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Abstract. The thickness of ice shelves, a basic parameter
for mass balance estimates, is typically inferred using hy-
drostatic equilibrium, for which knowledge of the depth-
averaged density is essential. The densi�cation from snow
to ice depends on a number of local factors (e.g., temper-
ature and surface mass balance) causing spatial and tempo-
ral variations in density�depth pro�les. However, direct mea-
surements of �rn density are sparse, requiring substantial lo-
gistical effort. Here, we infer density from radio-wave prop-
agation speed using ground-based wide-angle radar data sets
(10 MHz) collected at �ve sites on Roi Baudouin Ice Shelf
(RBIS), Dronning Maud Land, Antarctica. We reconstruct
depth to internal re�ectors, local ice thickness, and �rn-air
content using a novel algorithm that includes traveltime in-
version and ray tracing with a prescribed shape of the depth�
density relationship. For the particular case of an ice-shelf
channel, where ice thickness and surface slope change sub-
stantially over a few kilometers, the radar data suggest that
�rn inside the channel is about 5 % denser than outside the
channel. Although this density difference is at the detec-
tion limit of the radar, it is consistent with a similar density
anomaly reconstructed from optical televiewing, which re-
veals that the �rn inside the channel is 4.7 % denser than that
outside the channel. Hydrostatic ice thickness calculations
used for determining basal melt rates should account for the
denser �rn in ice-shelf channels. The radar method presented
here is robust and can easily be adapted to different radar
frequencies and data-acquisition geometries.

1 Introduction

As a snow layer deposited at the ice-sheet surface is progres-
sively buried by subsequent snowfall, it transforms to higher-
density �rn under the overburden pressure. The �rn�ice tran-
sition, marked by the depth at which air bubbles are isolated,
occurs at a density of approximately 830 kgm�3 at depths
typically ranging from 30 to 120 m in polar regions (Cuffey
and Paterson, 2010, Chapter 2). Densi�cation continues un-
til air bubbles transform to clathrate hydrates and pure ice
density is reached (�i � 917 kgm�3). The precise nature of
this densi�cation depends on a number of local factors that
also vary temporally (Arthern et al., 2010), including surface
density and strati�cation (Hörhold et al., 2011), surface mass
balance and temperature (e.g., Herron and Langway, 1980),
as well as dynamic recrystallization and the strain regime.
Recent studies also highlight the role of microstructure (Gre-
gory et al., 2014) and impurities (Hörhold et al., 2012; Fre-
itag et al., 2013a, b).

Knowledge of the depth�density pro�le and its spatial and
temporal variability is important for a number of applica-
tions: (i) to determine the age difference of enclosed air
bubbles and the surrounding ice in ice cores (Bender et al.,
1997); (ii) to determine the depth and the cumulative mass
above radar re�ectors in order to map surface mass balance
with radar (Waddington et al., 2007; Eisen et al., 2008);
(iii) to interpret the seasonality of surface elevation changes
(Zwally and Jun, 2002; Ligtenberg et al., 2014) in terms of
surface mass balance, �rn compaction, and dynamic thin-
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ning (e.g., Wouters et al., 2015); and (iv) to infer ice-shelf
thickness for mass balance estimates (Rignot et al., 2013;
Depoorter et al., 2013) from hydrostatic equilibrium (Griggs
and Bamber, 2011).

Density pro�les are most reliably retrieved from ice/�rn
cores either by measuring discrete samples gravimetrically,
or by using continuous dielectric pro�ling (Wilhelms et al.,
1998) or X-ray tomography (Kawamura, 1990; Freitag et al.,
2013a). Techniques such as gamma-, neutron-, laser-, or
optical-scattering (Hubbard et al., 2013, and references
therein) circumnavigate the labor-intensive retrieval of an ice
core and only require a borehole, which can rapidly be drilled
using hot water.

All of the aforementioned techniques, however, remain
point measurements requiring substantial logistics. A com-
plementary approach is to exploit the density dependence
of radio-wave propagation speed. The principle underlying
the technique involves illuminating a re�ector with different
ray paths such that both the re�ector depth and the radio-
wave propagation speed may be calculated using methods
such as the Dix inversion (Dix, 1955), semblance analysis
(e.g., Booth et al., 2010, 2011), interferometry (Arthern et al.,
2013), or traveltime inversion based on ray tracing (Zelt and
Smith, 1992; Brown et al., 2012).

A typical acquisition geometry is to position receiver
and transmitter with variable offsets so that the subsurface
re�ection point remains the same for horizontal re�ectors
(common-midpoint surveys, e.g. Murray et al., 2000; Wine-
brenner et al., 2003; Hempel et al., 2000; Eisen et al., 2002;
Bradford et al., 2009; Blindow et al., 2010). Alternatively,
only the receiver can be moved (Fig. 1) resulting in what is
sometimes referred to as wide-angle re�ection and refraction
(WARR; Hubbard and Glasser, 2005, p. 165) geometry. In
all cases, density can be inferred from the radar-wave speed
using density�permittivity relations (e.g., Looyenga, 1965;
Wharton et al., 1980; Kovacs et al., 1995).

Here, we investigate six WARR measurements collected
in December 2013 on Roi Baudouin Ice Shelf (RBIS), Dron-
ning Maud Land, Antarctica. The WARR sites are part of
a larger geophysical survey imaging an ice-shelf pinning-
point and a number of ice-shelf channels which are about
2 km wide and can extend longitudinally from the ground-
ing line to the ice-shelf front (Le Brocq et al., 2013). Ice
inside the channels is thinner, sometimes more than 50 %
(Drews, 2015), and the surface is depressed, causing the
elongated lineations visible in satellite imagery (Fig. 2).
Basal melting inside channels can be signi�cantly larger
(Stanton et al., 2013), correspondingly in�uencing ice-shelf
stability (Sergienko, 2013). Adjustment towards hydrostatic
equilibrium resulting from basal melting can weaken ice
shelves through crevasse formation (Vaughan et al., 2012).
Channelized melting, on the other hand, can also prevent
excessive area-wide basal melting and hence stabilize ice
shelves (Gladish et al., 2012; Millgate et al., 2013).

