Aerodynamic levitator furnace for measuring thermophysical properties of refractory liquids

D. Langstaff, M. Gunn, G. N. Greaves, A. Marsing, and F. Kargl

1Centre for Advanced Functional Materials and Devices, Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ, United Kingdom
2Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany

(Received 20 August 2013; accepted 5 November 2013; published online 5 December 2013)

The development of novel contactless aerodynamic laser heated levitation techniques is reported that enable thermophysical properties of refractory liquids to be measured in situ in the solid, liquid, and supercooled liquid state and demonstrated here for alumina. Starting with polished crystalline ruby spheres, we show how, by accurately measuring the changing radius, the known density in the solid state can be reproduced from room temperature to the melting point at 2323 K. Once molten, by coupling the floating liquid drop to acoustic oscillations via the levitating gas, the mechanical resonance and damping of the liquid can be measured precisely with high-speed high-resolution shadow cast imaging. The resonance frequency relates to the surface tension, the decay constant to the viscosity, and the ellipsoidal size and shape of the levitating drop to the density. This unique instrumentation enables these related thermophysical properties to be recorded in situ over the entire liquid and supercooled range of alumina, from the boiling point at 3240 K, until spontaneous crystallization occurs around 1860 K, almost 500 below the melting point. We believe that the utility that this unique instrumentation provides will be applicable to studying these important properties in many other high temperature liquids.

I. INTRODUCTION

Accurate knowledge of thermophysical properties is important for fundamental studies of phase transformations, nucleation, and more generally the simulation of material production routes such as casting, glass formation, and ceramic processes. The more conventional methods of measuring density, surface tension, and viscosity of metallic and oxide liquids are very often hampered by melt-container interactions and sometimes the elevated temperatures involved in measuring refractories at the melting point or above. Moreover, reaching supercooled conditions, on the large scale relevant for materials processing at elevated temperatures, is generally precluded by heterogeneous nucleation at the container wall on laboratory scales. Containerless handling of liquids can provide unique solutions. Indeed, measurements of thermophysical properties using contactless liquid processing methods have been successfully carried out employing electromagnetic levitation (EML), electrostatic levitation (ESL), to a less extent gas-film levitation (GFL), and acoustic levitation (AL) with the sample contained by a surrounding liquid or freely suspended in a gaseous environment, and very recently also conical-nozzle aerodynamic levitation (ADL). In case of AL, ESL, and GFL drops are mechanically excited by oscillating the levitation forces. For EML, this is only possible in a controlled way under microgravity conditions. For ADL, the droplet was so far self-excited through the levitation force. By contrast to the single study of thermophysical properties, ADL has been more widely used in conjunction with synchrotron radiation, neutron and NMR techniques. In this study, large discrepancies of over an order of magnitude were found between containerless measurements of thermophysical properties of Al2O3 and earlier work using conventional container and rheological techniques. Moreover, the supercooled region has remained unexplored. Where changes in thermophysical properties with temperature are comparatively small above the melting point in classical liquids, for supercooled liquids below the liquidus, densities, for instance, can change by tens of % and viscosities by many decades, particularly when the liquids are fragile.

Using EML, microgravity conditions can provide accurate results of viscosity for metallic samples, whereas ground-based measurements that are generally more conveniently carried out, can also give accurate results for density and surface tension even for a deformed drop. Whereas the determination of density works more or less well with all of the mentioned methods (EML, ESL, GFL, AL, ADL), the determination of surface tension and viscosity is not straightforward. It varies between materials and levitation techniques. For example, viscosity EML measurements are hampered by electromagnetic stirring forces related to heating and levitation and the tear-like shape of droplets, as shown for ESL, where heating is separate from levitation, metals can be studied at lower temperatures. In this case, drops are almost spherical and viscosity measurements easier but the charged surface may also impact on the determined surface tension and viscosity. Also high vacuum conditions are generally used...
which can lead to unpredictable charge-loss for oxides as well as loss of sample materials compared with a hybrid ESL-ADL working under pressure. AL, on the other hand, has been used for liquids at ambient temperature conditions and below as well as for metal liquids with a low melting point like Indium. Investigations of high-melting point materials are currently still lacking. Similar to ESL and different to EML and ADL for AL, the sample is fully visible. However, the samples are typically deformed by the acoustic force showing oblate or prolate shape. As shown for EML also for AL droplet shape will have an impact on thermophysical property measurements as discussed in Ref. 13 as might have the interaction of the levitation force with the sample driving fluid-flow inside of the sample. Different to the other techniques AL also enables to measure viscosities exceeding 10^5 Pa s exciting forced rotation in the sample as demonstrated by Ohsaka et al. However, this technique relies on a relaxation model to interpret the measured data. By comparison, ADL has often proved the method of choice for studying oxide liquids. Using a conical nozzle drops are melted by laser heating as shown in Figure 1. Experiments, however, have so far focused on structure and dynamics on the microscopic scale. Of the few thermophysical property measurements reported, for GFL the droplet is severely distorted from a spherical shape, making the determination of surface tension and viscosity far from ideal. For ADL (cf. Figure 1), near-spherical droplet conditions can often be achieved by optimizing weight with surface tension. Previous work determining viscosity and surface tension, however, relied on self-excitation from sporadic oscillations resulting from the tumbling motion of the droplet within the nozzle. Resonance patterns had relatively poor statistics compared to forced oscillations with EML and ESL methods. Moreover, viscosity was necessarily estimated from the width of the power spectrum rather than from decay constants when forced oscillations are released for which sampling statistics are superior.

