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Abstract
Background: Metabolomics experiments using Mass Spectrometry (MS) technology measure the mass to charge
ratio (m/z) and intensity of ionised molecules in crude extracts of complex biological samples to generate high
dimensional metabolite 'fingerprint' or metabolite 'profile' data. High resolution MS instruments perform routinely
with a mass accuracy of < 5 ppm (parts per million) thus providing potentially a direct method for signal putative
annotation using databases containing metabolite mass information. Most database interfaces support only simple
queries with the default assumption that molecules either gain or lose a single proton when ionised. In reality the
annotation process is confounded by the fact that many ionisation products will be not only molecular isotopes
but also salt/solvent adducts and neutral loss fragments of original metabolites. This report describes an
annotation strategy that will allow searching based on all potential ionisation products predicted to form during
electrospray ionisation (ESI).

Results: Metabolite 'structures' harvested from publicly accessible databases were converted into a common
format to generate a comprehensive archive in MZedDB. 'Rules' were derived from chemical information that
allowed MZedDB to generate a list of adducts and neutral loss fragments putatively able to form for each
structure and calculate, on the fly, the exact molecular weight of every potential ionisation product to provide
targets for annotation searches based on accurate mass. We demonstrate that data matrices representing
populations of ionisation products generated from different biological matrices contain a large proportion
(sometimes > 50%) of molecular isotopes, salt adducts and neutral loss fragments. Correlation analysis of ESI-MS
data features confirmed the predicted relationships of m/z signals. An integrated isotope enumerator in MZedDB
allowed verification of exact isotopic pattern distributions to corroborate experimental data.

Conclusion: We conclude that although ultra-high accurate mass instruments provide major insight into the
chemical diversity of biological extracts, the facile annotation of a large proportion of signals is not possible by
simple, automated query of current databases using computed molecular formulae. Parameterising MZedDB to
take into account predicted ionisation behaviour and the biological source of any sample improves greatly both
the frequency and accuracy of potential annotation 'hits' in ESI-MS data.
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Background
Changes in the overall metabolite composition of living
cells (metabolome) reflect a key end point in gene expres-
sion and make a major contribution to organism pheno-
type [1]. Although, no single analytical platform can offer
a fully comprehensive survey of the chemical diversity
representing the metabolome, continuous improvements
in mass spectrometry (MS) instrumentation have allowed
development of relatively standardised metabolite profil-
ing or fingerprinting procedures [2]. A fundamental prin-
ciple of mass spectrometry is the representation of
metabolite features in any biological matrix by measure-
ment of the spectrum of signals reflecting the mass to
charge ratios (m/z) of their ionisation products. One
advantage of MS over alternative spectroscopic methods
such as Nuclear Magnetic Resonance (NMR) and Fourier
Transform Infrared (FT-IR) is the opportunity to puta-
tively annotate directly a spectral component by virtue of
its atomic mass. In the context of a metabolomics experi-
ment these 'first pass' annotations may be used to develop
hypotheses relating to metabolite identity which are then
tested by subsequent, more targeted, analytical chemistry
methods. Traditional hyphenated MS profiling approaches
provide simultaneous detection and quantification of dis-
crete metabolite-derived peaks after chromatographic sep-
aration. In gas chromatography MS (GC-MS) a couple of
hundred well resolved metabolite peaks are identified
where possible by matching their positively charged ion
spectrum (following fragmentation by electron impact in
the gas phase) and column retention time to those of
known standards [3]. GC-MS methods are well estab-
lished and robust but are limited to analysis only of vola-
tile metabolites. Although derivatisation can increase the
volatility of a wide range of metabolite classes such chem-
ical modification further increases the complexity of any
annotation process based on atomic mass.

Alternative profiling methods utilising liquid chromatog-
raphy coupled to mass spectrometry (LC-MS) provide sen-
sitive tools for the analysis of a wider range of metabolites
with higher polarity, lower volatility and much larger
mass range without a need for derivatisation [4]. Resolved
metabolite peaks can only be efficiently ionised when out-
side of the liquid phase under atmospheric pressure. Typ-
ical approaches include atmospheric pressure chemical
ionisation (APCI) and electrospray ionisation (ESI). In
contrast to electron impact, both methods allow 'soft' ion-
isation with little fragmentation in which a major product
may be a pseudo-molecular ion comprising the proto-
nated (+ ve ion data) or de-protonated (-ve ion data) par-
ent molecule.

Peak detection and particularly spectral deconvolution in
GC-MS and LC-MS are both technically challenging, time-
consuming and very difficult to automate; LC-MS particu-

larly has been hampered by poor analyte peak resolution
and retention time variability which confound metabolite
peak alignment [5,6]. As a consequence, recent
approaches to LC-MS profiling have concentrated on the
non-targeted quantification of all detected ionisation
products above a pre-set noise threshold which are com-
piled subsequently as several thousand un-annotated var-
iables [7-9]. The variables in this high dimensional data
consist simply of an ion mass and its retention time. Such
data tables will contain much redundancy as the data
acquisition rate of most instruments will be sufficient to
generate at least 3–5 scans across each eluting peak. In
addition, even with the extra resolving power of ultra high
pressure liquid chromatography (UHPLC) a large number
of peaks will still overlap or even co-elute in many regions
of the chromatogram which demands the use of powerful
signal alignment software for data pre-processing.

