Genome-wide association studies (GWAS) and genomic selection (GS) in pearl millet
Srivastava, Rakesh; Singh, Ram Baran; Vijay Lakshmi, P.; Srikanth, B.; Satyavathi, C. Tara; Yadav, Rattan; Gupta, Rajeev

Published in: Frontiers in Genetics
DOI: 10.3389/fgene.2019.01389
Publication date: 2019
Citation for published version (APA):
Genome-wide association studies (GWAS) and genomic selection (GS) in pearl millet: advances and prospects

Rakesh K. Srivastava1*, Ram B. Singh1, Vijaya L. P1, B Srikanth1, C T. Satyavathi2, Rattan Yadav3, Rajeev Gupta1*

1International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), India, 2Indian Agricultural Research Institute (ICAR), India, 3Aberystwyth University, United Kingdom

Submitted to Journal:
Frontiers in Genetics

Specialty Section:
Evolutionary and Population Genetics

Article type:
Mini Review Article

Manuscript ID:
499340

Received on:
20 Sep 2019

Revised on:
06 Dec 2019

Frontiers website link:
www.frontiersin.org
Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

Author contribution statement

RKS and RG planned and coordinated this study. RKS, RG, RSY, CTS, RBS, SB, MP, VLP contributed to this work and drafted manuscript. RKS and RG edited the manuscript for publication

Keywords

pearl millet, Genetic resources, Genomic resources, genomic selection (GS), genome-wide association studies (GWAS), Molecular markers

Abstract

Word count: 245

Pearl millet is a climate-resilient, drought-tolerant crop capable of growing in marginal environments of the arid and semi-arid regions globally. Pearl millet is a staple food for more than 90 million people living in poverty and can address the triple burden of malnutrition substantially. It remained a neglected crop until the turn of the 21st century and since then a lot of emphases were given to develop various genetic and genomic resources for whole-genome scan studies such as the genome-wide association studies (GWAS) and genomic selection (GS). This was facilitated by the advent of sequencing-based genotyping such as genotyping-by-sequencing (GBS), RAD-sequencing and whole-genome re-sequencing (WGRS), etc. in pearl millet. To carry out GWAS and GS, a world association mapping panel called the pearl millet inbred germplasm association panel (PMiGAP) was developed at ICRISAT in partnership with Aberystwyth University. This panel consisted of germplasm lines, landraces and breeding lines from 27 countries, and was re-sequenced using WGRS approach. It has a repository of circa 29 million genome-wide SNPs. PMiGAP has been used to map traits related to drought tolerance, grain Fe and Zn content, nitrogen use efficiency, components of endosperm starch, grain yield, etc. Genomic selection in pearl millet was jump-started recently by WGRS, RAD-and tGBS (tunable genotyping-by-sequencing) approaches for the PMiGAP and hybrid parental lines. Using multi-environment phenotyping of various training populations, initial attempts have been made to develop genomic selection models. This mini-review discusses advances and prospects in GWAS and GS for pearl millet.

Contribution to the field

This mini review deals about advances made in pearl millet crop in the field of big data and application of whole-genome discovery and prediction fields such as GWAS and GS. Pearl millet is a nutritious, climate change ready crop capable of yielding economic return in marginal conditions where other cereals may fail. In the recent years pearl millet has seen enormous increase in terms of various genetic and genomic tools at the disposal of pearl millet workers worldwide. Whole genome sequencing of the pearl millet genome, and resequencing efforts resulting in generation of millions of genome-wide SNPs have facilitated efforts to map various yield and yield-related, key biotic and abiotic stress tolerance, and nutritionally important traits globally. These genomic resources have also facilitated taking up of the whole-genome prediction model development and validation efforts. There is need to further validate the loci linked to various traits of interest and move from “loci” to “genes”. There is an enormous opportunity to apply these learnings in development of robust genomic selection prediction models with special emphasis on combining ability and heterotic gene pool studies for development of heterotic hybrids. This mini review may be useful to pearl millet community engaged in exploring novel genetic and genomic resources, tools and technologies in pearl millet globally.
Genome-wide association studies (GWAS) and genomic selection (GS) in pearl millet: advances and prospects