In this paper, we present a novel laser-heated ADL furnace for thermophysical property measurements on refractory liquids – though ADL is not restricted to only this class of materials – based on the oscillating-droplet technique. Forced oscillations are excited acoustically for the near-spherical droplet transmitted through the levitation gas and, unlike EML and AL, are effectively decoupled from the levitation forces. Compared to EML, heating is independent of levitation and compared to ESL measurements are made at ambient pressure and are not vulnerable to the interaction between the charged surface and the electrostatic levitation field. However, the gas flow around the sample could – similar to the levitation force in AL – potentially cause flow within the sample impacting on the viscosity measurement. In this paper, the potential using ADL for characterizing the thermophysical properties of supercooled liquid oxides in situ at ultra-high temperatures and in the supercooled region below the melting point is demonstrated. High speed video imaging, using shadow casting with a source brighter than the incandescent drop, has been developed to measure density from the radius of spherical solids and from the size and shape of levitated droplets during heating or free-cooling. This is demonstrated for alumina between room temperature, the melting point at 2323 K, and the boiling point at 3240 K. By pulsing the gas stream in the supercooled and liquid states, the surface tension and viscosity are obtained by analyzing backlit images of the time-dependent amplitude of resonant mechanical vibrations and during resonant decay, respectively. Moreover, this very compact furnace can also be used with synchrotron radiation equipment for additional in situ small and wide angle scattering experiments similar to previous experiments.

FIG. 1. Levitation process chamber. Constructed around a ThorLabs 60 mm optical cube: (a) top laser port, (b) pyrometer head inclined ~30° from the vertical, (c) water-cooled levitation stage, (d) ZnSe/NaCl window (transparent to 10.59 μm) separating the levitation gas from the bottom laser port, (e) inlet for levitation gas, (f) aerodynamic conical converging-diverging levitation nozzle (30° inlet – 60° outlet) with a central opening of 1.2 mm in diameter and depth chosen so that a 2 mm sphere in rest position is visible above the rim of the nozzle by about 0.2 mm, (g) back lighting fiber-coupled laser source (200 mW, 660 nm MRL-II CNJ), (h) beam expanding optics delivering an approximately 11 mm diameter beam at the sample, (i) visible light bandpass filter with 10 nm (FWHM) centered around 660 nm, and (j) high-speed camera (800 fps) for shadow casting of the levitated drop equipped with a telecentric lens – Sill Optics 55LPJ9325 with 5x magnification at a working distance of 69 mm. The other side ports can be used for synchrotron small and wide angle scattering experiments similar to previous experiments.