An alternative approach to LC-MS profiling is to generate a
metabolite fingerprint representation without using the
chromatographic dimension in which data variables are
simply the detected mass values [10]. In such approaches
[2,10-16] the sample may be dissolved in an appropriate
solvent and injected directly into the ion source (Direct
Injection Mass Spectrometry; DIMS) or infused as a 'plug'
flow using a HPLC system without a chromatography col-
umn (Flow Injection Electrospray Ionisation Mass Spec-
trometry; FIE-MS). Data representations may take two
forms depending mainly on the accuracy and subsequent
resolving power (mass/mass accuracy) of the system mass
analyser. In nominal mass fingerprinting methods the inten-
sities of all masses from all scans are integrated within pre-
defined ranges (mass bins). Linear ion traps with quadru-
pole (Q) detectors are extremely robust and offer rapid
scanning over large m/z ranges. However, as full-scan mass
resolution is often less than 1000 all signals are binned to
the nearest nominal mass value from around m/z 50 up to
as high as m/z 2000, depending on instrument; under
these circumstances metabolites are considered to be
mono-isotopic and each mass bin could obviously con-
tain signals derived from several metabolites. Despite
these limitations nominal mass fingerprinting methods
have attracted considerable interest as a first pass investi-
gation tool as data pre-processing is quick and trivial with
minimal likelihood of error and with a short cycle time
(typically less than 5 minutes) they are suitable for exper-
imental designs which require a high throughput of sam-
ples [10]. Time-of-flight (TOF) and hybrid Q-TOF mass
analysers exhibit an average resolving power as high as
10,000 which, with internal calibration, may be sufficient
to allow binning of signals in finer mass ranges (0.1 amu).
This level of resolution however is not sufficient to distin-
guish between a large proportion of metabolites of differ-
ent elemental composition which remain effectively
isobaric at the maximum mass resolution achievable.
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With the advent of ultra-high accuracy mass analyzers
such as the Orbitrap (resolution ~100,000) and Fourier
Transform Ion Cyclotron Resonance (FT-ICR) analyzer
(resolution potentially in excess of 1,000,000) this latter
problem is greatly reduced [17-19]. Particularly using FT-
ICR-MS instruments there is the opportunity to generate
an accurate mass fingerprint (often referred to as a profile as
variables are now considered effectively discrete) of an
infused sample extract [20-22]. In such data representa-
tions mass 'peaks' are detected in the raw data and the cen-
troid mass intensity calculated. The resolving power and
sensitivity of these ultra-high accuracy mass analyzers is
such that metabolite signals from molecules containing
naturally abundant elemental isotopes (e.g. 13C, 41K, 15N,
17O,34S and 37Cl) are visible in the data [17,18].

The past few years has witnessed a rapid increase in the
number of publications describing experiments using par-
ticularly electrospray ionisation mass spectrometry (ESI-
MS) profiling or fingerprinting at a range of mass accuracies.
This activity has been accompanied by the recognition
that the majority of m/z variables in most complex biolog-
ical matrices cannot be matched unambiguously to
metabolites of identical elemental composition found in
publicly accessible databases [9,19-27]. With the ultra-
high mass accuracy achievable using FT-ICR-MS method-
ology [17,18] this might seem surprising for metabolites
with a mass < 500 Da for which the number of isobaric
molecules based on calculated elemental composition
should be very limited. Several factors contribute to this
problem. In the simplest situation, given that many natu-
ral metabolites (particularly from plant sources) remain
to be structurally identified, the relevant molecules may
simply not be present in current databases. A more com-
plex issue stems from the fact that all metabolites have a
chance of containing one or more natural isotopes
[19,23,24] of constituent atoms (e.g. 13C, 41K, 15N, 17O,34S
and 37Cl); metabolite signals thus are rarely present as a
single mono-isotopic peak and the spectral isotope distri-
butions often results in measured masses of significant
intensity that by chance are undistinguishable (ie not
resolvable) from completely unrelated chemistry [18,24].
A final factor relates to the diversity of potential ionisation
products generated in the ion source in addition to paren-
tal pseudo-molecular ions (i.e. [M+H]1+ and [M - H]1-).
Thus, in both fingerprinting and profiling approaches it is
common to find adducts with either sample matrix com-
ponents (e.g. in positive ion data: [M + Na]1+, [M + K]1+

and [M + 2Na - H]1+ and negative ion data: [M + Cl]1- and
[M + Na - 2H]1-) or mobile phase solvents (e.g. [M +
NH4]1+ in positive ion data). Additionally, although ESI is
traditionally considered a 'soft' ionisation method a
number of more sensitive metabolites will rearrange and
fragment with neutral loss of common moieties such as
water from a hydroxyl group [M - H2O + H]1+ or ammonia

from an amine group [M - NH2 + H]1+ or formate from a
carboxyl group [M - CO2H + H]1+. Clearly, it is possible
also that a range of potential ionisation products will con-
tain various combinations of isotopes, adducts and neu-
tral losses. Finally, ionisation products also can carry
more than one charge (e.g. [M + 2H]2+) or can, through
non-covalent interactions, produce stable molecular clus-
ters, for example dimers, in which only one component is
charged (e.g. [2M + H]1+). The potential to form different
ionisation products will be dependent on the structure
and physical properties of individual metabolites.

It can be concluded that a key aspect of any variable anno-
tation strategy is to assess the relationships between sig-
nals and to base putative annotations on models that best
fit all of the data. The presence of isotopic atoms and
either loss, or gain, of selected chemical moieties all afford
specific changes in accurate mass which mean that the
exact mathematical relationships between detected ions
are informative. Natural isotope abundances in metabo-
lites reflect the percentages at which isotopes of an ele-
ment occur naturally in the environment. Thus analysis of
isotope relative abundance patterns provide a useful
approach to 'filter' unlikely annotations based on molec-
ular formulae calculated from accurate mass measure-
ments [19,23]. Annotation strategies have been reported
recently incorporating algorithms interrogating some, but
not all, of these atomic mass mathematical relationships
[19,22,23,25,26]. In most instances the adopted strategy
centred on an analysis of the full spectrum of aligned
peaks resolved at ultra-high mass accuracy in the biologi-
cal matrices under comparison. A less computationally
intensive strategy more suitable for high throughput
experiments is to focus the annotation exercise on m/z sig-
nals which make significant contributions to models
explaining the metabolome differences between two bio-
logically different sample classes [10,14-16,22,28]. In
nominal mass metabolite fingerprint data [10,14-16,28]
such experiments make the simple assumption that
'explanatory' metabolites will be represented by several
mathematically-related ionisation products (e.g. pseudo-
molecular parental ion, 13C isotope, salt adducts) which
additionally exhibit tight co-variance in a simple correla-
tion analysis; where LC-MS profiling is used ionisation
products related to the same metabolite should addition-
ally be found at the same retention time [14,29]. Similar
approaches are clearly possible using accurate mass data
[7,8,24,27].

It is time consuming and often computationally intensive
to pre-process LC-MS profile/fingerprint data to a level
where the researcher is absolutely confident of under-
standing the origin of any ionisation product (i.e. whether
signals of interest are parental pseudo-ions, salt adducts,
solvent adducts, neutral losses, clusters). This is a particu-
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lar problem when high-throughput is required or for
exploratory analyses of a new biological matrix. An alter-
native approach described here is the use of a database
strategy that will allow searching based on all potential
ionisation products that may be predicted to form during
electrospray ionisation.