The basal mass balance inside ice-shelf channels can be
mapped from remote sensing assuming mass conservation
(e.g., Dutrieux et al., 2013). This approach calculates ice
thickness from hydrostatic equilibrium which engenders po-
tentially two pitfalls. (i) Bridging stresses can prevent full re-
laxation to hydrostatic equilibrium (Drews, 2015), and (ii) it
may not account for small-scale variations in material den-
sity. Evidence for small-scale changes in density was sug-
gested by Langley et al. (2014) and Drews (2015), who
found that the surface mass balance can be elevated locally
within the concave surface associated with ice-shelf chan-
nels, which in turn may impact the local densi�cation pro-
cesses. Atmospheric models typically operate with a hori-
zontal gridding coarser than 5 km (Lenaerts et al., 2014) and
cannot resolve such small-scale variations in surface mass
balance and density.

Herein, we calculate densities from WARR sites using
traveltime inversion and ray tracing (Sect. 2). The data set
is supplemented with densities based on optical televiewing
(OPTV) of two boreholes (Fig. 2; Sect. 3). In Sects. 4 and
5, we compare both methods and discuss density anomalies
associated with the ice-shelf channels. We present our con-
clusions about the derivation of density from radar in general,
and the density anomalies in ice-shelf channels in particular
in Sect. 6, and discuss consequences of our �ndings for esti-
mating basal melt rates in ice-shelf channels.

2 Development of a new algorithm to infer density
from wide-angle radar

We describe the propagation of the radar wave for each off-
set as a ray traveling from the transmitter via the re�ection
boundary to the receiver (Fig. 1). Using a coordinate sys-
tem, where x is parallel to the surface and z points verti-
cally downwards, the ray paths are determined by the spa-
tially variable radio-wave propagation speed v.x;z/ which is
primarily determined by density; unless v.x;z/ is constant,
ray paths are not straight but bend following Fermat’s prin-
ciple of minimizing the traveltime between transmitter and
receiver. The geometry depicted in Fig. 1 is common in seis-
mic investigations, and multiple techniques exist for deriving
the velocities from recorded traveltimes (Yilmaz, 1987).

Similar to what has been done for wide-angle radar mea-
surements in Greenland (Brown et al., 2012), we follow
a variation of the approach delineated by Zelt and Smith
(1992). Brown et al. (2012) measured common midpoint re-
turns with a 100 MHz radar. They used a ray tracing for-
ward model and inferred bulk densities of individual inter-
vals (hereafter interval densities) by inverting re�ector depths
and interval velocities for single re�ectors from top to bot-
tom (a.k.a. layer stripping). In this paper, we use a 10 MHz
radar providing improved depth penetration at the expense of
lower spatial resolution. In order to prevent small errors in in-
terval densities and velocities associated with shallow re�ec-
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Figure 1. (a) Plain view of the wide-angle acquisition geometry: transmitting (Tx) and receiving (Rx) antennas were aligned in parallel.
While the transmitter remained at a �xed location, the receiver was incrementally moved farther away. A sketch of the corresponding ray
paths is shown in (b) with a synthetic velocity�depth function color coded. The labels of example rays and their incidence angles are presented
in Eqs. (1)�(10).

tors from being handed downwards, we re�ne the method by
parameterizing a monotonic depth�density function, and by
inverting simultaneously for a set of parameters specifying
the density and all re�ector depths, described below.

2.1 Experimental setup

The radar consists of resistively loaded dipole antennas
(10 MHz) linked to a 4 kV pulser (Kentech) for transmitting,
and to a digitizing oscilloscope (National Instruments, USB-
5133) for receiving (Matsuoka et al., 2012a). Figure 1 illus-
trates the acquisition geometry in which the transmitter re-
mained at a �xed location and the receiver was moved in-
crementally farther away at 2 m intervals. The axis between
transmitter and receiver at Sites 1, 2, 4, 5, and 6 (locations,
Fig. 2), was aligned across-�ow (all antennas are parallel to
the �ow) because we expect the ice thickness to vary little in
the across-�ow direction and therefore internal re�ectors are
less likely to dip. For the same reason, Site 3, which is lo-
cated inside an ice-shelf channel, was aligned parallel to the
channel because in this particular area ice thickness varies
mostly in the across-�ow direction. The transmitter�receiver
distance was determined with measuring tape, and recording
was triggered by the direct air wave. The latter is not ideal,
and can be improved by using �ber-optic cables. Processing
of the radar data included horizontal alignment of the �rst
arrivals (a.k.a. t0 correction), dewow �ltering, Ormsby band-
pass �ltering, and the application of a depth-variable gain.
Because triggering was done with the direct air wave, a static

Figure 2. Location of the wide-angle (WARR) radar sites (red tri-
angles) relative to the boreholes of 2010 and 2014 which were used
for optical televiewing (OPTV). The depressed surfaces of ice-shelf
channels appear as elongated lineations in the background image
(Landsat 8, December 2013, provided by the US Geological Sur-
vey).

time shift was added to each trace to account for the delayed
arrival of the air wave for increasing offsets.