II. TECHNICAL ASPECTS

A. Furnace construction

The ADL furnace setup (cf. Figure 2) consists of a CO2 laser system providing two times up to 125 W laser power...
to the sample and operating at a wavelength of 10.59 μm for heating and melting, which is ideal for oxide systems that strongly absorb at this wavelength, and a sample process chamber (cf. Figure 1), which houses facilities for levitation and acoustic excitation, temperature measurement, and sample monitoring. The lasers are mounted on top of each other for compactness and the two beams are guided towards the process chamber via flat and focusing mirrors which deliver a beam of about 0.8 mm in diameter. Temperature is measured with a Luxtron Accufiber M10 (E) using a HF 950 nm high temperature head. Levitation gas (F) flow to the process chamber (cf. Fig. 1) is controlled by a Brooks MFC 5850S mass flow controller (G). Mechanical excitation of the levitated drop is facilitated by two Visaton FR5S 50 mm 8 loudspeakers (H) fed by a power amplifier to a function generator, which sets the amplitude and wave-shape of the stimulating waveform. Sample temperatures are measured using a single-color pyrometer bolted to the top port of the process chamber. The temperatures are read into the computer system by using an A/D-converter connected to the analogue output of the Luxtron M10 pyrometer control. High-speed cameras are used to measure droplet size and shape horizontally (cf. Figure 2). A telecentric lens with a pupil entrance at infinity at a magnification 5× is used. The magnification of the lens is independent of the sample distance or position in the field of view. Backlighting for shadow casting is enabled using a fiber-coupled diode laser (g) with a beam expanding optics opposite the high speed camera (h). For synchrotron radiation experiments, the X-ray beam can intersect the specimen through the ports through 25 μm thick X-ray grade clear ruby MICA windows at right angles to (g) with detectors for small and wide angle scattering located downstream.

B. Control

The levitator furnace is controlled via three independent LabView control interfaces all running simultaneously on a single PC. The mass flow controller interface sets the gas flow in 1% steps and reads back at 10 Hz intervals. The power for the top and bottom laser is controlled via the second interface. This interface enables pre-defined heating and cooling profiles to be executed as well as rapid quenching of the sample for free-cooling experiments. It also records the pyrometer temperatures at rates of up to 100 Hz. The final interface controls the frequency for video imaging and can be adapted for different high speed cameras.

C. Imaging and image analysis

For liquid oxides, the emissivity is typically greater than 0.8 within the camera wavelength range. With incandescence at high temperatures sample self-illumination can be a first approach and has previously been employed by other groups using aerodynamic levitation techniques. In order to make measurements over the extensive temperature ranges described here, shadow-cast imaging, like used in the past for EML work, of the levitating drop is essential. Here, the camera and lens configuration do not have to be adapted for different experimental conditions. Generally, sharp sample edges can be imaged only if the aperture of the telecentric lens is closed as much as possible, compatible with the dynamic range for the shutter speed, once the frame rate is set. Typical frame rate settings are 800 fps.

Recorded images are analyzed using our own interface written in LabView. The surface profile of the partially visible droplet is determined using an edge detection algorithm. Horizontal and vertical radii, the droplet center position, and
FIG. 3. Size and shape of aerodynamically levitated liquid alumina obtained from free cooling (black line), contrasting backlighted imaging for drops quenched from 2977 °C (left) with incandescent imaging quenched from 2350 °C (right). Horizontal \(r_h \) (red dotted line) and vertical \(r_v \) (dashed blue line) radii obtained from image analysis as a function of time together with the corresponding temperatures. The shadow cast images (left) and the self-illuminated images (right) show the droplet shortly before quenching, halfway through, and at the final stage (left to right) as before recalescence sets in by \(t_R \) around 1600 °C.

D. Acoustic excitation

Different waveforms and symmetries for acoustic excitation can be selected by the frequency generator. For the present experiments, a conventional sine wave was employed as this proved to be the most effective way to excite droplet oscillations in a predictable way. The optimum sample amplitude gave a maximum deviation in sphere width of between 2% and 5% of its nominal diameter, ensuring that the sample oscillations approximated to the simple harmonic oscillator equation.

1. Resonant surface oscillations

The squares of the resonant frequencies of an oscillating sphere are proportional to its surface tension \(\gamma \):

\[
\gamma = \frac{3\pi \nu_R^2 M}{l(l-1)(l+2)},
\]

(1)

where \(M \) is the mass, \(\nu_R \) the resonance frequency, and \(l \) describes the oscillation mode. Typically, the \(l = 2 \) mode is dominant, in which case

\[
\gamma = \frac{3}{8} \pi \nu_R^2 M.
\]

(2)

With asphericity and rotational motion the \(l = 2 \) mode is split into five modes (\(l = 2, m = 0, \pm 1, \pm 2 \)) which can all be observed, with a sum rule correlating the measured resonance frequencies with the surface tension. This requires the forces on the surface of the levitated sphere to be estimated which are not readily available for ADL. The sum rule resulting from calculations for EML setups indicate that the correction to surface tension is about 20% compared to just using the \(l = 2, m = 0 \)-mode frequency.