Searching for likely annotation candidates based on accu-
rate mass information in publicly accessible databases is
in itself time consuming as individual database coverage
of natural chemistry varies and so a comprehensive search
requires query of several. Unfortunately, with few excep-
tions, databases with appropriate metabolite mass infor-
mation can contain much redundancy, resources for
curation are often limited (consequently it is not uncom-
mon to find mistakes relating to mass values, molecular
formulae and structure) and some of the entries relate to
ionic states, often from interactions with salts. To over-
come some of these problems we have developed
MZedDB [30] a database which uses an archive in a com-
mon format of all metabolite 'structures' derived from sev-
eral widely used and publicly accessible databases. The
value of such an approach to avoid ontology problems
was recognised recently by a consortium of yeast research-
ers [31]. Using a set of 'rules' derived from structural infor-
mation and physical properties (such as number of H-
bond acceptor/donors, number of OH/COOH/NH2
groups, number of acidic H or basic O in molecule)
MZedDB will generate a list of potential adducts and neu-
tral loss fragments that are likely to form for each structure
and calculates on the fly the accurate mass of every poten-
tial ionisation product which provide targets for searches
based on accurate mass. Starting with a list of m/z signals
MZedDB supports a range of manual or semi-automated
annotation strategies based on either m/z mass or pre-
dicted molecular formulae at a range of mass resolutions.
In the present article we describe the development of
MZedDB and illustrate several typical applications relat-
ing to annotation of ESI-MS data which take into account
both predicted and measured ionisation behaviour.

Results and discussion
Developing MZedDB construction strategy
A major objective of MZedDB was to develop an annota-
tion tool capable of calculating the accurate mass of all
likely ionisation products derived from a comprehensive
list of natural chemistry represented in a range of web-
accessible databases. A first step in this process was to ana-
lyse the content of information fields with value for m/z
annotation and develop a strategy for conversion of the
molecular information from targeted repositories into a
common format. Once this had been achieved lists could
be compiled of all database entries representing mole-
cules with identical structures (i.e. both chemical skeleton
and stereochemistry). A preliminary web-search identified

many well-populated metabolite databases ranging from
chemical class specific (e.g. Lipid Maps [32]), species-spe-
cific (e.g. Moto [33]; tomato) and multi-species databases
(e.g. Meta-crop [34]) containing information related to
measured chemistry. A subset of databases with links to
genome sequence data, metabolic pathway representa-
tions and in some cases literature provide further informa-
tion which help annotation decisions related to known or
predicted natural chemistry (e.g. KEGG [35], MetaCyc
[36], and HMDB [37]). Finally there exist very large repos-
itories, such as PubChem [38] and ChemSpider [39],
which contain information on large numbers of metabo-
lites which are not necessarily all of natural origin.
Detailed examination revealed that the data fields useful
for signal annotation could be divided broadly into four
categories: origin, analytical information, physical proper-
ties and metabolite relationships (Table 1). All databases
had a standard molecular formula for each metabolite
entry and the most common structural information suffi-
cient to discriminate between the majority of molecules
was clearly a Simplified Molecular Input Line Entry Sys-
tem representation (SMILES), which could also be gener-
ated from the more complex IUPAC International
Chemical Identifier (InChI) or an MDL Molfile.

Information on atomic mass was much more varied
(Table 1 and Figure 1A); for example databases such as
MetaCyc (in this case AraCyc) did not provide accurate
mass data. Accurate mass information was presented in
different databases as either the average molecular weight
or mono-isotopic molecular weight, ranging from 4 to 7
decimal places. Annotation success increases more or less
linearly with mass accuracy [19]; with Oribitrap and FT-
ICR-MS capable of operating at or above 100,000 mass
resolution then mono-isotopic mass information down to
4–5 decimal places will be required to optimise annota-
tion success. Additionally, in several databases (particu-
larly the large PubChem and ChemSpider repositories)
metabolite information was not always represented as a
single neutral charged molecule which will potentially
complicate most automated annotation procedures which
assume a signal is derived from a single molecular entity
composed of pre-selected common atoms (e.g. C, O, N,
H, S); an example is shown in Figure 1B of choline which
is represented in ionic form on its own, or together with
separate common or more exotic salts. Based on this anal-
ysis it was decided that a comprehensive coverage of nat-
ural metabolites could be achieved by downloading
molecular information from the targeted repositories and
then processing (see Methods section for details) all
chemical entries to remove salts (i.e. keeping the largest
component) and to remove molecules with less than 6
atoms or exotic elements. When possible all charged enti-
ties were converted to neutral compounds by addition or
removal of hydrogen. The processed molecular informa-
Page 4 of 16
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tion was then represented as SMILES, each of which had a
unique identifier code in MZedDB and a hyperlink to the
entry in the database of origin.

Development of 'rules' to link metabolite structures 
represented in MZedDB to potential ionisation products
SMILES, a unique ID and hyperlinks are the only informa-
tion permanently stored in MZedDB for each metabolite
entry accessed from external databases. SMILES can be
used to generate a structural representation of the metab-
olite in question using the Java applet Jmol if required.
Automated analysis of SMILES following a set of simple
'rules' can be used to detect the presence of specific moie-
ties that are likely to effect potential ionisation behaviour;
for example the possession of NH2 or COOH groups
which could be lost as ammonia or formate respectively,
or the presence, for example, of hydrogen bond acceptor

or donor groups which could affect adduct formation.
Additionally, the SMILES can be used to create a molecu-
lar formula from which an accurate monoisotopic accu-
rate mass can be calculated.