In multi-offset surveys, the traveltime of internal re�ec-
tors increases hyperbolically with increasing offset (e.g., Dix,
1955), while the surface wave (traveling in the �rn column
directly from transmitter to receiver) has a linear moveout.

www.the-cryosphere.net/10/811/2016/ The Cryosphere, 10, 811�823, 2016
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Figure 3. Wide-angle radar data showing air waves (AW, green lines) and surface waves (SW, green dashed lines) with linearly increasing
traveltime with offset, while traveltime increases hyperbolically with offset for internal (blue) and basal (red) re�ectors. See Fig. 2 for
locations of Sites 1�6. Site 6 was excluded from further analysis because the basal re�ection is ambiguous (probably due to off-angle
re�ectors in the vicinity).

The maximum amplitude of the basal re�ector was detected
automatically and shifted with a constant offset to the �rst
break. Internal re�ectors were handpicked. Figure 3 shows
radargrams collected at all sites with the picked re�ectors
that were used for the analysis. The maximum offset for each
site was chosen to equal approximately the local ice thick-
ness. At Site 6, basal and internal re�ectors are overlaid with
signals from off-angle re�ectors and cannot be picked unam-
biguously. We present the data here to exemplify a case for
which WARR does not yield reliable results and exclude this
site from further analysis.

2.2 Model parameterization and linearization

The traveltime tNr;No of a ray re�ected from a re�ector Nr
(r 2 T1;RU) at depth Dr measured at offset No (o 2 T1;0U) is
given by a line integral over the inverse of the radio-wave ve-
locity v along the ray path L (extending from the transmitter
to the receiver via the re�ection boundary).

tNr;No D
Z

L.mv;Dr/

1

v .mv/
dl: (1)

Figure 1 illustrates the notation. For each site, we pick a num-
ber of re�ectors at different depths mD D .D1; : : :;DR/T , and

we parameterize the velocity function as a function of density
using the model parameters mv. We use an inverse method to
reconstruct both the re�ector depths and the velocity pro�le
from the measured traveltimes.

The traveltime is a non-linear function of the model pa-
rameters (and hence the inversion results may be non-unique)
because L depends both on the initially unknown radio-wave
propagation speed and the re�ector depth. The velocity be-
tween two radar re�ectors is often represented as piecewise
constant or piecewise linear (Brown et al., 2012), making
the model parameters mv either the interval velocities or the
interval velocity gradients, respectively. Here, we introduce
additional constraints from Hubbard et al. (2013) who �t a
depth pro�le of density of the form:

� D 910�Ae�rz (2)

to density measurements of the borehole recovered at RBIS
in 2010. The parameters A and r are tuning parameters for
the surface density and the densi�cation length, respectively.
We relate density to the radio-wave propagation speed v us-
ing the complex refractive index method (CRIM) equation
(Wharton et al., 1980; Brown et al., 2012):

� D
cv�1� 1

cv�1
i � 1

�i; (3)

The Cryosphere, 10, 811�823, 2016 www.the-cryosphere.net/10/811/2016/
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where vi D 168 mµs�1 is the radio-wave propagation speed
in pure ice and c is the speed of light in a vacuum.

Combining Eqs. (2) and (3) leads to

v.A;r/D
c

k�.A;r/C 1
; (4)

with k D 1
�i

�
c
vi
� 1

�
and mv D .A;r/T . We use Eq. (4) and

assume that (i) radio-wave propagation speed v depends only
on density (i.e., excluding ice anisotropy); (ii) density is hor-
izontally homogeneous over the maximum lateral offset of
the receiver (� 404 m) but varies with depth so that v only
varies with depth in that interval; and (iii) within this inter-
val, internal re�ectors are horizontal. We aim to detect lat-
eral variations of the velocity pro�les on larger scales (i.e.,
between Sites 1 and 5) by �nding optimal sets of parame-
ters mD .mD;mv/D .A;r;D1; : : :;DR/T 2 RNm describing
the data at each site. The number of model parameters Nm D
RC 2 depends on the number of re�ectors.

Using Eq. (4) and approximating the integral through a
summation over Nz depth intervals, Eq. (1) reads

tNr;No .m/�
1

c

NzX

iD1

lzi .m/.k� .mv/C 1/ : (5)

The problem is linearized using an initial guess (marked with
superscript 0) and a �rst-order Taylor expansion:

tNr;No .m/� t
0
Nr;No

C
NmX

jD1

@tNr;No

@mj

����
m0
j

�
mj �m0

j

�
: (6)

An equation of type (6) holds for all O offsets of all R re-
�ectors and can be summarized in matrix notation:

" D S1m; (7)

where we de�ne " D tmod�tobs 2 RNp as a vector composed
of the residuals between the observed (tobs) and the mod-
eled (tmod) traveltimes. Np is the total number of picked dat-
apoints for all re�ectors (not all re�ectors can be picked to
the maximum offset O), S 2 RNp�Nm is a matrix contain-
ing all partial derivatives, and 1m 2 RNm is the model up-
date vector. One synthesized re�ector is composed of more
than 50 independent measurements and at each site RD 4 re-
�ectors (including the basal re�ector) were picked. There are
therefore six model parameters (Nm D 4C 2 for four re�ec-
tor depths and two parameters A and r describing the depth�
density function) and the number of measurements (Np) is
typically larger than 200, turning Eq. (7) into an overdeter-
mined system of equations.

The derivatives of Eq. (6) with respect to A and r are

@tNr;No

@A
D�

k
c

NzX

iD1

lzie
�rzi (8)

@tNr;No

@r
D
Ak
c

NzX

iD1

zilzie
�rzi ; (9)

and @tNr;No
@Dn

(n 2 T1;RU) follows from geometric considera-
tions (Zelt and Smith, 1992):

@tNr;No

@Dn
D 2

cos2Nr;No

v.Dn/
�nr; (10)

where2Dn;No is the incidence angle of rayNo at the re�ector
boundaryNr D n (Fig. 1b); �nr D 1 for r D n and 0 otherwise.