In order to determine \(\gamma \) for an aerodynamically levitated droplet, the resonance frequencies also have to be determined. Compared to EML where the oscillations on the droplet surface are self-excited due to interaction with the electromagnetic field, in ADL, if the droplet is levitated stably, surface oscillations are absent. Even when it is levitated unstably, surface oscillations have significantly smaller amplitudes than for EML leading to larger fluctuations in the Fourier spectra. In order to obtain surface oscillations for ADL with reproducible strength, the droplet needs to be forced to oscillate and the Fourier amplitude obtained. By sweeping through a range of frequencies with high-speed camera imaging, a resonance spectrum can be obtained from which the \(l = 2, m \)
= 0, ±1, ±2)-mode frequencies can be determined. The primary resonant frequency \((l = 2, m = 0)\), where vertical and horizontal motion are phase shifted by 90°, can often be recognized by eye.

2. Damping constant

For a spherical sample, viscosity \(\eta\) is related to the damping constant \(\Gamma\) of the resonant surface oscillations.\(^{47}\) For the \(l = 2\) mode,

\[
\Gamma = \frac{20\pi R}{3M} \eta = \frac{5}{\rho R^2} \eta, \quad (3)
\]

where \(R\) is the radius of the oscillating sphere, \(M\) its mass, and \(\rho\) its density. To determine \(\Gamma\), the droplet is excited for a few seconds close to the primary resonance frequency \((l = 2, m = 0)\), the excitation removed, and the decay of the oscillation amplitude monitored. Images are then analyzed for horizontal and vertical radii, \(r_h\) and \(r_v\), respectively, and fit in a two stage process. Assuming simple harmonic oscillator motion for the steady state

\[
r_{h/v}(t) = A \cdot \sin[2\pi \nu_{dho}(t - t_0)] + r_0, \quad (4)
\]

where \(A\) is the amplitude, \(\nu_{dho}\) the excitation frequency, \(r_0\) the mean sample radius, and \(t_0\) an offset. For the damped decay,

\[
r_{h/v}(t) = A \cdot \exp[-\Gamma(t - t_1)] \cdot \sin[2\pi \nu_{dho}(t - t_0)] + R_{av}. \quad (5)
\]

\(A\) is the same constant as in Eq. (4) and kept constant, \(\nu_{dho}\) gives the resonance frequency for the droplet, \(R_{av}\) is the radius of the droplet in rest, and \(t_1\) is the time the decay starts. As \(\nu_{dho}\) is the primary resonance frequency of the droplet, this can be used in Eq. (2) to estimate the corresponding surface tension \(\gamma\).

III. THERMOPHYSICAL PROPERTY RESULTS AND DISCUSSION

A. Shape and size of liquid drops

Following calibration of the high speed camera (see Appendix B), temperature dependent densities of alumina were determined under free-cooling conditions. Figure 3 shows the droplet radii \(r_h\) and \(r_v\) matched to the changing temperature during cooling to the onset of recalescence \(T_{re}\), under incandescent (right) and under back lighted conditions (left). Images of the levitated sphere are also included at spot temperatures. Taken together they clearly show the advantages of using a shadow casting geometry for determining droplet size, compared to relying on incandescence light levels. This image is also far sharper with backlighting and highlights how incandescent images underestimate sample size by \(\approx \frac{1}{2}\%\). This worsens at lower temperatures, and overall leads to significant overestimation of density.

B. Density

Figure 4 depicts the density of a single crystal of ruby during heating (left) using shadow-casting and the resulting variation in density of liquid alumina during free cooling (right) for both types of imaging. This is calculated as \(3M/(4\pi r_M^2 r_m)\), whereby \(r_M\) and \(r_m\) are half the major and minor axes, respectively, assuming the sample is symmetric about the minor axis. On the left the density of a polished spherical ruby crystal is shown using back lighting, heated from ambient through the melting point \(T_m\). The major and minor axes are equal until \(T_m\) is approached, where they separate as the sample changes from spherical to ellipsoidal. While the density of the solid falls monotonically from room temperature as the temperature rises, following a linear thermal expansion coefficient of \(\alpha = 7.0 \times 10^{-6} \text{ K}^{-1}\) corresponding well to literature values, it drops sharply by \(24\%\) to about 2.9 g cm\(^{-3}\) at the liquidus. This large density change corresponds to the atomic structure altering from corundum, where