Rakesh K. Srivastava¹*, Ram B. Singh¹, Vijaya Lakshmi P¹, Srikanth B¹, Madhu P¹, C. Tara Satyavathi², Rattan S. Yadav³, Rajeev Gupta¹*

¹International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana 502 324, India.
²All India Coordinated Research Project on Pearl Millet (AICRP-PM), Indian Council of Agricultural Research (ICAR), Mandor, Jodhpur, Rajasthan, India
³Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, United Kingdom.
*Corresponding author: r.k.srivastava@cgiar.org; g.rajeev@cgiar.org

Abstract
Pearl millet is a climate-resilient, drought-tolerant crop capable of growing in marginal environments of the arid and semi-arid regions globally. Pearl millet is a staple food for more than 90 million people living in poverty and can address the triple burden of malnutrition substantially. It remained a neglected crop until the turn of the 21st century and since then a lot of emphases were given to develop various genetic and genomic resources for whole-genome scan studies such as the genome-wide association studies (GWAS) and genomic selection (GS). This was facilitated by the advent of sequencing-based genotyping such as genotyping-by-sequencing (GBS), RAD-sequencing and whole-genome re-sequencing (WGRS), etc. in pearl millet. To carry out GWAS and GS, a world association mapping panel called the pearl millet inbred germplasm association panel (PMiGAP) was developed at ICRISAT in partnership with Aberystwyth University. This panel consisted of germplasm lines, landraces and breeding lines from 27 countries, and was re-sequenced using WGRS approach. It has a repository of circa 29 million genome-wide SNPs. PMiGAP has been used to map traits related to drought tolerance, grain Fe and Zn content, nitrogen use efficiency, components of endosperm starch, grain yield, etc. Genomic selection in pearl millet was jump-started recently by WGRS, RAD-and tGBS (tunable genotyping-by-sequencing) approaches for the PMiGAP and hybrid parental lines. Using multi-environment phenotyping of various training populations, initial attempts have been made to develop genomic selection models. This mini-review discusses advances and prospects in GWAS and GS for pearl millet.
Keywords: Pearl millet, genetic resources, genomic resources, genomic selection (GS), genome-wide association studies (GWAS), molecular markers.

1. Introduction

Pearl millet (*Pennisetum glaucum* (L) R. Br., syn. *Cenchrus americanus* (L.) Morrone) is the important C₄ small-grained field crop of traditional smallholder farming systems which belongs to the grass family *Poaceae* and subfamily Panicoideae. Archaeological survey indicates that pearl millet was initially domesticated at the southern edge of the Sahara Desert in West Africa about 2500 BC (Manning et al., 2011). Pearl millet is a diploid (*2n = 2x = 14*), cross-pollinated warm-season crop, with tremendous photosynthetic potential and high biomass production capacity. It is a highly tillering, polymorphic, with a short life cycle, a large genome size (*1.76 Gb*), and outbreeding nature (Bennett et al., 2000, Varshney et al., 2017). Climate-adaptive phenotypic, physiological, and reproductive attributes of pearl millet make this crop well-suited to grow in marginal conditions such as poor soil fertility, limited soil water content, high salinity, extreme soil pH ranges, high soil Al³⁺ saturation, high temperatures, and scanty rainfall. Pearl millet can thrive and substantially produces grain in drought-prone areas that receiving average annual precipitation <250 mm, where other cereal crops such as maize, rice, sorghum, bread wheat, and barley are likely to fail to give economic returns (Nambiar et al. 2011). Pearl millet is cultivated over ~27 million hectares in arid and semi-arid areas of Asia and Sub-Saharan Africa and is the primary food source for about 90 million resource-poor populations residing in marginal areas globally. Remarkably, the natural attribute of this crop to withstand ambient temperatures up to 42°C at the reproductive phase makes suited for growing using irrigation in the extremely hot summers in north-western parts of India (Gupta et al. 2015).