An optimal set of model parameters m is found as follows.
(i) Starting with an initial estimate for the re�ector depths
mD0 and the velocity model mv0 , a ray tracing forward model
(Sect. 2.3) calculates the expected traveltimes t0Nr;No

for a
given set of transmitter�receiver offsets; the difference be-
tween modeled and observed traveltimes results in the mis�t
vector " in Eq. (7). (ii) The overdetermined system is inverted
for the unknown parameter-correction vector 1m (Sect. 2.4),
and (iii) the parameter set is updated with m1 Dm0C1m
and serves as new input for the forward model. These steps
are repeated iteratively until the parameter updates are negli-
gible.

2.3 Ray tracing forward model

We apply the ray tracing model provided by Margrave (2011)
only to re�ected (and not to refracted) rays. For a given set
of re�ectors in a v.z/ medium, no analytical solution exists
which directly provides a ray path from the transmitter to a
given offset via a re�ection boundary. The problem is solved
iteratively by calculating fans of rays with varying take-off
angles until one ray endpoint emerges within a given mini-
mum distance (� 0.5 m) to the receiver. For some v.z/ con-
�gurations no such ray can be found, indicating that the pre-
scribed v.z/ medium does not adequately reproduce the ob-
servations.

2.4 Inversion

To solve the inverse problem we seek the set of parameters
m that minimizes the cost function J :

J D
1

2
"TC�1

t "C
1

2
�
�
m�m0

�T
C�1

m

�
m�m0

�
; (11)

in which the �rst term is the ‘2 norm of the traveltime resid-
ual vector weighted with Ct D diagf� 2

i g, where �i is the un-
certainty of the traveltime picks. The second term is a regu-
larization (weighted with Cm D diagf� 2

j g, where �j is the es-
timated uncertainty of the model parameters) penalizing so-
lutions which are far from the initial guess. Regularization
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with the Lagrange multiplier � is needed because outliers
in the data are weighted disproportionally in a least-squares
sense, which can lead to over�tting the data.

We minimize J by updating m iteratively according to the
Gauss�Newton method:

miC1 Dmi �
�

STC�1
t SC �C�1

m

��1
rJ; (12)

with rJ D C�1
t S"C�C�1

m

�
m�m0

�
. High values of � result

in a �nal model vector remaining close to the initial guess;
lower values of � allow for larger changes in the parameter
updates. We stop iterating when changes in J are below an
arbitrarily small threshold.

2.5 Sensitivity of the �rn-air content

In order to compare different measurements at different loca-
tions, we decompose the ice shelf into two layers of ice (Hi)
and air (HA) so that N�H D �iHiC �aHA and HiCHa DH
(i.e., HA D N���i

�a��i
H ). The �rn-air content HA (with air den-

sity �a) is a quantity independent of the local ice thickness (as
long as the depth-averaged radio-wave speed is determined
below the �rn�ice transition) and changes thereof indicate
changes in the depth-averaged density due to a changing �rn-
layer thickness. The �rn-air content in Antarctica can vary
from HA D 0 m in blue ice areas up to HA D 45 m for cold
�rn on the Antarctic plateau (Ligtenberg et al., 2014). Using
the CRIM equation to determine HA results in

HA D
cH�i

�
1
Nv �

1
vi

�

.�a� �i/
�
c
vi
� 1

� : (13)

We consider errors in HA from uncertainties in the depth-
averaged radio-wave propagation speed ( Nv), and uncertain-
ties in ice thickness (H ):

�H 2
A �

0

@ c�i

v2 .�a� �i/
�
c
vi
� 1

�H� Nv

1

A
2

C

0

@
c�i

�
1
Nv �

1
vi

�

.�a� �i/
�
c
vi
� 1

� �H

1

A

2

:

(14)

Assuming � Nv � 1 %, and �H � 10 % renders the �rst term of
Eq. (14) about 8 times larger than the second for the parame-
ter ranges considered here, and we therefore neglect errors in
ice thickness for the error propagation. Equation (14) shows
that the uncertainty of HA scales with the local ice thickness
so that small errors in the depth-averaged velocities (< 1 %)
result in signi�cant errors in terms of HA. We use HA as a
sensitive metric, both for comparing sites laterally and illus-
trating uncertainties of the radar method. In the following,
we use synthetic data to choose optimal parameters for the
inversion, and to investigate how errors in the data propagate
into the �nal depth�density estimates.

2.6 Testing with synthetic examples

To test the inversion algorithm we use ray tracing with a
prescribed depth�density function and recording geometry
(AD 460 kgm�3, r D 0:033 m�1; transmitter�receiver off-
sets between 30 and 300 m with 2 m spacing) to create a syn-
thetic traveltime data set with multiple re�ectors. We �rst in-
vestigate whether the solution is well constrained for ideal
cases, and then we discuss effects of systematic and random
errors in the data.