![FIG. 4. (Left) Density of ruby heated from room temperature to the melting point \(T_m = 2323\) K. (Right) Density of a liquid alumina droplet cooled from the boiling point \(T_B = 3240\) K to recalescence under supercooling \(T_R = 1863\) K. Earlier work with aerodynamically levitated samples\(^{46}\) and electrostatically levitated samples\(^{43}\) are included. For previous ADL data, no account was taken of asphericity as only \(r_h\) was measured. Work on alumina using conventional methods (triangles and solid line)\(^{46}\) show the greatest disparity with contactless methods. The considerable scatter is attributed to variable processing conditions.](image-url)
the coordination of aluminum is octahedral and of oxygen is 4-fold, to that of the liquid alumina, where aluminum is mainly 4- and 5-fold coordinated with oxygen occupying 2- and 3-fold sites. The particular proportions of multiple configurations have been determined by computer modeling of the structure factor in the liquid state, and are dependent on the density chosen.

Turning now to cooling the liquid through to the supercooled state, the density on free cooling measured with shadow casting extends the temperatures accessed up to the boiling point \(T_b \) of alumina (3240 K). On cooling, the liquid drop supercools \(\sim 400 \)°, before recrystallizing at the recrystallence temperature \(T_R \) (\(\sim 1900 \) K). Above the melting temperature the linear thermal expansion coefficient of liquid alumina \(\alpha = 1.0 \times 10^{-5} \text{K}^{-1} \), much higher than that of values reported in literature for solid alumina, reflects the substantial difference in the atomic structure between solid and liquid state.

The underestimation of the size of liquid drops with incandescent imaging, especially at lower temperatures, is also exacerbated by the need to limit the temperature range for a fixed shutter time is a known phenomenon. Moreover, we found that merging several cooling runs using different shutter times to accommodate different levels of incandescence resulted in overlap mismatch. These differences explain the wide range of density values reported in the literature and collated in Figure 4. For levitated droplets, the average temperature dependence by Glorieux et al. is weaker compared with our self-illumination data and slightly stronger compared with backlighting and their data show a higher degree of scatter (not shown in Fig. 4). The former can be related to the fact that the sample was imaged from the top and assumed to be spherical, which is clearly not the case (cf. Figure 3). Asphericity is also temperature dependent. The latter can be attributed to the tumbling motion of the sample in the nozzle which renders surface recognition difficult. However, calculating an error for our backlighting values taking into account a 5 μg (only balance, mass loss in short duration experiments negligible) uncertainty in sample weight and a 10 μm (about 4 pixel) uncertainty in sample radius represented by the error bar shown on the data point for the highest temperature clearly shows that within error bars our results agree with those of Glorieux. The temperature dependence reported by Paradis et al. is again stronger than for our work and densities deviate significantly. The reason could be camera resolution, which was lower in the work by Paradis sample evaporation since the work was carried out under high-vacuum conditions by Paradis and gas flow induced deformations in the lower part of the sphere hidden by the conical nozzle in our case. The much earlier measurements reported using conventional containment techniques by Kirshenbaum might well have been affected by sample contamination and measurement uncertainties since the sample expansion was measured relative to the container. Taken together, the wide variation in density and expansion coefficient in the existing literature contrasts with the consistency of back lighted measurements described here. These show regularity across 1300 of temperature in the liquid state.

In summary, our precise measurements (2% calculated error based on mass and radius uncertainties) of liquid density, which are correlated with the solid state thermal expansion coefficient and room temperature density, will enable cation and anion local environments to be more accurately refined. Furthermore, adopting shadow-casting with a high-power laser to high-pressure ESL work or modifying AL such that it works also with high-melting point materials may improve the accuracy of density measurements even further.