Using information derived from 'rules' concerning likely
ionisation behaviour, an accurate monoisotopic mass can
be calculated on the fly for all putative m/z signals (paren-
tal pseudo-ions, neutral losses, adducts, clusters, multiple
charged ions) that potentially represent the molecule in
question in any metabolite fingerprint or profile. For the
whole range of potential ionisation products calculations
are based on the formula

m zIP massM xM Charge Add/ [ * ] /= +

Table 1: Comparison of data fields useful for LC-MS m/z signal annotation in a selection of online databases

Major Data Class Field Description Databases with field

Origin Chemical source H
Synthesis reference H, MT, Kp
Biofluid location H
Tissue location H, Cs
Biofluid concentrations H
Drugs K, P, Ch
Synthetic molecules P, Ch

Known SMILE H, P, Ch, Cy, MB, Cs
INCHi P, Ch, Cs
Molfile K, Ch
H-bond acceptor/donor P
Physiological charge H, P, Ch, Cy, MB, ML, MC, MT, K, Cs, Kp
Predicted mass H, P, Ch, Cy, MB, ML, MC, MT, K, Cs, Kp

Analytical information* Fragmentation H, MB, Kp
Measured mass K, H, P, MB, MT, Kp
Retention time ML, MB, MT
Melting point* ML, MB, MT, Cs
LogP* H, Cs
H20 Solubility* H, P, Cs

Metabolite relationships Chemical hierarchy H, P, Cy
Metabolite pathways K, H, Cy, MC
Reaction Information K, Cy, MC
Enzyme Information K, Cy, MC

H = Human Metabolome Database http://hmdb.ca/
MT = Moto http://appliedbioinformatics.wur.nl/moto/
K = KEGG http://www.genome.jp/kegg/ligand.html
P = PubChem http://pubchem.ncbi.nlm.nih.gov/
Ch = ChEBI http://www.ebi.ac.uk/chebi/
Cy = MetaCyc http://metacyc.org/,
MB = Massbank http://www.massbank.jp/index.html
MC = MetaCrop http://pgrc-35.ipk-gatersleben.de/pls/htmldb_pgrc/f?p=112:1:718621431438201
ML = Metlin http://metlin.scripps.edu/metabo_search.php
Cs = ChemSpider http://www.chemspider.com/
Kp = KNApSAcK http://kanaya.naist.jp/KNApSAcK/
* These data are often predicted from structural information.
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in which the m/z of the ionisation product (m/zIP) of a
metabolite with a specific mass (massM) relates to the
number of molecules involved in the ionisation product
(xM) divided by its overall charge (Charge) plus the mass,
including charge and electrons, to be added (or subtracted
in the case of neutral losses) to get the final m/zIP (Add).
The add functions clearly differ depending on the particu-
lar ionisation products and a number of mass calculation
rules for common adducts and neutral losses are dis-
played in Table 2. MZedDB is fully flexible in that the ion-
isation product calculations [40] can be extended for
example if a new solvent is used and solvent adducts are
expected, or if samples are likely to contain high levels of
unusual salts (e.g. bromine or magnesium) or unusual
amounts of specific molecules able to form adducts. These
lists of calculated accurate masses will provide targets for
queries in experiments to annotate m/z signals.

pMZedBD architecture and functionalities
The basic architecture of MZedDB is illustrated in Figure
2. The Metabolite Search function can be used to search

MZedDB for entries with information in linked repositor-
ies related to a specific metabolite name/synonym or a
molecular formula or mass (both nominal and/or accu-
rate) of an uncharged metabolite. For example, molecular
formulae generated by instrument software can be used
for direct query of MZedDB, which provides links to a
range of external databases to investigate further details
on potential annotations. Alternatively, the MZedDB MF
Generator offers the opportunity to predict the likely
molecular formula of any accurate mass [19,41,42] whilst
taking into account the fact that many signals may in fact
be adducts, isotopes or neutral loss fragments of a parent
molecule. Of more value for m/z signal annotation in
accurate mass ESI-MS data is the Putative Ionisation
Product (PIP) function. Searches can be restricted to one,
several or all of the external data repositories. Either nom-
inal mass information (with a specific cut off or mass
range) or accurate mass information (at any required
ppm) can be used to query MZedDB for putative ionisa-
tion products (PIPs) derived from known metabolites.
Complex queries involving lists of discriminatory masses

Metabolite data representations in several web-accessible metabolite databasesFigure 1
Metabolite data representations in several web-accessible metabolite databases. (a) Accurate mass information 
relating to succinic acid in several large databases (see legend to Table 1 for abbreviations). (b) three structurally diverse 
entries for choline in PubChem.

Database Formula M.W. Average M.W. Monoisotopic

HMDB C4H6O4 118.0880 118.0266

KEGG C4H6O4 118.0266

PubChem C4H6O4 118.08804

KNApSAcK C4H6O4 118.0266087

AraC C4H6O4 118.09

Succinic acid

Choline
Br

-

Charged
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< 6 atoms
Exotic 

element

(A)

(B)
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from data mining experiments (10–50 m/z) or processed
signals from FT-ICR-MS analysis of an entire biological
matrix (many hundreds of signals) can be automated in R
using the R < - > MZedDB function.

Parameterisation of MZedDB searches on the basis of 
potential ionisation behaviour
The parameterisation of MZedDB searches by selection of
different PIPs has a significant effect on the outcome of
the annotation exercise. For example Table 3 illustrates a
typical result when attempts are made to annotate 5 accu-
rate mass signals that were highly ranked, using the Ran-
dom Forest decision tree algorithm [28], for
discrimination between healthy and infected leaves in an
interaction between the model grass Brachypodium distach-
yon and the rice blast fungal pathogen [43]. Searching
only for [M+H]1+ signals provides potential annotations
only for 2 of the 5 ions at < 3 ppm [19], whereas searching
for an increasingly diverse range of potential ionisation
products provides a small number of hits in MZedDB for
all but one of the selected signals (Table 3). The potential
identity of metabolites matching the measured exact mass
signals are also shown in Table 3, together with their the-
oretical calculated monoisotopic accurate mass. Using the
default setting for potential adducts/neutral losses there

are two potential ionisation products ([M+H]1+ and
[M+NH4]1+) with masses of 159.0764; as ammonium
adducts are generally extremely rare in this matrix (unless
part of the HPLC mobile phase) it is likely that the
[M+H]1+ product is correct. The [M+H]1+ suggestion at 1
ppm for m/z 172.0007 is phosphoglycolohydroxamate
which has a calculated monoisotopic mass of 172.0005,
whereas a salt adduct ([M+K]1+) of aspartic acid or 2-
hydroxysuccinamate are actually exact matches, and
indeed much more common metabolites. A sodium
adduct of proline betaine is an exact match for m/z
166.0839 and as it is a naturally charged molecule it will
almost certainly predominantly be found as a salt adduct.
Several isobaric metabolites are suggested for m/z
268.9461 when additional adducts were queried after ini-
tial annotation attempts using default PIPs found no
matches. The importance of considering that major ioni-
sation products could represent adducts or isotopes is
highlighted further in Table 4 where the mathematical
relationships between all FT-ICR-MS signals in several
biological matrices are examined. In spectra derived from
biological tissues such as fish liver and human urine
greater than 40% of the routinely measured m/z signals
are likely to be common salt adducts or isotopes. The pre-
analysis of a biological matrix can thus help to refine