We consider two ideal cases: a single re�ector at 400 m
depth, and two re�ectors at 30 and 400 m depth. Using the
forward model, we simulated a new set of re�ectors with
model parameters covering depth ranges of �5 m from the
ideal depths and depth�density functions de�ned by r D
0:01�0:1 m�1 (Awas �xed). This density range corresponds
to �rn-air contents from HA D 5 to 50 m. The root-mean-
square differences (1trms) between the perturbed and the
ideal re�ector are equivalent to the �rst term of the objective
function J (Eq. 11) and indicate how well constrained the
solution is. Figure 4a illustrates that for a single re�ector the
solution is not well constrained, meaning that different sets
of model parameters give similar results to the ideal solution
(i.e., dense �rn/shallower re�ector or less dense �rn/deeper
re�ector). For example, positioning the re�ector at 392 m
depth with r D 0:063 m�1 results in a �rn-air content of
� 11 m, whereas positioning the re�ector at 410 m depth with
r D 0.014 m�1 corresponds to a �rn-air content of approxi-
mately 40 m. Both cases have a small model�data discrep-
ancy and are barely distinguishable from the ideal solution.
Using two re�ectors simultaneously better constrains the so-
lution, particularly if the shallower re�ector is above the �rn�
ice transition (Fig. 4b). We conclude from these simple test
cases that using the basal re�ector alone is inadequate. In-
stead, multiple re�ectors should be considered and inverted
for simultaneously. Using this type of testing, we also �nd
(i) that treating A as a free parameter introduces signi�cant
tradeoffs with r even for small noise levels. We therefore
keep A �xed and assume in the following that the surface
density is laterally uniform; (ii) plotting both terms of the
objective function J (Eq. 11) versus each other for differ-
ent � (a.k.a. L-curve) helps to choose an optimal �. We �nd
that �� 0.1 marks approximately the kink point between too
large a model�data discrepancy on the one hand and over�t-
ting on the other hand. We keep �D 0:1 from hereon to pre-
vent over�tting, but note that results are largely independent
of � for �� 0.1.

Next, we consider effects of random and systematic errors
and simulate four ideal re�ectors (D1 D 100 m, D2 D 150 m,
D4 D 200 m, D4 D 400 m) to which we add normally dis-
tributed noise (i.e., simulating picking errors and variabil-
ity in aligning the direct waves used for triggering) and lin-
ear trends (i.e., simulating accumulated errors in positioning,
unaccounted re�ector dipping, etc.). We then test the robust-
ness of the inversion for different initial guesses, and differ-
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Figure 4. Traveltime residuals (1trms) calculated with ray tracing between ideal re�ector in a �xed depth�density pro�le (AD 460 kgm�3;
r D 0.033 m�1) with re�ectors perturbed in terms of depths and density. Ideal solutions are marked with red crosses: (a) traveltime residuals
for an ideal re�ector at 400 m depth; (b) volumetric slice plot of traveltime residuals for two idealized re�ectors at 30 and 400 m depth.

Figure 5. Example for initial (a) and �nal (b) �t between the ray tracing forward model and the re�ectors at Site 2. In this case, three
re�ectors (black dots) were used for the inversion and one re�ector was kept for control. The forward model corresponds to the red dashed
curves and the control re�ectors to the blue dashed curves. Initial estimates shown here were r0 D 0.05 m�1, D1 D 68.2 m, D3 D 112.9 m,
D4 D 291.2 m; the best �t resulted in r D 0.027 m�1, D1 D 67.7 m, D3 D 111.2 m, and D4 D 293.3 m. The traveltime residual between the
model and data for initial (x) and �nal �t (o) is shown in (c).

ent magnitudes of noise and systematic errors. We �nd that
the limiting factor for the initial depth guess is the forward
model which does not �nd ray paths for all offsets if the ini-
tial guess is further than � 15 m from the true solution. For
all initial guesses deviating less than that, the inversion re-
covers the true depths robustly within decimeters, even for
noise levels with a mean amplitude of 5 times the sampling
interval (0.01 µs). However, the inversion is most sensitive to
trends in the data. For example, if re�ectors deviate systemat-
ically from 0.04 to�0.04 µs for large offsets, re�ector depths
are reconstructed with an error of 2�3 m. The corresponding
densities deviate in terms of �rn-air content more than 5 m
from the ideal solutions. We conclude from these test cases
that re�ectors need to be picked accurately (i.e keeping the
same phase within the individual wavelets); if systematic dif-
ferences between the forward model and data occur (e.g., the
modeled re�ector is tilted with respect to the observations),
then results should be interpreted with care.

2.7 Inversion of �eld data

For each site, three internal re�ectors were handpicked (D1�
D3) to complement the automatically detected basal re�ec-
tor (D4, Fig. 3). Initial guesses for re�ector depths are based
on standard linear regression in the traveltime2�offset2 di-
agrams (Dix, 1955); r0 D 0.033 m�1 and AD 460 kgm�3

stem from the 2010 OPTV density pro�le (Hubbard et al.,
2013).

We �rst checked the consistency of the picked internal re-
�ectors and inverted for r and the depths of one internal re-
�ector together with the basal re�ector. The remaining two
internal re�ectors were not used for the inversion, but to val-
idate the results. We did this for all three combinations (D1�
D4, D2�D4, D3�D4) in order to check whether internal re-
�ectors had been picked with the correct phase. Results were
considered consistent if the model�data discrepancy for each
re�ector was within �0.02 µs (cf. radar sampling interval is
0.01 µs). Picking a wrong phase typically causes inconsistent
results for one of the combinations. In such a case the corre-
sponding re�ector was repicked.
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Figure 6. Derived data summary of all sites (Site 3 is located in
an ice-shelf channel): (a) depth�density pro�les inverted from four
re�ectors, (b) ice thickness, (c) depth-averaged density, and (d) �rn-
air content. Black crosses in (b�d) represent the outcomes for �ve
combinations containing three or more re�ectors. Error bars assume
a 1 % error in depth-averaged radio-wave propagation speed. The
blue crosses correspond to depth-averaged solutions using normal
moveout of the basal re�ector only (Dix, 1955).

In a second step, we inverted for all �ve remaining re-
�ector combinations containing three and four re�ectors. We
also considered a range for r0 between 0.021 and 0.056 m�1,
corresponding to a �rn-air content of 24 and 9 m, respec-
tively. Figure 5 illustrates an example where three re�ectors
were used for the inversion and one was left for validation;
the model�data discrepancy is large for the initial guess. Af-
ter the inversion, the model�data discrepancy is smaller for
all re�ectors including the re�ector that was used for control
only.