Pearl millet has several nutritional properties compared to other staple cereal grains, which is an excellent source of organic as well as inorganic nutrients and a cost-effective source of energy (Kumar et al., 2016). Pearl millet grains are rich in fibers (*1.2 g/100 g*), α-amylose, amino acids, proteins (*8-19%*), and low starch, mineral nutrients including phosphorus, magnesium, iron, and zinc. Owing to having such nutritional values pearl millet ensures food and nutritional security to the farmers living in poverty (Nambiar et al., 2011, Kanatti et al., 2014). Pearl millet is the rich source of several polyphenols and other biological important ingredients make it suited to play...
role in reducing the rate of fat absorption, low glycaemic indices, overcoming the risk of cardiac
diseases, diabetes, and other medical problems. Overall, pearl millet has the capacity to combat
micronutrient deficiency across developing countries (Rai et al., 2012), since it contributes 30-
40% of inorganic nutrients and becomes an affordable staple food with an adequate level of iron
and zinc in its cultivating areas (Rao et al., 2006).

An alternative approach to the QTL mapping is the genome-wide association study (GWAS) or
association mapping (AM) approach (Gómez et al., 2011) based on the principle of linkage
disequilibrium (LD) to detect a substantial association between DNA marker/QTL and target
(Gupta et al., 2005). Genetic-linkage is found out through extensive genotyping of a panel of
germplasm or breeding populations showing contrast phenotypes across variable environments. It
has immense power to resolving which particular genes may control the expression of the desired
trait (Kraakman et al. 2004). The potential advantage of association mapping is the likelihood of a
superior resolution mapping utilizing mass recombination events from a large number of meiosis
events throughout the germplasm evolutionary history. It has the power to evaluate and
characterize several alleles concurrently in diploid (Zhao et al. 2007) as well as in polyploid crops
(Breseghello and Sorrells 2006). Association mapping offers many benefits over linkage mapping
since it provides better mapping resolution on accounts of historical mutations and recombinations
in genetic lineages leading to the identification of markers in the vicinity of governing genes (Liu
et al., 2016). Genetic polymorphisms having strong linkage with a genomic locus leading to
phenotypic differences are expected to be substantially associated with a target trait across the
panel of germplasm.

The analysis of QTL effects for minor QTLs using linkage mapping and genome-wide association
mapping is often biased. Therefore, scientific groups were trying to solve the issue for years on
how to tackle these complex traits and come out in terms of genomic selection (GS). Genomic
selection is a breeding approach exploiting high-density DNA markers distributed across the
genome to facilitate the rapid selection of the best candidates and offers opportunities to enhance
genetic gains (Meuwissen et al., 2001). GS uses different prediction models by combining the
genotyping and phenotyping datasets of the training population (TP), which is subsequently used
to determine genomic-estimated breeding values (GEBVs) for every genotype of breeding
population (BP) from their genotyping scores. These GEBVs permit breeders to envisage superior
genotypes that would be suitable either as a parent in hybridization or for next-generation advancement of the breeding program. The basic principle is that the information derived from several markers widely distributed over the genome, having the potential to reveal genetic variations in the genome, potent to evaluate breeding values without prior information that where the selected genes are located (Crossa et al., 2017).

In this paper, we review the advances made in the development of genetic and genomic resources for their use in genome-wide association studies (GWAS) and genomic selection (GS) in pearl millet.