Table 2: Example default ionisation product mass calculation rules

Name Charge xM Add RemAt AddEx RemEx Nelec Rule

[M+]1+ 1 1 0 0 Nch = 1
[M+H]1+ 1 1 1.007276632 H -1 Nacc>0 AND Nch = 0
[M+NH4]1+ 1 1 18.03382573 NH4 -1 Nacc>0 AND Nch = 0
[M+Na]1+ 1 1 22.98922127 Na -1 Nacc>0 AND Nch = 0
[M+K]1+ 1 1 38.96315853 K -1 Nacc>0 AND Nch = 0
[M-NH2+H]1+ 1 1 -15.0119958 NH -1 Nnhh>0 AND Nch = 0
[M-CO2H+H]1+ 1 1 -44.9982027 CO2 -1 Ncooh>0 AND Nch = 0
[M-H2O+H]1+ 1 1 -17.0032881 OH -1 Noh>0 AND Nch = 0
[M-]1- -1 1 0 0 Nch = -1
[M-H]1- -1 1 -1.00727663 H 1 Ndon>0 AND Nch = 0
[M+Na-2H]1- -1 1 20.97466801 Na H2 1 Ndon>1 AND Nacc>0 AND Nch = 0
[M+Cl]1- -1 1 34.96940111 Cl 1 Nacc>0 AND Nch = 0
[M+K-2H]1- -1 1 36.94860527 K H2 1 Ndon>1 AND Nacc>0 AND Nch = 0

AddAt: formula of the atoms to be added to the molecular formula of one M.
RemAt: formula of the atoms to be removed to the molecular formula of one M.
AddEx: formula of the atoms to be removed to obtain the final IP molecular formula
(e.g. non covalently bound salts and solvent).
RemEx: formula of the atoms to be removed to obtain the final IP molecular formula
(e.g. non covalently bound salts and solvent).
Nelec: number of electron to be added when calculating isotopic patterns (masse = 0.0005484).
Rule: set of rules to be applied on one M.
Nacc: number of H-bond acceptor in M.
Noh: number of -OH groups in M.
Ncoo: number of -COO- groups in M.
Naci: number of acidic H in M.
Nch: number of charges in M.
Ndon: number of H-bond donor in M.
Ncooh: number of -COOH groups in M.
Nnhh: number of -NH2 groups in M.
Nbas: number of basic O- in M.
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annotation exercises using MZedDB by including only
adducts found to be prevalent in the specific matrix. In
line with this ethos the MZedDB Adduct Manipulator
function allows the investigators to expand the generation
of possible adducts for a MZedDB entry or a given molec-
ular formula (M->IP), with or without applying adduct
formation rules. The reverse transformation (IP->M) can
also be performed so that given the molecular formula of
a potential ionisation product, all possible formulae of
the parent compound can be enumerated.

Ideally, MZedDB should be customised intelligently by
selection of a subset of PIPs known to be abundant in the
matrix under study and searches constrained to databases
representing the organism in question. In circumstances
where new biological matrices are investigated it may be

helpful initially to use the MZedDB default settings in
which three parameterisation boxes are automatically
'checked' (Adducts default selection [positive mode];
Apply adducts formation rules; Only include C, H, N, O,
P, S) and a search of all database entries is activated from
the drop down menu. If negative ion data is under inves-
tigation then Adducts default selection should be changed
to negative mode. It may be helpful to change the default
mass accuracy of 1 ppm to 5 ppm if accurate mass data
from Time-of-flight (TOF) or hybrid Q-TOF instruments
is used. If large numbers of annotation suggestions are
returned then searches can be customised initially by
restricting to entries in specific external databases by
selecting one or more (using shift key) from the drop-
down menu. Further reduction in numbers of annotation
suggestions can be achieved by 'unchecking' the default

MZedDB architectureFigure 2
MZedDB architecture. Grey arrows represent metabolite information harvesting, processing and hyper-linking for entry 
into MZedDB; Blue arrows represent MZedDB functionalities; red arrows indicate common query pathways; "....? " indicates 
that MZedDB can be expanded by integrating data from other databases in the future.
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selection boxes and then selecting a customised list of
adducts from the pull down menu. Typically, in positive
ion data selected adducts would include [M+H]1+,
[M+Na]1+, [M+K]1+ and [M-H2O+H]+ and in negative
ion data [M-H]1-, [M+Cl]1-, [M+Na-2H]1- and [M+K-
2H]1- and [M-H2O-H]1-. Customisation could be
extended sequentially as desired to include less common
neutral losses (e.g. [M-NH2+H]1+ or [M-CO2H+H]1+),
ion clusters (e.g. [2M+K]1+) or ions with multiple
charges.

Guiding m/z annotation decisions by examination of m/z 
signal relationships
Signals derived from the same parent metabolite will not
only exhibit strict mathematical relationships, but, when
two relatively similar matrices are compared, the behav-
iour of related ions should also be correlated in terms of
their intensity relationships. The left hand panel of Figure
3 shows a ranked list of the top (p = < 0.0001) 'explana-

tory' positive ion m/z signals discriminating healthy from
infected Brachypodium distachyon leaves 96 hours after
infection with the rice blast fungus [43]. A hierarchical
cluster analysis revealed that many of the signals fell into
small clusters (colour coded) of highly correlated m/z
(right hand panel of Figure 3). A simple calculation of the
accurate mass differences between individual pairs of cor-
related signals indicates their likely relationships allowing
any annotation suggestions to focus on potentially the
correct ionisation product. For example, annotation of
signals present in Cluster 2 should focus on [M+Na]1+ or
[M+K]1+ adducts which are likely to be derived from pro-
line betaine (M = 143.0946). Notably the potential ioni-
sation products with masses of 183.061220 and
167.087280, which are both predicted to be isotopes, had
no matches in MZedDB (even at 20 ppm) and so would
have been uninformative if pursued further.