In general, the �nal results are more sensitive to the respec-
tive re�ector combination than to the initial guess of r0. For
the latter we chose the one resulting in the smallest model�
data discrepancy (r0 D 0.033 m�1). Differences between the
�nal �ve parameter sets give a lower boundary for an error
estimate.

3 Density from optical televiewing

Densities were evaluated independently from the radar anal-
yses using OPTV logs of two boreholes drilled in 2010
and 2014 (Fig. 2). OPTV exploits the density dependence

Figure 7. Depth pro�les of density derived from WARR (dashed)
and OPTV (solid). WARR data are from Sites 1 and 3, closest
to the OPTV sites. Site 3 and the 2014 borehole are both in the
trough of an ice-shelf channel (Fig. 2). The envelopes of the radar-
derived densities correspond to the lower and upper limit of �ve
re�ector combinations used for the inversion. The OPTV logs were
smoothed with a 0.5 m running mean.

of backscattered light within the borehole. By lowering an
OPTV device into boreholes, luminosity (i.e., density) pro-
�les can be collected with a vertical resolution of millimeters
(Hubbard et al., 2008). This has been demonstrated for the
2010 borehole at RBIS (Hubbard et al., 2013) and we re-
fer to this reference for further details on the method. Both
borehole OPTV logs were calibrated against at least 40 den-
sity measurements made directly on core samples, yielding
an R2 value between luminosity and density of 0.96 for the
2010 log (Hubbard et al., 2013) and 0.82 for the 2014 log.

4 Results

Figure 6 and Table 1 summarize the derived depth�density
functions, ice thicknesses, radio-wave propagation speeds,
depth-averaged densities, and the �rn-air contents of the �ve
WARR sites. The reconstructed thicknesses vary between
157 and 396 m (86 % percentage difference), the depth-
averaged densities vary between 828 and 874 kgm�3 (� 5 %
percentage difference), and corresponding �rn-air contents
vary from 13.2 to 19.3 m (38 % percentage difference). For
the �ve different re�ector combinations at each site, the in-
verted ice thicknesses differ by less than 1.5 m (< 1 % per-
centage difference), the inverted depth-averaged densities
differ by less than 10 kgm�3 (< 1 % percentage difference),
and the �nal �rn-air contents differ by less than 3 m (< 17 %
percentage difference; Fig. 6b�d). This indicates that the re-
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Table 1. Summary of the WARR results from sites 1�5 in terms of range of offsets, number of offsets (O), ice thickness (H ), depth-
averaged density (�), depth-averaged radio-wave propagation speed (v), �rn-air content (HA), the decay length (r) parameterizing the depth�
density function, and the deviation from hydrostatic equilibrium (1H ). The ranges correspond to the lower and upper limits of �ve re�ector
combinations at each site (four re�ector combinations contain three re�ectors, and one combination contains all four re�ectors).

No. Offset O H � v HA r 1H
(m) (m) (kgm�3) (mµs�1) (m) (m�1) (m)

1 26�308 141 280.2�281.3 847�855 173.0�173.8 16.8�19.3 0.026�0.030 15
2 30�318 144 266.1�266.6 864�867 171.9�172.2 12.4�13.2 0.039�0.041 19
3 20�222 101 156.7�157.0 828�832 175.2�175.5 13.3�14.0 0.036�0.038 �4
4 25�366 170 292.9�293.4 850�859 172.6�173.4 16.1�19.0 0.027�0.032 5
5 20�404 142 395.0�396.1 872�874 171.2�171.5 15.2�16.4 0.031�0.036 �13

sults are numerically robust to the combination of re�ectors
used, and that the local ice thickness and depth-averaged den-
sity can be determined with high con�dence. However, we
cannot derive rigorous error estimates from the inversion it-
self. We found that picking the internal re�ectors is the most
sensitive step and, similar to Brown et al. (2012), we es-
timate that the depth-averaged velocity can be determined
within �1 %. We used this value to calculate errors for the
depth-averaged densities and the equivalent �rn-air content.
These errors roughly take into account the assumptions of
non-dipping re�ectors, ice isotropy, and uncertainties of the
density�permittivity model.

The estimated 1 % error on the (depth-averaged) radio-
wave propagation speed translates into large error bars for
the corresponding �rn-air contents (Fig. 6d), impeding the
comparison between sites. Nevertheless, Sites 2 and 3 show
lower �rn-air contents (� 13 m) than the other sites (� 17 m).

To assess the derived depth�density pro�les with an in-
dependent data set, we compare Site 1 and Site 3 with the
OPTV densities from the 2010 and 2014 boreholes, respec-
tively (Fig. 7). Site 3 is located inside an ice-shelf channel,
about 10 km north of the 2014 borehole located in the same
channel. Site 1 is about 6 km south of the 2010 borehole
(Fig. 2). Both radar WARR measurements and the OPTV
logs show a depth�density pro�le that is denser inside than
outside the ice-shelf channel. This increases our con�dence
that the WARR method developed here indeed picks up sig-
ni�cant differences in �rn-air content on small spatial scales.