2. Development of genetic resources
Genetic resources are the fundamental materials and which play a pivotal role in plant genomic and phenomic studies to boost up the major scientific discoveries in advance agriculture systems. Fortunately, Genetic recources have been collected and preserved by many national and international gene banks around the world. Pearl millet accessions have been collected and conserved by 97 gene banks comprises (66,682 accessions) globally, in which ICRISAT has the largest collection (~21,594 pearl millet accessions from 51countries) (Singh and Upadhyaya 2015). More importantly, core and mini core collections have been developed at ICRISAT and serve as essential resources for allele mining studies for the identification of agronomic studies and also used for the development of tolerant lines for both abiotic and biotic stresses. Likewise, one more genotype-based reference set has been developed with comprised of 300 pearl millet accessions (Upadhyaya et al., 2011). At ICRISAT most of the accessions were evaluated for several agronomical traits and these show the extent of genetic diversity and phenotypic variance for most of the qualitative and quantitative traits (Singh and Upadhyaya 2015). With evident that vast genetic variability is the determining factor for the identification of promising germplasm for the desired trait (Upadhyaya et al., 2007). In addition to ICRISAT, major germplasm preserved are at the Institute of Research for Development (IRD, France) in which 3,968 accessions are maintained from 16 countries followed by 3,821 accessions of cultivated P. glaucum and related species maintained at the Canadian Genetic Resources (Saskatoon, Canada) and then there are 1283 active collections of pearl millet accessions collected and preserved at US Germplasm Resource Information Network (GRIN) (Yadav et al. 2017). For conducting AM studies, diverse genetic resources are the essential inputs and pearl millet genetic resources are found to be having
extent genetic diversity. Due to this reason performing AM studies for desired traits in pearl millet crop is imperative and will give immense genomic resources for future studies. During the last five years, significant work has been done in pearl millet crop in related AM studies and gives information about genetic diversity and linkage disequilibrium (LD). To get over this problem, ICRISAT in association with AU developed a world association mapping panel called the pearl millet inbred germplasm association panel (PMiGAP). This panel comprised of 346 lines consisting of germplasm lines, landraces and breeding lines representing the global pearl millet diversity. These lines were generated by repeated rounds of selfing (S₀ through S₁₁) from 1,000 accessions representing diverse cultivars, landraces and mapping population parents of 27 countries. Thus PMiGAP may be considered an excellent genetic resource for GWAS studies in pearl millet crop. By the year 2015, out of 346 PMiGAP lines, Sehgal used 250 lines for AM studies and evaluated for drought-related traits under field conditions. Similarly, another study on AM, in which 500 pearl millet lines have included 252 global accessions and 248 Senegalese landraces, in which they found extant genetic diversity between global and Senegalese accessions (Hu et al., 2015). In addition to the above studies, several RIL (recombinant inbred line) populations were also developed for biotic and abiotic stresses, quality (grain, forage) and yield and yield-related traits. Rajaram et al., 2013 constructed pearl millet consensus maps by using four RIL populations (ICMB 841-P3 × 863B-P2 (RIP A), H 77/833-2 × PRLT 2/89-33 (RIP B), 81B-P₆ × ICMP 451-P8 (RIP C) and PT 732B-P₂ × P1449-2-P1 (RIP D). In other studies, iron and zinc related QTLs were identified in ICMB 841-P₃ × 863B-P₂ (144 progenies) and ICMS 8511-S₁-17-2-1-1-B-P₀₃ × AIMP 92901-S₁-183-2-2-B-0₈ (317 progenies) RIL populations respectively (Kumar et al., 2016 & 2018). In a recent study, Chelpuri et al., 2019 identified QTLs for resistance to major pathotype isolates of downy mildew pathogen in pearl millet RIL population, ICMB 89111-P₆ × ICMB 90111-P₆ (187 progenies). Therefore, there is a huge opportunity for the pearl millet researcher who can access these useful genetic resources to meet their research needs.

3. Development of genomic resources and trait mapping
Molecular or DNA-based markers, genetic linkage maps, and genomic sequence data are important genomic resources to perform genetic evaluation and marker-assisted breeding in any plant species. During the last decade several types of molecular markers, genomic tools, and genetic linkage maps have been developed and deployed in millets (Serba and Yadav, 2016). Several
DNA-based molecular markers including restriction fragment length polymorphism (RFLP; Liu et al., 1994), amplified fragment length polymorphism (AFLP; Devos et al., 1995), random amplified polymorphic DNA (RAPD, expressed sequence tags-derived simple sequence repeats (EST-SSRs; Senthilvel et al., 2008; Rajaram et al., 2013) markers, sequence-tagged sites (STTs; Allouis et al., 2001), genomic simple sequence repeat (gSSRs; Qi et al., 2004), Dart array Technology (DArTs; Senthilvel et al., 2010; Supriya et al., 2011), conserved intron specific primers (CISP; Sehgal et al., 2012), single-stranded conformation polymorphism-SNP (SSCP-SNP; Bertin et al., 2005), and single nucleotide polymorphisms (SNPs; Sehgal et al., 2012) have been developed and exploited in genetic diversity, QTLs/genes identification, and marker-aided breeding for faster pearl millet breeding (Table 1). Molecular markers facilitate to analyzing genetic variations existed within germplasm collections for precise selection of breeding parents in crossing programs, estimating population structure, and identification of QTLs for environmental stresses tolerance. Pearl millet has a wide-range of DNA polymorphism even in elite inbred parental lines of popular hybrids (Vadez et al., 2012).