C. Surface tension

Because surface tension \(\gamma \) is related to the resonance frequency \(\nu_R \) and mass \(M \), the magnitude at a particular temperature is not affected by the imaging method. Acoustically driven excitation sweeps for alumina were conducted following procedures outlined in Sec. II D 1. An example is given in Figure 5 taken \(\sim 200 \)° above the melting point of alumina. The oscillating horizontal droplet amplitude obtained from image analysis is shown together with the Fourier transform, where a fundamental resonance peak is clearly visible centered at 178 Hz with a small overtone at 356 Hz. This is compared to cuts of the Fourier spectra obtained from different excitation sweeps shown in Figure 6. Acoustic excitation of
liquid droplets clearly results in a clean oscillatory response at each frequency. Finally, the Fourier amplitudes of the entire frequency range are plotted in Figure 7 (left) for two different temperatures. These show a relatively clear pattern comprising five resonance peaks, the most prominent being at 178 Hz which can be attributed to the \((l = 2, m = 0)\)-mode. A series of images, illustrating the alternating vertical and horizontal character of the mode, is shown alongside. The four peaks to the right can be identified with the rotationally split peaks of the \((l = 2, m = \pm 1, \pm 2)\)-modes. The outer two peaks correspond to the \((l = 2, m = \pm 2)\)-modes and the inner peaks to the \((l = 0, m = \pm 1)\)-modes. Aerodynamically levitated droplets typically rotate at a frequency of a few Hz, which explains the splitting of the modes. The sample asphericity on the other hand accounts for their separation of the \((l = 2, m = 0)\)-mode to the right. Surface tension values obtained from Eq. (2) are shown alongside in Figure 7. Since the levitated drop naturally adopts the \((l = 2, m = 0)\)-mode when forced oscillations are switched off during damping experiments, these have also been added to Figure 7. Surface tension values are compared to earlier values from literature (Ref. 41 and references therein) which also reveal little or no temperature dependence. In all cases, Eq. (2) yields values around 0.65 N m\(^{-1}\). Since only the \((l = 2, m = 0)\)-mode is included, \(\gamma\) might well be underestimated by \(\sim 20\%\) (see discussion in Sec. II D 1) as indicated in Figure 7 (right) at 2573 K. Interesting to note is the sharp drop in surface tension as the boiling point is reached. Here, also the uncertainty in temperature measurement assuming a constant emissivity over the entire range becomes apparent.

D. Viscosity

Viscosity were obtained by acoustically exciting the sphere at its resonance frequency for the \((l = 2, m = 0)\)-mode for several seconds and then switching off. The sample during forced oscillation and the decay were monitored by the high-speed camera running at 800 fps. The damping constant \(\Gamma\) and hence the viscosity \(\eta\) are obtained following the procedure outlined in Appendix D. Figure 8 shows viscosity results measured using shadow casting for molten and supercooled alumina as a function of temperature over the extended temperature range of \(\sim 1400\)° between \(T_b\) and \(T_R\), over which \(\eta\) increases by an order of magnitude. Error bars are calculated as standard deviations of the averaged data. Overall, our values obtained for alumina above the liquidus are consistent with earlier work on aerodynamically levitated alumina using sample self-excitation through the levitation gas and self-illumination at high temperatures close to \(T_b\),\(^{16}\) as well as in the vicinity of \(T_m\).\(^{42}\) The present data using backlighting and a well defined acoustic excitation, however, show substantially reduced scatter. They also extend throughout the supercooled range, rising considerably between melting (\(T_m\)) and the boiling point temperature of \(\text{Al}_2\text{O}_3\).
and crystallization (T_R). Backlighting imaging enables the supercooled viscosity of alumina to be continuously related to rheology between melting and boiling. In particular, access to viscosity at supercooled temperatures, which our work enables, will inform the solidification processes that accompany recalescence.

Taken together, while viscosity values measured using ADL are reasonably consistent, they deviate substantially from previously reported data obtained by classical viscosity methods.42, 49–51 It is likely these differences between contactless and contacted measurements may well be affected by the interaction between molten alumina and the container, and wetting behavior in the latter case.

\section*{IV. CONCLUSION}
A compact novel aerodynamic levitation facility has been developed that enables to reliably measure the thermophysical properties of high temperature liquids. By employing two lasers, temperature gradients across the specimen are minimized. Droplet oscillations are realized in a controlled way by incorporating acoustic excitation via the levitating gas. Imaged using a high-speed camera, accurate measurements of surface tension, viscosity, and density are obtained and demonstrated using liquid alumina as a test case. A comparison with previously obtained data shows that for accurate density determination both, the horizontal and the vertical radii of the levitated sample have to be determined. Moreover, shadow casting is critical to obtain reliable calibrated values of droplet shape and size over extensive temperature ranges. In future, the facility will be further developed for routinely measuring thermophysical properties of high temperature liquids \textit{in situ} in conjunction with structure factor determination using synchrotron radiation and neutron sources.

