Total FLC transcript dynamics from divergent paralogue expression explains flowering diversity in Brassica napus

Calderwood, Alexander; Lloyd, Andrew; Hepworth, Jo; Tudor, Eleri H.; Jones, D. Marc; Woodhouse, Shannon; Bilham, Lorelei; Chinoy, Catherine; Williams, Kevin; Corke, Fiona; Doonan, John H.; Ostergaard, Lars; Irwin, Judith A.; Wells, Rachel; Morris, Richard J.

Published in:
New Phytologist

DOI:
10.1111/nph.17131

Publication date:
2020

Citation for published version (APA):

Document License
CC BY

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

tel: +44 1970 62 2400
e-mail: is@aber.ac.uk

Download date: 29. Apr. 2021
Total *FLC* transcript dynamics from divergent paralogue expression explains flowering diversity in *B. napus*

Alexander Calderwood, Andrew Lloyd, Jo Hepworth, Eleri H. Tudor, D. Marc Jones, Shannon Woodhouse, Lorelei Bilham, Catherine Chinoy, Kevin Williams, Fiona Corke, John H. Doonan, Lars Ostergaard, Judith A. Irwin, Rachel Wells, Richard J. Morris

19 November 2020

Figure S1: Ragged Jack is an extreme winter type relative to Tapidor_JIC and Express-617. Days taken after removal of plants from vernalisation to achieve BBCH51 developmental stage (buds visible). Results are plotted for individual plants across multiple trials. That Ragged Jack has a stronger vernalisation requirement that the other winter types (Express-617 and Tapidor_JIC) can be seen in the response to 6 weeks of vernalisation. Values of 144 days indicate that the individual did not flower before the end of the experiment, 144 days after vernalisation finished.
Figure S2: VIN3 is rapidly induced, meaning that epigenetic dependent and independent vernalisation periods are not distinguishable under our experimental conditions. Plots show gene expression against days from germination. vernalisation treatment at 5 °C is carried out between vertical lines. Total (summed) VIN3 expression is high at the first sampling timepoint, 1 day into vernalisation, indicating that the epigenetic dependent and independent periods of vernalisation are indistinguishable under these experimental conditions.
Figure S3: *FLC* gene sequences are sufficiently different that RNA-seq can distinguish them. Simulated 150 bp paired-end reads generated from each of the *FLC* gene models were aligned to the Darmor-bzh reference genomes (Chalhoub et al., 2014), using the same alignment pipeline as for the real data. For each generative template sequence (facets), the number of reads mapping to each of the *FLC* gene models are plotted (colours). Divergence between the template sequence used to generate the reads, and the reference sequence of the “correct” *FLC* parologue in the reference sequence aligned against was also considered (x-axis). For each parameter combination, 10 independent simulations were run, the mean result and estimated 95% confidence limits are plotted. For all *FLC* paralogues, the true generative parologue can clearly be distinguished, even for relatively high levels of divergence from the reference sequence. For comparison, the maximum experimentally identified coding sequence divergence from the reference sequence within a single accession in the RIPR panel was 1.68%, in *BnaFLC.C03a* (Supplemental Table 1).
Figure S4: FLC gene sequences for publicly available 100 bp single-end RNA reads are sufficiently different that RNA-seq can distinguish them. Although mis-mapping rates are higher than for paired-end reads, they still map to the correct generative parologue assuming moderate to low sequence divergence from the reference sequence. All paralogues can be clearly distinguished with some moderate mis-mapping of reads generated from BnaFLC.A10 to BnaFLC.C09a and BnaFLC.C09b, and from BnaFLC.C09a to BnaFLC.A10 and BnaFLC.C9b.

References