Initially, RFLP-derived DNA markers were devised and used to map about 180 loci ranged approximately 350 cM under seven linkage groups in pearl millet (Liu et al. 1992: 1994). Later on, these markers were exploited in QTL mapping for downy mildew resistance in pearl millet (Jones et al., 1995). A subset of 21 polymorphic EST-SSRs and 6 genomic SSR markers were developed using sequence information from 3520 expressed sequence tags (ESTs) and used in genome mapping of different pearl millet mapping populations (Senthilvel et al., 2008). Subsequently, these potentially developed EST-SSRs were deployed in marker-aided breeding for yield and drought stress resistance in pearl millet at International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). The development of a penal of 277 polymorphic DArT markers were reported from 6900 DNA array-dart technology (DArT) clones using PstI/BanII complexity reduction in pearl millet RILs population (Senthilvel et al., 2010). Separately, an array of 574 potential DArT markers were detected from 7000 DArT clones obtained from 95 diverse genotypes using PstI/BanII complexity reduction in genetically diverse inbred lines of pearl millet (Supriya et al., 2011). Mapping of 208 DArT markers along with 305 SSRs detected seven linkage groups covering 1749 cM with an average intermarker distance of 5.73 cM and two co-localized QTLs for iron and zinc content on LG 3 were identified in pearl millet (Kumar et al. 2016). Using
DArT markers, comparative mapping and genome organization analysis may easily be performed and the price of marker-aided backcrossing (MABC) is also little relative to other markers systems.

Pearl millet EST resources were used to develop quality SNPs and CISP markers and deployed to identify candidate genes related to a major QTL for drought tolerance using diverse (H 77/833-2, PRLT 2/89-33, ICMR 01029, and ICMR 01004) genotypes, representing mapping populations parents (Sehgal et al. 2012). Under another breakthrough 83,875 SNP markers were identified using genotyping-by-sequencing (GBS) of PstI-MspI reduced representation libraries in pearl millet lines, represented by 252 world germplasm accessions and 248 landraces from Senegal, which revealed wide genetic variability in compare to other germplasm collection in Africa and Asia (Hu et al., 2015). Moreover, ISSR-based sequence characterized amplified region (SCAR) markers were devised to examine genetic variations between two (ICMR 01007 and ICMR 01004 genotypes of pearl millet and a contrast mapping population for downy mildew resistance. A polymorphic locus (1.4 kb size) was found in ICMR 01004 genotype and further PCR amplification of these polymorphic loci was produced to be closely associated with downy mildew resistant LG with a genetic distance of 0.72 cM. Identified SCAR marker was eventually validated using diverse pearl millet genotypes belongs to Asia and Africa and the outcomes demonstrate that the marker was linked to downy mildew disease-resistant genotypes only (Jogaiah et al., 2014). The development of a linkage map was reported integrating 256 DArT markers 70 SSR markers and used to identify QTLs on LG1 with LOD score of 27 for rust resistance in 168 F7 pearl millet RILs derived from cross 81B-P6 × ICMP 451-P8 (Ambawat et al. 2016). Using 305 (96 SSRs and 208 DArT) markers, a linkage map was generated to map QTLs for grain iron and zinc content using 106 pearl millet RILs (F6) derived from ICMB 841-P3 × 863B-P2 cross (Kumar et al. 2016). Recently, Kumar et al (2018) were reported a large-effect Fe and Zn content linked quantitative trait loci (QTLs) with DArT and SSR markers to construct a genetic linkage map using 317 RIL population derived from the (ICMS 8511-S1-17-2-1-1-B-P03 × AIMP 92901-S1-183-2-2-B-08) cross (Table 1).