5 Discussion

5.1 Bene�ts of traveltime inversion using ray tracing

A difference between the new study presented here and pre-
vious ones (e.g., Brown et al., 2012) is how the radio-wave
propagation speed is parameterized. Previous studies used
piecewise linear or uniform speed between individual re�ec-
tors, while we parameterize the speed as a continuous func-
tion of depth (Eq. 4). Here, we examine the bene�t of this
approach for interpreting the radar results

A common problem when using the Dix inversion or sem-
blance analysis is that the applied normal moveout (NMO)
approximation presupposes small re�ection angles (to lin-
earize trigonometric functions) and small velocity contrasts
(Dix, 1955). In our case re�ection angles can be large
(< 45�), particularly near the maximum offsets; contrary to
NMO, ray tracing is not adversely in�uenced by wide in-
cidence angles. NMO presupposes small velocity contrasts,
because ray paths are approximated as oblique lines ne-
glecting raybending from a gradually changing background
medium. Traveltime inversion with ray tracing equally re-
lies on this approximation as long as interval velocities are
assumed. In this study, we prescribe a realistic shape of
a depth�density/velocity function, which changes gradually
with depth, and raybending is taken into account adequately
during the ray tracing. We have tested both the small angle
and the small velocity contrast limitations quantitatively by
using the OPTV-based depth�density/velocity function and
ray tracing in order to simulate synthetic traveltimes of re-
�ectors at various depths (50�500 m) and horizontal offsets
(50�500 m). We then used the synthetic traveltimes for calcu-
lating the re�ector depths and the depth-averaged velocities
(averaged from the surface to the re�ector depths) subject to
the NMO equations. Differences in depth-averaged velocities
were smaller than 0.5 %, and differences in re�ector depths
were smaller than 0.5 m. Similar to the �ndings of Barrett
et al. (2007), this con�rms that in our case the NMO approx-
imation essentially holds, even for comparatively large hor-
izontal offsets and a continuously changing depth�velocity
function. This must not always be the case and ray tracing
easily allows the NMO approximation to be checked for each
speci�c setting. For the examples considered here, solutions
based on the Dix inversion, using only the basal re�ector,
typically result in thicker ice and higher depth-averaged den-
sities (and correspondingly lower �rn-air contents, Fig. 6c�
d).

Data collection in a WARR survey is faster than a
common-midpoint survey because only the receiver (or
transmitter) needs to be repositioned. A common-midpoint
survey, on the other hand, more easily facilitates the cor-
rections for dipping re�ectors using dip-moveout (Yilmaz,
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1987). The choice for the acquisition geometry thus depends
on the time available in the �eld and on the glaciological
setting (i.e., whether dipping re�ectors are to be expected).
Traveltime inversion can cope with both types of acquisi-
tion geometries. If re�ector dips are important, the routine
presented here can be adapted to include one dip angle per
re�ector in the inversion. However, given that including the
surface density as an additional free parameter is dif�cult if
all parameters are inverted simultaneously, an iterative ap-
proach may be required to �nd one depth�density function
for all re�ectors while solving for the re�ector dips individu-
ally (layer stripping; Brown et al., 2012).

The main advantages of the method applied here are pri-
marily linked to a more robust inversion, which is less sensi-
tive to re�ector delineation because re�ectors are inverted si-
multaneously to constrain the density pro�le. First, prescrib-
ing a global depth�density/velocity function for all internal
re�ectors allows the coherency of the re�ector picking to be
checked by investigating different subsets of re�ector com-
bination to single out re�ectors, which were picked with the
wrong phase (Sect. 2.7). This step is important, particularly
when using lower frequencies as was the case here (10 MHz).
At this stage the basal re�ector is useful, because it can be
identi�ed unambiguously. Once more than two shallow inter-
nal re�ectors are reliably picked, we found that the inversion
results were largely independent of the inclusion of the basal
re�ector. Second, by inverting for re�ectors simultaneously,
it is less likely that deeper re�ectors inherit uncertainties
from shallower re�ectors. This can happen when solving for
re�ectors individually where tradeoffs between interval ve-
locities and re�ector depths are subsequently handed down-
wards. Third, when using interval velocities, the parameter
set describing the depth�density/velocity function is larger
than is the case here. For example, for four re�ectors eight
parameters are required when using interval velocities (four
velocities and re�ector depths, respectively), and this com-
pares with only the �ve parameters that we required for the
method applied here (r and four re�ector depths). Simpler
models with fewer model parameters are preferable when us-
ing inversion.

Based on our synthetic examples, we found that the travel-
time inversion used here is unstable if all parameters (sur-
face density, densi�cation length, re�ector depths) are in-
verted for simultaneously. We therefore considered the sur-
face density to be laterally uniform, which is not supported
by empirical data. In principle, the surface density can be es-
timated from the data by picking the linear moveout of the
surface wave (green dashed lines in Fig. 3, cf. Brown et al.,
2012). However, in our 10 MHz data set the surface wave
cannot be identi�ed unambiguously, resulting in a large range
of possible surface densities. We addressed this point with
a sensitivity analysis including a range of surface densities
(300� A� 500 kg m�3). The smallest model�data discrep-
ancies are found with A� 400 kgm�3, but in all cases the
�nal results do not deviate more than the error bars provided

in Fig. 6. This means that the ill-constrained surface density
is essentially corrected for during the inversion by adapting
the densi�cation length.

The WARR data presented here were collected with a
10 MHz radar. The disadvantage of this low frequency is that
fewer re�ectors above the �rn�ice transition can be picked
at this low resolution, relative to higher-frequency data sets
(cf. Eisen et al., 2002 who derived an 8 % velocity error with
a 25 MHz radar versus a 2 % error with 200 MHz radar). We
found that the method applied here can cope with the picking
uncertainties at 10 MHz, whereas using Dix inversion fre-
quently resulted in interval densities much larger than the
pure ice density. The advantage of using a 10 MHz radar is
that the entire ice column is illuminated, including the un-
ambiguous basal re�ector. This opens up the possibility for
more sophisticated radar-wave velocity models including ice
anisotropy originating from aligned crystal orientation fab-
ric below the �rn�ice transition (Drews et al., 2012; Mat-
suoka et al., 2012b). The radar data set is also suited for other
glaciological applications, for example, using the basal re-
�ections for deriving ice temperature (via radar attenuation
rates) from an amplitude versus offset analysis (Winebrenner
et al., 2003) and constraining the alignment of ice crystals us-
ing multistatic radar as a large-scale Rigsby stage (Matsuoka
et al., 2009).

