rich and not biased to any particular group of 
chemicals associated with a particular group of metabolites. Furthermore, the spectra are complex and 
multidimensional in nature, so they do not easily lend themselves to simple visual interpretation; this is 
compounded by the fact that the data set for all three experiments is substantial, with a total of 450 spectra, 
each containing 441 wave numbers. However, with the advent of modern machine learning approaches, the 
opportunity now exists to analyze such complex high-dimensional spectral patterns (7, 46) and to extract an 
answer to a question of biological interest with much lower dimensionality, i.e., “What is the bacterial load on 
the meat surface?”  
 
Therefore, as described above, the supervised-learning method of PLS regression was calibrated and cross 
validated with the FT-IR spectral data and the known log10(TVC) values from experiments 1 and 2 (Table 2 
shows the details and TVC levels) before being challenged by the independent and “unseen” test set of data 
from experiment 3. The plots of the estimates versus the known log10(TVC) (Fig. 3) show that the FT-IR and 
so show that this approach can be used to accurately assess the spoilage status of meat. As can be seen in 
Fig. 3 and Table 2, the lowest level of spoilage encountered was _2 _ 106 CFU g_1, and this necessarily 
restricts the detection limit. The TVC for chicken immediately postslaughter is 103 cm_2, rising to 104 to 
105 cm_2 after packaging (26). That PLS gave accurate results at 2 · 106 CFU g_1 suggests that it will be 
possible to reach lower levels, and this will be the subject of further study with freshly killed chickens. From 
Fig. 3, it is evident that the spectra obtained by direct FT-IR analysis of meat do contain biochemical 
information that allows correlation with the spoilage status of the chicken, for data used to produce the PLS 
model and, more importantly, for data from a completely new experiment. The obvious question that needs 
to be addressed is that of which biochemical species the FT-IR is measuring that are related to the spoilage 
status of the chicken. 
 
The Pearson correlation coefficients between the absorbances at each wave number in the FT-IR spectra 
from experiments 1 and 2 and the log10(TVC) were calculated and are also plotted in Fig. 2. It can be seen 
that most peaks from 1,500 to 700 cm_1 are positively correlated with spoilage, but no single peak appears 
uniquely dominant; this necessarily means that it is difficult to pinpoint the cause of microbial spoilage to 
a single (or a small group of) biochemical species using this correlation approach. Therefore, GAs and GPs 
were evolved to discriminate qualitatively between meat carrying _107 and _107 bacteria (as TVC) per cm2. 
 
GA-MLR was applied so as to extract subsets of two, three, and five wave numbers that could discriminate 
between fresh (_107 bacteria/cm2) and spoiled (_107 bacteria/cm2) chicken. Because the starting 
population for each GA run was random, 60 GA-MLR runs were performed, and the following subsets 
were found to be optimal for selecting just two or three wave numbers, respectively: (1,096, 1,227 cm_1) 
and (1,312, 1,235, 1,088 cm_1). When the algorithm was used to look for five wave numbers, it was found 
that the degree of discrimination did not improve compared with selecting subsets of three, and 



no consistent areas of the FT-IR spectra were found to be dominant in the GA expressions; however, 
vibrations at 1,096 and 1,305 cm_1 were found within the best subsets. 
 

 
FIG. 1. All 150 HATR absorbance spectra from both fresh and spoiled meats from experiment 1. These 

illustrate the reproducibility of both HATR FT-IR spectroscopy and the preparation method employed 
throughout the series of experiments. The amide I and amide II vibrations from proteins and the CHx 
vibrations from fatty acids are indicated. The box indicates where the most variance in these spectra occur 
and hence where spoilage signals are likely to be seen.  
 

 
 

 
FIG. 2. Typical FT-IR absorbance spectra from pre-and postspoilage chicken. Also shown is the Pearson 

correlation coefficient (R) between the FT-IR absorbances (in experiments 1 and 2) and the log10(TVC). 

The asterisks indicate peaks that are attributable to amide I (1,640 cm
�1

), amide II (1,550 cm
�1

), and amine 

(1,240 and 1,088 cm
�1

) vibrations.  



TABLE 2. Log10(TVC) of bacteria acquired from comminuted meat samples from three experimentsa

Log10(TVC) for expt: Time (h) 
1 2 3 

Arithmetic 
mean 

0 6.87c 6.62c 6.77t 6.77 
1 6.87v 6.35v 6.54t 6.64 
2 6.93c 6.38c 6.60t 6.70 
3 6.48v 6.61v 6.75t 6.63 
4 6.71c 6.64c 6.76t 6.71 
5 6.82v 6.50v 7.06t 6.85 
6 7.07c 6.75c 6.90t 6.93 
7 7.31v 6.53v 7.25t 7.14 
8 7.10c 6.67c 7.32t 7.11 
9 7.10v 6.76v 7.91t 7.52 

10 7.41c 6.75c 8.00t 7.64 
11 7.66v 6.65v 8.04t 7.73 
12 7.55c 6.92c 8.31t 7.92 
13 7.79v 7.07v 8.47t 8.09 
14 8.07c 6.89c 8.56t 8.21 
15 8.54v 7.42v 8.85t 8.56 
16 8.34c 7.84c 8.89t 8.55 
17 8.44v 8.36v 8.93t 8.66 
18 8.48c 8.28c 8.88t 8.62 
19 8.70v 8.49v 8.89t 8.72 
20 8.68c 8.55c 9.00t 8.78 
21 8.96v 8.49v 9.12t 8.93 
22 8.88c 8.62c 9.00t 8.86 
23 9.10v 8.56v 9.07t 8.97 
24 9.21c 8.65c 9.04t 9.02 

a All measurements were taken in triplicate after incubation at 25°C for 48 h 
and were used, in conjunction ith FT-IR spectra, to calibrate (c), cross validate w
(v), and test (t) the PLS model. 