Table 3: Number of putative annotations of FT-ICR-MS signals using MZedDB

Target m/z
(exact mass)

No. of potential hits at 3 ppm Potential m/z annotations Additional m/z annotations

[M+H]1
+

[M+H]1+ [M+Na]1+
[M+K]1+

Default PIPs All PIPs Default PIPS *All PIPs

159.0764 3 3 8 8 [M + H]1+ m/z 159.0764:
4-methylene-L-glutamine; 
[M+NH4]1+ m/z 159.0764:
2-aminomuconate semialdehyde
OR Gentianaine OR 6-oxo-
1,4,5,6-tetrahydro-nicotinate

-

166.0839 0 3 4 4 [M + Na]1+ m/z 166.0839:
Proline betaine

-

172.0007 1 5 5 5 [M + H]1+ m/z 172.0005:
Phosphoglycolo-hydroxamate;
[M + K]1+ m/z 172.0007:
Aspartic acid OR 2-hydroxy-
succinamate

-

206.0509 0 0 0 0 No annotation hits No annotation hits
268.9461 0 0 0 12 No annotation hits [M + 2K - H]1+ m/z 268.9461:

Diketogulonic acid OR 7 other 
metabolites

Masses highlighted in bold represent perfect accurate mass matches.
* Alternatively, the PIPs selected can reflect prior knowledge of the biological matrix and/or HPLC solvent as in Table 4.

Table 4: Prevalence of potential common isotopes and adducts signals in FT-ICR-MS data derived from analysis of extracts of various 
biological tissues.

Extract matrix Signal relationship as a percentage of signals as common adducts/isotopes

C13 K41 M_Na M_K K_Na

Brachypodium leaf 7.25 2.18 1.97 3.11 3.52
Flounder liver 12.69 2.83 8.98 9.05 9.11
Human plasma 6.98 7.64 4.56 1.68 4.93
Human urine 6.99 4.99 6.85 7.7 28.25
Potato tuber (polar) 4.76 3.87 1.04 3.42 1.64
Potato tuber (non polar) 3.25 0.42 2.54 0.85 1.84
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Mass spectrometers capable of high accurate mass meas-
urement often have instrument software dedicated to the
identification of molecular isotopes and common adducts
in spectra. In most cases only single, simple relationships
(such as M_M+1 or M_Na+) are searched for. In addition
to a standard Isotope ratio calculator as part of MZedDB
development we have developed an 'adduct calculator'
(operating in the R environment) which may be tailored
to search for masses linked to any number of combina-
tions of adducts, isotopes and neutral losses [40]. Using
pre-determined (e.g. 0.001 amu) thresholds arithmeti-
cally related signals within a single biological matrix can
be tentatively placed into clusters that are potentially all
derived from a single parent molecule. Figure 4A demon-
strates a typical predicted cluster of mathematically
related ions in the full matrix of signals derived from FT-
ICR-MS analysis of the model grass Brachypodium distach-
yon and the rice blast fungal pathogen [43]. In this
instance the cluster centres on m/z 156.0421 which is pre-
dicted to be a potassium adduct of m/z 118.0862.
MZedDB can be used to query the likelihood that the m/z
species highlighted in this cluster of signals are predicted
to be derived from a single metabolite based on the PIP
'rules' used to construct the database. Figure 4B shows the
output of a PIP search (positive ion) for m/z 156.0421 in
which two salt adducts ([M+Na]1+ = 140.0682 and
[M+K]1+ = 156.0421) as well as a neutral loss of water ([M-
H2O+H]1+ = 100.0756) are predicted to be possible in
addition to the parental pseudo-ion ([M+H]1+ =
118.0862). Further investigation using the isotope calcu-
lator confirmed that signals m/z 157.0455 and m/z
158.0402 (highlighted in yellow in Figure 4C) had the
highest probability of being isotopes of m/z 156.0421 and
additionally were present at the correct relative intensities
(see last column Table 5A). A PIP search of All databases
used to construct MZedDB with the molecular formula
C5H11KNO2 gave 16 entries corresponding to 10 metab-
olites; restriction of the database searches to just Grass
potentially annotated this cluster of signals as being
derived from either betaine or valine (Figure 4D).

Conclusion
In high throughput LC-MS fingerprinting/profiling tech-
niques utilising electrospray ionisation (ESI-MS) it is a
common precaution to use analytical instruments at
lower than maximal mass resolution to avoid problems
with data alignment [21,24]. As a result, m/z annotation
suggestions may often include a large number of structur-
ally diverse but effectively isobaric candidates when only
parental pseudo-ions (i.e. [M + H]+ or [M - H]- m/z signals)
are considered as ionisation products. Although recent
papers have stressed the importance of recognising iso-
topes to avoid miss-annotation of m/z signals in accurate
mass LC-MS data [9,18,21,24-26] the present paper shows
clearly that ionisation products other than parental

pseudo-ions in reality can account for upwards of 40% of
the signals in many accurate mass spectra. Against this
finding it is unsurprising that many accurate mass m/z sig-
nals lack annotation 'hits' if structures other than parental
pseudo-ions are not included in the searchable databases.
Thus we conclude that annotation decisions can be use-
fully guided by both determining from the outset whether
any signal in question is actually an adduct, isotope or
neutral loss fragment or indeed any combination of all
three. Takahashi et al. [27] report the ability to modify a
search of the species-specific KNApSAcK database depend-
ent upon the presence of sodium, potassium or ammo-
nium adduct ions derived from the solvent used for
sample preparation. Other researchers have downloaded
the general metabolite database KEGG LIGAND and cal-
culated the exact mass of 7 possible adduct ions for each
entry to provide query targets in a customised database
[22]. MZedDB consolidates and expands on this strategy
by harvesting SMILES and calculating the accurate mass of
a much more comprehensive list of metabolites from a
range of databases, as well as including hyperlinks to rap-
idly access detailed information from entries in the origi-
nal databases. By restricting MZedDB searches to entries
derived from only a selected number of the original data-
bases m/z annotations can be refined in a species specific
context. An additional advantage of MZedDB centres on
the ability to extend annotation searches to include a
much larger range of adducts, neutral loss fragments and
clusters by implementation (using on the fly calculations)
of a simple set of Potential Ionisation Product 'rules'
which effectively filter searches to exclude unlikely candi-
dates based on SMILES information and which can be cus-
tomised in line with any prior knowledge concerning the
matrix under analysis (e.g. salt content of tissue, extrac-
tion or HPLC solvent). Ultimately, metabolite identity
assignment is crucial to derive biological meaning from
metabolome modelling experiments and thus data anno-
tation tools such as MZedDB which allow more intelligent
searching need to be expanded to cover more comprehen-
sively a wider range of natural chemistry and take into
account the characteristics of new biological matrices. For
example, to improve the analysis of human urine samples
it is anticipated that future implementations of MZedDB
will be extended to include any common biotransforma-
tions of parent metabolites (e.g. glucuronidation, sulpha-
tion, and de-methylation) in attempts to link ionisation
products to original metabolites.