5.2 Radar- and OPTV-inferred densities

We found velocity models for each site which adequately �t
all re�ector combinations. There is no systematic deviation
larger than the picking uncertainty and hence there is no ev-
idence that re�ectors dip within the interval between mini-
mum and maximum offset (� 404 m). The results are numer-
ically robust for different re�ector combinations, indicating
equal validity for all results based on three re�ectors or more
(Sect. 2.7).

The derived depth�density functions cluster into two
groups: Sites 1, 4, and 5 have a mean �rn-air content of
� 17 m, whereas Sites 2 and 3 have lower values of � 13 m.
While these differences are minor from a radar point of view,
they are quite signi�cant from an atmospheric-modeling
point of view. For example, van den Broeke et al. (2008)
propose that the �rn-air content around the entire Antarc-
tic grounding line is bound between 13 m (for the Dron-
ning Maud Land area) and 19 m (for ice shelves in West
Antarctica). Including transient effects, such as surface melt,
the variability increases but typically stays within 5�20 m
(Ligtenberg et al., 2014). Because the aforementioned mod-
els run on 27 km grids (approximately the size of our re-
search area) they may overlook effects acting on smaller
scales. However, with the estimated uncertainty of the depth-
averaged wave speed (�1 %) the radar-derived variability in
�rn-air content is barely signi�cant (Fig. 6d); notwithstand-
ing, we �nd that Site 1 (which is closest to the 2010 bore-
hole) agrees closely with the OPTV of 2010, and a similarly
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good �t is found between Site 3 and the 2014 OPTV (both
located inside the same ice-shelf channel, Fig. 7). The im-
plications are twofold: �rst, the correspondence between the
OPTV-derived density variations and those derived from the
WARR method provides independent validation of the lat-
ter technique. Second, the fact that both techniques show in-
creased density within the surface channel indicates that the
effect is real and should be accounted for by investigations
based on hydrostatic equilibrium. However, given that Site 2
also shows a comparatively low �rn-air content, we cannot
unambiguously conclude from the data alone that �rn den-
sity is elevated in ice-shelf channels in general. One potential
mechanism for such a behavior is the collection of meltwater
in the channel’s surface depressions. At RBIS, surface melt
can be abundant in the (austral) summer months, particularly
in an about 20 km wide blue ice belt near the grounding line.
The most recent Belgian Antarctic Research Expedition (Jan-
uary 2016) observed frequent melt ponding and refreezing in
this area, mostly in the vicinity of ice-shelf channels where
meltwater preferentially collects in the small-scale surface
depressions. If this holds true, the increased density observed
in the WARR data close to the ice-shelf front is an inherited
feature from farther upstream. The channel’s surface depres-
sions likely also cause a locally increased surface mass bal-
ance (Langley et al., 2014), and in general ice-shelf chan-
nels can have a particular strain regime (Drews et al., 2015).
Both of these factors may also in�uence the �rn densi�cation
rate, but given our limited data coverage we refrain from an
in-depth analysis here. More work is required to determine
whether �rn in ice-shelf channels is systematically denser.

Even though uncertainties remain about what causes the
density variations, we have shown that traveltime inversion
and ray tracing with a prescribed shape for the depth�density
function can produce results, which compare closely with
densities derived from OPTV (excluding small-scale vari-
ability due to melt layers). The data presented here show
that a lateral density variability requires attention, particu-
larly when using mass conservation to derive basal melt rates
in ice-shelf channels. Errors in the �rn-air content propagate
approximately with a factor of 10 into the hydrostatic ice
thickness, which then substantially alters the magnitude of
derived basal melt rates. Using the same parameters as Drews
et al. (2015), we compare the WARR-derived ice thickness
with the hydrostatic ice thickness for each site. We �nd a
maximum deviation of 19 m for Site 2, and a minimum de-
viation of 4 m for Site 3 (Table 1). Assuming the absence of
marine ice, those deviations are comparatively small given
the uncertainties of the geoid and the mean dynamic topog-
raphy, both of which are required parameters for the hydro-
static inversion.

6 Conclusions

We have collected six wide-angle radar measurements on
RBIS and used traveltime inversion in conjunction with ray
tracing to infer the local depth�density pro�les. In the in-
version, we prescribed a physically motivated shape for the
depth�density function, which adequately takes curved ray
paths and large re�ection angles into account and allows
the simultaneous inversion of multiple re�ectors. We �nd
that this method produces robust results, even with a com-
paratively low-frequency (10 MHz) radar system with cor-
respondingly reduced spatial resolution and small numbers
of internal re�ectors used to constrain the density model.
The inversion method is �exible and can be adapted to other
acquisition geometries and radar frequencies. Ice thickness
and depth-averaged densities/wave speed are reconstructed
within a few percent. Larger errors in the corresponding �rn-
air contents, however, impede detailed comparison between
sites. Nevertheless, spatial variations in densities derived
from both wide-angle radar and borehole optical teleview-
ing show that se-2015-112the depth�density pro�le within
a 2 km wide ice-shelf channel is denser inside than outside
that channel. This density anomaly needs to be accounted
for when using hydrostatic equilibrium to infer ice thickness,
and has implications for using mass budget methods to de-
termine basal melting in ice-shelf channels. More data are
needed to evaluate whether the density anomaly observed
here is a generic feature of ice-shelf channels in Antarctica.
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