 

 
FIG. 3. Estimates from PLS versus the true log10(TVC). The data points are the averages of the six 
measurements, and the error bars show standard deviations. The RMS errors in these measurements are 
0.15, 0.23, and 0.27 log units for the calibration, cross validation, and independent  
test sets, respectively.  



GP analyses (i) using the same 10
7
-bacteria/cm

-1 
threshold as above and (ii) evolved to predict the 

log10(TVC) levels produced trees which could easily discriminate between fresh and spoiled chicken and 
quantify the level of spoilage, respectively; a typical GP parse tree is shown in Fig. 4. As with the GAs, the 
initial populations were produced randomly; therefore, 10 separate GPs were evolved. For the threshold GP 
analysis, the number of times each input (wave number) was used for the 10 evolved populations was 
calculated and plotted against the wave number of the infrared light (Fig. 5). Figure 5 clearly shows that the 
dominant area of the spectra for discriminating between fresh (<10

7 
bacteria/cm

2
) and spoiled (≥10

7 

bacteria/cm
2
) chicken was 1,088 to 1,096 cm

-1
; moreover, these wave numbers were also selected by the 

GA-MLR method. The functional group vibration in the region 1,088 to 1,096 cm
-1 

is ascribable to C-N 
stretching, most plausibly from amines (14, 35).  

The most intense peaks that appear in fresh meat are the amide I (CAO vibration at 1,640 cm
-1

) and 
amide II (NOH deformation at 1,550 cm

-1
) bands from proteins and peptides, and from the Pearson 

correlation coefficients, the amide II band is the only vibration that is negatively correlated with spoilage (Fig. 
2). This strongly suggests that the protein content of the meat was decreasing during spoilage. By contrast, 
the peaks at 1,240 and 1,088 cm

-1
, which are both ascribable to C-N stretching from amines from free amino 

acids, are positively correlated. Indeed, the rule in Fig. 4 shows that spoilage can be ascribed simply to the 
ratio of 1,096 to 1,683 cm

-1 
from these vibrations from amines and amides, respectively.  

Plots of the absorbances of these vibrations versus the time for the second experiment are shown in Fig. 
6. It is clear that the amide I and II bands are constant, although the amide II band does decrease very 
slightly after 16 h while the peaks at 1,240 and 1,088 cm

-1 
start to increase significantly after 16 h. It is 

noteworthy that the onset of spoilage, as characterized by a TVC of >10
8 

g
-1

, was at 17 h, and this was the 
point at which  

 
FIG. 4. Typical GP tree evolved to discriminate between chicken carrying <10

7 
and ≤10

7 
bacterial counts. 

The use of the logistic function Pr{Y} = 1/(1 + exp
(-Model Expression)

), defines a maximum-likeli-hood (Pr{Y}) 
decision boundary for an output being either false (0) or true (1).  



 
FIG. 5. Frequency plot of the number of times an input was used in 10 independent GPs, evolved to 

discriminate between chicken carrying <10
7 

and ≥10
7 

bacterial counts (encoded as 0 and 1, respectively).  
 
the absorbance due to free amines started to increase. This was also found to be the case for experiments 1 
and 3 (data not shown). These correlations, and the fact that the GAs and GPs both pick the region 1,088 to 
1,096 cm

-1 
as the most significant area of the FT-IR spectra for the prediction of spoilage of chicken which is 

attributable to free amino acids, makes it clear that the most significant metabolic process that occurs at 
spoilage is the start of proteolysis. This is indeed highly likely, since it is known that spoilage in meat is most 
frequently associated with the postglucose utilization of amino acids by aerobic microorganisms, such as 
pseudomonads, and the onset of the enzymatic degradation of proteins and peptides, leading to the 
production of free amino acids (8, 12, 40).  
 
In conclusion, FT-IR spectroscopy, in combination with ap propriate machine learning methods, presents 
itself as a novel method for the quantitative detection of food spoilage. Using FT-IR, we were able to acquire 
a metabolic snapshot (30) and quantify, noninvasively, the microbial loads of food samples accurately and 
rapidly (within 60 s) directly from the sample surface. We believe that this approach has considerable poten-
tial for further development and will aid both the food safety regulatory bodies and the Hazard Analysis 
Critical Control Point system. In particular, we will conduct future studies testing our method for quantifying 
the numbers of spoilage organisms on muscle foods at the production, processing, packaging, and storage 
levels.  

 



 
FIG. 6. Plots of selected IR vibrations versus time for experiment 2. The selected vibrations are amide I 

(CAO vibration at 1,640 cm
-1

) and amide II (NOH deformation at 1,550 cm
-1

) bands and C-N stretching from 
amines at 1,240 and 1,088 cm

-1
. Note the increase in the absorbance of 1,088 cm

-1 
at 17 h, which 

corresponds to the point at which the onset of spoilage occurs (Table 1).  
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