Methods
Generation of FT-ICR mass spectrometry data
The majority of data used to evaluate the functionality of
the MZedDB annotation systems was generated on a
Thermo LTQ instrument fitted with a 7-Telsa FT-ICR mass
analyser. Extract preparation and basic instrument set up
has been described previously [10] but the present study
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Correlation analysis and mathematical relationships of explanatory signals discriminating healthy from diseased Brachypodium leavesFigure 3
Correlation analysis and mathematical relationships of explanatory signals discriminating healthy from dis-
eased Brachypodium leaves. The left-hand panel displays the results of feature selection (all < P = 0.001, in descending rank 
order) in Random Forest classification models comparing FT-ICR-MS spectra of control Brachypodium distachyon leaves and 
plants 96 hours after challenge with a virulent strain of the rice blast fungus. The right hand panel shows example correlation 
clusters after a hierarchical cluster analysis (HCA) of the metabolome features (shown colour coded) in the left hand panel. 
The Pearson correlation coefficients are indicated for all combinations of ions in each cluster and the boxes below indicate 
accurate mass differences, predicted relationships and an annotation guide.
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utilised an Advion Nanomate chip-based direct infusion
nanospray ionisation to introduce the sample [22]. Typi-
cal nanospray conditions comprised 200 nl/min flow rate,
0.5 psi back pressure, and +1.6 kV (positive ion data) or -
1.6 kV (negative ion data) electrospray voltage, controlled
by Chipsoft software (Advion). FT-ICR-MS parameters
included an automatic control gain setting of 1 × 105 and
a mass resolution of 100,000 and data was recorded for 6
min per replicate infusion using Xcalibur software
(Thermo Scientific). Blank quality control samples com-
prising extraction solvents were interspersed at random
into the run sequence to monitor instrument performance
and detect system peaks. Prior to any statistical analysis

the data was log transformed to reduce the chance of the
higher intensity peaks dominating in any multivariate
analyses.

An FT-ICR-MS data set representing flounder liver extract
generated by the SIM-stitching method [44] was kindly
supplied by Prof. Mark Viant and Dr Andrew Southam
(School of Biosciences, University of Birmingham, UK).

Data Processing and Statistical Analysis
Data within each biological matrix class (ie leaf tissue,
urine, potato tuber etc) were aligned and any peaks not
represented in 70% of replicates were removed from the

Investigation of mathematically related signals in a sample matrixFigure 4
Investigation of mathematically related signals in a sample matrix. (A) A typical predicted cluster of mathematically 
related ions from the full matrix of signals derived from FT-ICR-MS analysis of infected Brachypodium distachyon plants with 
potassium adduct highlighted. Relative intensity ratios of predicted isotopes are highlighted in yellow. (B) Adducts table output 
following MZedDB PIP search (positive ion) for m/z 156.0421. (C) Isotope ratio predictions table output from MZedDB for m/
z 156.0421 with isotopes shown in Figure 4A highlighted in yellow. (D) MZedDB output following a PIP search with the molec-
ular formula C5H11KNO2 of All databases (left panel) used to construct MZedDB, or following restriction of search to just 
grasses database entries in KEGG (right panel). Inset shows structure of betaine and valine.
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matrix. Two basic types of data sets were available for the
project. The first type comprised a population of biologi-
cal replicates representing a typical 'tissue' class; to pro-
vide some diversity the samples included fish liver
(flounder), human urine, human blood plasma, plant
leaves (Brachypodium distachyon) and potato tubers. The
second type of samples were characterised by being part of
a larger experiment that contained several biologically
related sample matrices. For example a series of leaf sec-
tions harvested at different time points following infec-
tion of the grass B. distachyon with the rice blast pathogen
[43] provided a complex sample series involving the inter-
action of two organisms. All sample classes could be used
to generate FT-ICR-MS spectra containing thousands of
resolved accurate mass signals (full matrix analysis) to
provide typical annotation targets. FT-ICR-MS matrices
derived from the infected Brachypodium samples addition-
ally allowed both a detailed analysis of signal correlation
behaviour and provided sample populations for further
supervised multivariate data mining [28] in order to iden-
tify a small sub-set of 'explanatory' features (m/z) able to
discriminate between the different diseased states.

All statistical tests were carried out in the R environment
using the FIEMSpro metabolomics data analysis package
[29] which is web accessible [45]. Explanatory feature
selection was performed using Random Forest [15,16,27].
Signal correlation analysis was carried out by the Pearson
correlation method and performed on the explanatory m/
z obtained after feature selection. Hierarchical cluster
analysis based on the correlation coefficient was
employed to identify the set of clusters, which satisfy
some setting, for example, a signal correlation coefficient
larger than 0.75. Determining the mathematical relation-
ships between m/z is performed in R as described [46].
This code searches for operator predetermined mass dif-
ferences between measured accurate masses at an adjusta-
ble sensitivity (examples of mass difference searches are
shown in Figure 4). In theory any mass difference can be
searched for providing the operator knows the exact
expected mass difference between the measured masses.
This process is important to indicate possible isotope sig-
nals present in the matrix for which a prediction would
not be wanted, and as an indication of the relationship
between ionisation products within the matrix.

Developing MZedDB database
MZedDB is designed as a relational database which is
implemented in a MySQL server running on PowerPC 1.8
ghz with 2 GB ram. The web-based interface is publicly
available [30]. All calculations were performed within the
same environment using Perl and Unix shell commands
to generate MZedDB tables and the ChemAxon software
suite [47] to manipulate chemical structures. Interaction
between MySQL database, user queries, results display

and external applications was implemented using PHP.
The Isotope Pattern Calculator (IPC v 1.3) [48] was
employed to simulate isotopic patterns based on element
atomic masses and probabilities. The integrated molecu-
lar formula generator [42] is a modified version of the
tool available from Tobias Kind [49].