\section*{ACKNOWLEDGMENTS}
We are grateful to R. Winter for providing us with a second CO$_2$ laser. We thank L. Hennet at CNRS-CEMHTI, Orleans, France, for advice on levitation technology. We thank the German Academic Exchange Service (DAAD) for part-funding of the stay of G. N. Greaves at the DLR. We thank J. Brillo for reading of the paper and valuable comments to it. We also acknowledge the support of the Higher Education Funding Council of Wales (HEFCW) through the Centre for Advanced Functional Materials and Devices (CAFMaD).

\section*{APPENDIX A: SAMPLE MATERIAL}
Ruby spheres of 2 mm diameter (Precision Ball & Gauge Co Grade 25 and Oskar Moser Grade 20) were used for the equipment characterization experiments and as the source for liquid alumina. A pristine polished ruby sphere was used for each heating and cooling cycle. The liquid droplet was soaked at 2700 K for 10 min to remove the chromium oxide content as verified by atomic absorption spectroscopy of processed samples in agreement with reports in literature.52 Polished single phase solids levitate well and enable density to be measured between ambient and melting temperatures. Another reason for using pristine spheres is shrinkage-hole formation on solidification of a melted sphere which leads to bubbles being trapped inside the sphere upon remelting. The spheres were checked for their weight before and after each experiment on a balance with an accuracy of 5 μg. Typically, the ruby spheres lost about 0.1 mg for various length of an experiment, increasing to \sim1 mg as the boiling point was reached.

\begin{table}[h]
\centering
\caption{Gauge sphere nominal diameters (ND), measured diameters in pixel (R_H horizontal and R_V vertical), and calculated effective pixel size.}
\begin{tabular}{|c|c|c|c|c|}
\hline
Type & ND (mm) & R_H & R_V & EPS (μm/pixel) \\
\hline
Steel & 2.000 & 381.0 & 381.5 & 2.620 \\
Steel & 2.381 & 451.5 & 452.0 & 2.635 \\
Steel & 2.500 & 473.0 & 472.5 & 2.646 \\
Ruby & 2.000 & 379.0 & 380.0 & 2.635 \\
\hline
\end{tabular}
\end{table}

\section*{APPENDIX B: CAMERA CALIBRATION}
Nominal per pixel resolution achieved with the combination of camera and lens is 2.8 μm for the MotionBlitz camera. For calibration precision milled steel ball bearings 2 mm, 2.381 mm, and 2.5 mm (SKF) and 2 mm ruby spheres (Grade 20) were used. The back lighted sphere was recorded and its radius in pixels was determined through sample surface recognition, verifying the nominal pixel resolution. Values obtained for the diameters of the different spheres are listed in Table I. The data clearly show that the effective pixel size (EPS) depends slightly on the radius of the sphere. This is in line with the tabulated lens distortion.

\section*{APPENDIX C: IMAGE ANALYSIS METHODS}
Owing to the configuration of the aerodynamic levitator a portion of the bottom of the droplet remains in the nozzle, hence the image processing software has to interpolate the shape of the droplet from the visible portion (Figure 9). The

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure9.png}
\caption{Typical frame from high speed camera showing portion of sample visible above levitation nozzle. Also shown are points found by edge detection routine (blue) together with the major-axis (red) and minor-axis (green) of the ellipse fitted through points.}
\end{figure}
image processing pipeline written in LabView makes extensive use of the NI Vision library routines. The operator uses the first frame of the recorded video to manually select an annular region of interest containing the approximate location of the visible portion of the edge of the droplet. Once the annular region is defined, processing takes place on the rest of the frames in the video using the same parameters. A spoke detection algorithm automatically detects the edge of the droplet along radial lines from the center of the annulus at 5° intervals, giving approximately 45 points for a typical droplet. An ellipse fit algorithm is then used to reconstruct the elliptical projection of the droplet and find the center point together with locations of the major and minor axes and the projected area of the ellipse. From these parameters, the width and height of the droplet are also calculated. All the ellipse parameters are saved for each frame in the video. A Fourier transform is then used to obtain a power spectrum from the horizontal and vertical radii components of the ellipse parameters.