4. Case studies for GWAS in pearl millet

The advent of recently decoded pearl millet genome has opened prodigious possibilities to discern several QTLs and the functions of its associated candidate genes governing diverse traits (Varshney et al., 2017). The genome size of pearl millet ~1.79 Gb representing 38,579 genes,
88,256 SSRs, and 4,50,000 SNPs will certainly be the valuable resources for constructing precision genetic maps (Varshney et al., 2017). Most possibly genetic mapping can be constructed in two different ways; one way is through QTL-mapping/interval mapping (IM) and the other is by using the association mapping (AM)/LD-mapping approach. The major difference in these two mapping strategies relies on the presumed idea over recombination events causative for the phenotypic variations (Myles et al., 2009). In general, QTL-mapping/IM can be done by developing various mapping populations viz., F$_2$, recombinant inbred line (RIL), near-isogenic line (NIL), back cross (BC) and doubled haploid (DH) derived populations in which one can assume a clear cut degree of relatedness for the recombination events between the two contrasting parents for the trait of interest (Abdurakhmonov and Abdukarimov, 2008). Genetic mapping in such type of controlled population size results in the limited attainability of meiotic events and the products in the form of QTLs will be localized with lower resolution (10 to 20 cM intervals) and in turn, it is an expensive approach to maintain a huge number of populations (Jannink and Walsh, 2002; Flint-Garcia et al., 2003; Holland, 2007).

On the other hand, in AM there is no requirement of developing mapping populations, rather it needs diverse germplasm accessions including collections of different land-races, varieties and breeding material termed as a ‘panel’ where relatedness for the recombination events are not under control because of numerous meiotic recombination’s across the diverse germplasm (Verdeprado et al., 2018). The principle of AM relies on linkage disequilibrium (LD), a non-random association between two genes/markers/QTLs at different loci; however non-random association between these components in the same loci results in the increased linkage disequilibrium levels (Flint-Garcia et al., 2003; Alvarez et al., 2014). Taking the advantage of multiple historic recombination events within the diverse accessions since from their domestication, AM approach can be best suited for the identification of genes or QTLs with high resolution (100-1000 Kb) which are tightly linked to a broad range of phenotypic traits (Mackay et al., 2009). The potential in identifying promising QTLs, and also in detecting causal polymorphism at the gene level had made association mapping a powerful approach to develop marker-trait associations (MTAs) with great precision (Meuwissen and Goddard, 2000; Palaisa et al., 2003).

However, due to the high level of heterogeneity and heterozygosity in most of the germplasm accessions of pearl millet, very few association mapping strategies were delivered (Kannan et al.,...
2014); herein they are discussed and these detailed approaches may expand the scope of AM studies in pearl millet in future. A generalized workflow for pearl millet genome-wide association studies (GWAS) pipeline has been presented in Figure 1b. Pearl millet crop adaptation to various agro-climatic conditions is an important subject of study to explore the underlying genetics associated with this important nutri-cereal. Association studies made by Saidou et al., 2009 on this aspect reveals the genetic factors responsible for the variations in flowering time at phytochrome C (PHYC) (866 bp) locus which is one of the key trait involved in crop adaptation. A total of 90 inbred and 598 pearl millet varieties from India, East, and West Africa were used for generating phenotypic data; followed by genotyping with 27 SSR and 6 AFLP markers. An LMM (linear mixed model) was used to identify a significant association between the phenotypic trait and genetic variations. With the aim to identify the best candidate gene loci associated with the flowering time, Saidou et al. (2014) further explored an extra 100bp region surrounding PHYC gene and performed an association study, MCMC method (Markov chain Monte Carlo method) to identify the tightly linked markers (75 SNPs and INDELS) surrounding PHYC (6 Kb) genomic region and also to show the extent of LD to confer PHYC gene as the best candidate gene. By integrating the genome scan approach with association mapping, Mariac et al., 2011 identified PgMADS11 gene, a MADS-box gene family member which plays a key role during somatic and reproductive phase development respective to different climatic conditions. Phenotyping data for the targeted traits from the 90 inbred lines viz., flowering time (FT), stem diameter (SD), plant height (PH), spikelet length (SpL) and spikelet density (SpD) are used for association analysis; and identified significant association of PgMADS11 alleles with the varied flowering time which deciphers the role of PgMADS11 in the plant adaptation process towards climatic change. Association studies of the selective SSR markers with the flowering time, plant height, panicle length, stover, and grain yield were deciphered by Kannan et al. (2014).