Overview of MZedDB table structure
MZedDB comprises a set of several tables containing rele-
vant information from a range of web-accessible data-
bases containing molecular information relating to
metabolites (see Table 1 in Results). Due to the lack of a
universal ontology for representing metabolite chemical
information [31] and the non existence of a standalone
platform where metabolite information is stored, our
strategy relies on harvesting molecular information from
web accessible metabolite databases. This information is
then aggregated according to the actual chemical struc-
tures contained in each database, rather than using ambig-
uous annotation based on preferred names, synonyms or
even CAS registry number. At the time of writing, only a
few metabolite databases have been deposited and regu-
larly updated to PubChem, making the use of its standard
chemical information for searching PIP fairly restrictive.
Finally, links between entries in different databases were
not used because they may either be incomplete or some-
how erroneous, irrespective of their level of curation.

Generating MZedDB dbcompound table
Chemical structures and associated pathway and reactions
when available were downloaded from the corresponding
websites (see Table 1 in Results section). Molecular struc-
tures, database entry ID, names and synonyms were
parsed using bespoke Perl scripts. Because of the various
formats used to represent molecular structure in each
source (e.g. InChI http://www.inchi.info/, SMILES http://
www.daylight.com/smiles and SDF http://
www.mdli.com/solutions) and the inherent difficulties
associated with matching chemical information from dif-
ferent chemoinformatics software, we adopted a common
SMILES (Simplified Molecular Input Line Entry System)
format generated with MolConverter (v. 5.l.4 )[50].

To enable comparisons across databases, we followed a
multiple step strategy to clean up each entry. Ambiguities
related to salts and complexes were removed by keeping
the largest fragment. Structures containing less than 6
atoms, elements other than (C, H, N, O, P, S, K, Cl, Br, F)
and ambiguous fragments (e.g. R) were then systemati-
cally excluded. A third stage consisted of reducing a major
source of discrepancies between databases resulting from
the dual representation of neutral and ionic forms of the
same entity by removal (positive ion) or addition (nega-
tive ion) of a hydrogen atom. Finally, each molecular
entity was aggregated according to: (1) Any exact match
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identification number; (2) A selected name from the list
of names given by the original source; (3) Aggregated list
of all synonyms; (4) Entry SMILES; (5) Canonical SMILES.
Whenever available, stereochemical information was
retained during the curation process, giving rise to
MZedDB redundancies (e.g. glucose has several entries
corresponding to the full or partial description of the con-
figuration of its 5 asymmetric centres). The provision of
Canonical SMILES (i.e. representation without specified
stereochemistry) allow proposition of alternative entries
with similar chemical structure.

Other MZedDB tables
Alongside the MZedDB compound table, dblinks func-
tions to regroup the ID in the primary metabolite data-
base for each MZedDB entry in order to generate dynamic
hyperlinks to the original database. The table dbmetrule1
contains properties of each MZedDB entry that are
required to perform the Potential Ionisation Product
search. This table encapsulates molecular formula gener-
ated from the SMILES and the accurate monoisotopic
mass computed to seven decimal places to avoid inaccu-
racies while rounding at a lower precision level. The
remaining columns in dbmetrule consist of the overall
charge and cardinalities of a predefined set of chemical
groups necessary to apply adduct formation rule restric-
tions during Potential Ionisation Product (PIP) search.
Metabolic pathway related information is contained in
two tables. The table reac1 regroups the reaction descrip-
tion from each primary database (i.e. identifier, names,
enzyme annotations, pathway identifiers and names). The
table reac2 provides links for each MZedDB entry to reac-
tions in which the compound is known to be involved.

MZedDB search capabilities
As the initial goal of MZedDB was not to provide a chem-
oinformatics environment for metabolomics, any metab-
olite-related queries were reduced to elementary searches
based on chemical composition, molecular weights and
synonyms. A metabolite entry reflects chemical properties
relevant to m/z annotation and provides links to primary
database sources for known pathway/enzymatic informa-
tion to help biological interpretation. Links to entries with
the same skeleton (canonical SMILES) and molecular for-
mula are also provided. A typical output file based on a
query for information on pipecolic acid is presented [see
Additional file 1]. The user can interactively check its
potential ionisation products and verify their exact iso-
topic pattern distributions to corroborate with experimen-
tal data.

Primarily, MZedDB focuses on extensive PIP search capa-
bilities [51] using an extendable list of potential adducts
(in both positive and negative ionisation modes) and
chemistry based formation rules to avoid impossible or

highly improbable PIPs entering the list of potential can-
didates [40]. For example the possession of an amine
group that will allow the neutral loss of ammonia or the
presence of strong hydrogen bond donors or acceptors
which affect interactions with salts and solvents to gener-
ate molecular adducts. As MZedDB allows either a default
selection, or user-specified selection (including no rules)
of adducts, neutral losses, clusters, charged states and
number of charges, only a subset of 'rules' are applied 'on
the fly' depending on which options are 'checked' when
setting up a query. The end result is that when MZedDB is
queried with one or more accurate masses only the masses
of parent metabolite derivatives that satisfy the chosen set
of PIP rules are available as annotation targets.

The annotation search can be parameterised by defining
the level of mass resolution (in ppm), simply an m/z range
or nominal mass given the truncation value for binning.
Further parameterisation of MZedDB is achieved by limit-
ing to metabolites found only in specific organisms,
groups of organisms or databases. Databases restrictions
are obviously straightforward. Limiting search to metabo-
lites found in specific organisms is achieved by linkage to
KEGG information. Additionally, the search can be
extended to the more general generation of acceptable PIP
molecular formula given the overall charge, the number
of non covalently bound units and a mass precision.
Potential molecular formula of the parent compound
deduced from the PIP table are used to search a local
installation of PubChem (to avoid heavy traffic to the
server).

Availability and requirements
• Project name: MZedDB

• Project home page: http://maltese.dbs.aber.ac.uk:8888/
hrmet/index.html

• Operating system(s): Multiple platform (tested on Win-
dows and Mac OS X).

• Programming language: php, MySQL, Perl, C++

• Other requirements: Java 1.3.1 or higher

• License: None

• Any restrictions to use by non-academics: None
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