APPENDIX D: VISCOSITY ANALYSIS

A sine function (cf. Eq. (4)) is fitted to the part of the recorded curve [cf. Figure 10(b)] where the sample is acoustically excited. From this the resonance amplitude A and the offset time t_0 are determined, which are fixed for fitting of the damped-harmonic oscillator equation (cf. Eq. (5)) to the decay data. The decay data are fitted with four free parameters: the resonance frequency v_{ho}, the average sample radius R_{av}, the start time of the decay t_1, and the decay constant Γ. Γ and t_1 appear to be correlated. In order to obtain the best fit, t_1 has to be chosen sufficiently close to its real value. All of the determined radii in horizontal and vertical direction are analyzed. The frequencies determined from the harmonic oscillator and the decay data fit are typically slightly different if the forced oscillator frequency is slightly different from the primary resonant frequency ($l = 2, m = 0$). Hereby, the droplet oscillation frequency almost instantaneously shifts to the primary resonance frequency at the start of the decay.

Table II summarizes the fit parameters A, R_{av}, Γ, and v_{ho} of the damped harmonic oscillator fit as well as the excitation frequency v_{ho} of the harmonic oscillator fit to the horizontal radii for different temperatures.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>A (pixel)</th>
<th>v_{ho} (Hz)</th>
<th>v_{dho} (Hz)</th>
<th>R_{av} (pixel)</th>
<th>Γ (s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1870</td>
<td>4.1</td>
<td>180.0</td>
<td>178.3</td>
<td>423</td>
<td>117</td>
</tr>
<tr>
<td>1923</td>
<td>6.1</td>
<td>180.0</td>
<td>178.3</td>
<td>425</td>
<td>105</td>
</tr>
<tr>
<td>1973</td>
<td>6.7</td>
<td>180.0</td>
<td>179.8</td>
<td>426</td>
<td>98.9</td>
</tr>
<tr>
<td>2033</td>
<td>7.3</td>
<td>180.0</td>
<td>179.7</td>
<td>427</td>
<td>92.2</td>
</tr>
<tr>
<td>2123</td>
<td>6.4</td>
<td>180.0</td>
<td>180.9</td>
<td>423</td>
<td>82.7</td>
</tr>
<tr>
<td>2173</td>
<td>9.5</td>
<td>180.0</td>
<td>181.2</td>
<td>426</td>
<td>79.1</td>
</tr>
<tr>
<td>2223</td>
<td>7.4</td>
<td>180.0</td>
<td>179.8</td>
<td>423</td>
<td>71.4</td>
</tr>
<tr>
<td>2281</td>
<td>11.5</td>
<td>180.0</td>
<td>180.9</td>
<td>426</td>
<td>64.9</td>
</tr>
<tr>
<td>2373</td>
<td>12.9</td>
<td>180.0</td>
<td>180.8</td>
<td>428</td>
<td>58.6</td>
</tr>
<tr>
<td>2473</td>
<td>9.5</td>
<td>180.0</td>
<td>180.5</td>
<td>424</td>
<td>51.2</td>
</tr>
<tr>
<td>2583</td>
<td>16.6</td>
<td>180.0</td>
<td>181.1</td>
<td>428</td>
<td>45.0</td>
</tr>
<tr>
<td>2673</td>
<td>13.4</td>
<td>180.0</td>
<td>183.3</td>
<td>419</td>
<td>35.2</td>
</tr>
<tr>
<td>2823</td>
<td>21.0</td>
<td>180.0</td>
<td>180.4</td>
<td>429</td>
<td>35.5</td>
</tr>
<tr>
<td>3039</td>
<td>21.5</td>
<td>180.0</td>
<td>182.7</td>
<td>422</td>
<td>23.1</td>
</tr>
<tr>
<td>3142</td>
<td>19.6</td>
<td>180.0</td>
<td>185.0</td>
<td>416</td>
<td>21.2</td>
</tr>
<tr>
<td>3273</td>
<td>8.0</td>
<td>180.0</td>
<td>193.0</td>
<td>401</td>
<td>21.3</td>
</tr>
<tr>
<td>3323</td>
<td>3.1</td>
<td>168.0</td>
<td>163.1</td>
<td>403</td>
<td>21.0</td>
</tr>
</tbody>
</table>

FIG. 10. Damping curve of horizontal sample radius (a), harmonic oscillator (b), and damped harmonic oscillator fit (c) to the recorded radius data, respectively.