A set of 250 full-sib progenies and 34 SSR markers were used for GWAS analysis and results revealed the strong association of Xpsmp2248_162 marker allele at linkage group 6 (LG6) with earlier flowering time and reduced plant height. Marker allele, Xpsmp2224_157 on LG7 was strongly associated with the plant height. For panicle length Xpsmp2077_136, Xpsmp2233_260 and Xpsmp2224_157 were strongly associated with LG2, LG5, and LG7 respectively whereas Xpsmp2237_230 marker allele showed strong positive association on LG7 with grain yield. For stover dry matter yield Xicmp3058 193 marker allele showed strong positive correlation on LG6. Information on genes associated with low phosphorus tolerance is of pressing need especially in
the regions of West Africa. Gemenet et al. (2015) first-ever reported the association analysis of the available 285 DArT markers with the phenotypic data generated from 151 PMiGAP lines from West Africa across six environs under high and low P conditions. Results showed that \(PgPb11603\) DArT marker showed stable association with the flowering time and \(PgPb12954\) marker showed a significant association with the grain yield.

Association studies reveal that \(Xibmsp11/AP6.1\) an SNP marker on acetyl CoA carboxylase gene is strongly associated with GY, GHI (grain harvest index) and PY (panicle yield) under both treatments; whereas InDel markers viz., \(Xibmcp09/AP10.1\) & \(Xibmcp09/AP10.2\) of chlorophyll a/b binding protein gene are associated with GY and stay-green traits. Using association mapping, key alleles for grain iron and zinc were demonstrated by Anuradha et al., 2017. Developing MTAs (Marker Trait Associations) between 250 SSR and 17 genic markers with grain iron and zinc content for 130 diversified lines across different environs revealed that \(Xicmp3092\) marker strong association with grain iron content on LG 7 and markers \(Xpsmp2086\) & \(Xpsmp2213\), \(Xipes0224\) showed association with grain zinc content on LG 4 and LG 6 respectively; whereas conserved association for grain iron and zinc was exhibited by \(Xipes0180\), \(Xpsmp2261\) and \(Xipes0096\) on LG 3, LG 5 and LG 7 respectively. In another association study by Varshney et al., 2017, delivered key findings while establishing MTAs. Using whole-genome SNP data, a total of 3,117,056 SNPs were selected for GWAS analysis and the phenotypic data for 20 agro-morphological traits was generated from 288 TCH (testcross hybrids) under two-stage (early & late) drought stress conditions along with respective controls. A significant association of the markers with the desired trait GNP (grain number per panicle) was exhibited on pseudomolecules \(Pg1\) and \(Pg5\). Genetic & genomic sequence information is now readily available for pearl millet. As AM will purvey a high-resolution power with the species exhibiting genotypic diversity across the germplasm (Alvarez 2014), expanding AM studies in pearl millet will be increasingly fruitful for further crop improvement programs.

5. **Case studies for genomic selection (GS) in pearl millet**

Genomic (or genome-wide) selection (GS) is a promising strategy that has huge potential to explore and increase the genetic gain per selection in a breeding scheme per unit timeline and thus speed and efficacy in breeding programs (Spindel et al., 2015). GS proven to be an economical and viable alternative to marker-assisted selection (MAS) and phenotypic selection (PS) for
quantitative traits and accelerated crop improvement programs in cereals and several other crops (Heffner et al., 2009, Zhong et al. 2009, Crossa et al., 2010, Ornella et al., 2012, Poland et al., 2012, Spindel et al., 2015, Muleta et al., 2019). By developing efficient training population (having both genotypic and phenotypic data) design, it predicts the genomic estimated breeding values (GEBV) of testing population (having only genotypic data), by utilizing genome-wide high throughput DNA markers that are in linkage disequilibrium (LD) with QTL, predicted GEBVs are used for selection (Meuwissen et al., 2001). One of the key advantages of GS is, decisions on selections can be taken during the off-season, leads to improvement in genetic gain on an annual basis (Heffner et al., 2010). Advancement and application of GS in pearl millet breeding programs facilitate precise prediction of hybrid performance along with ideal resource allocation. In ICRISAT, efforts are being made to exploit the available whole-genome resequencing (WGRS) data of PMiGAP lines along with phenotyping data for different traits for GWAS and GS. Building on the various target traits using GWAS (Figure 1a, 1b), various whole-genome prediction/genomic selection models are being developed and optimized in pearl millet. A generalized workflow for pearl millet genomic selection pipeline has been presented in Figure 1c.

Varshney and his group (Varshney et al., 2017) applied WGRS data for genomic selection by ridge regression best linear unbiased prediction (RR-BLUP) to predict grain yield for test crosses in four scenarios viz., the performance of grain yield in control, early stress, late stress and across environments and observed high prediction accuracies for the performance of across environments. It was also reported that by using GS strategy (additive and dominance effects) hybrid performance was also predicted by analyzing grain yield data with 302,110 SNPs and found 170 promising hybrid combinations of which, eleven hybrid combinations were already utilized for hybrid production with better performance and remaining 159 hybrid combinations could be potential candidates for developing high yielding hybrids. Hierarchical clustering analysis of possible single cross combinations (167910) revealed two sets of lines with a higher hybrid performance by 8% by crossing each other. These hybrids could be a potential nucleus for establishing high-yielding heterotic gene pools for developing pearl millet hybrids with higher yield potential (Varshney et al. 2017). In a recent study, Liang et al. (2018) assessed two potential genotyping strategies viz., RAD-seq and tGBS to characterize a set of ICRISAT developed inbred pearl millet lines and evaluated the utility of genomic selection/prediction. By utilizing the projected hybrids from both (RADseq and tGBS) techniques and four genomic prediction schemes
in pearl millet and assessed for each phenotype, 20 random rounds of five-fold cross-validation were performed for a tested SNP set. It was reported that, by utilizing hybrids data, genomic prediction scheme (RR-BLUP) generated median prediction ranges (in parentheses) for different traits viz., 1000 grain weight (0.73 - 0.74); days to flowering (0.87 - 0.89); grain yield (0.48 - 0.51) and plant height (0.72 - 0.73), respectively. Other traits with less/no heterosis, only hybrid and hybrid/inbred schemes were also performed equivalently. It was also reported that hybrid GEBVs can be moderately improved by incorporating inbred phenotypic data sets, once inbred and hybrid trait values relative to the mean trait values of that particular population. It was also well demonstrated that guileless integration of historical inbred phenotypic data into hybrid breeding programs could reduce the prediction accuracy of traits exhibiting heterosis. However, by controlling the heterosis effects within inbred genotype and trait data could improve the accuracy of GEBVs for hybrids which in-turn strengthens pearl millet hybrid breeding programs.

6. Challenges in using GWAS and GS for pearl millet

Being a poor man’s crop, pearl millet has attracted relatively less attention from various governments and policymakers in terms of support for the development of upstream science. This is particularly noted in areas such as GWAS and GS. The funding issues for carrying out these basic works in genomics has always remained an issue in pearl millet.

On the crop side, the high outcrossing rates, heterozygous nature, presence of inbreeding depression and residual heterozygosity pose bottlenecks in inbred line development programs for the development of association mapping panels and for parental line/cultivar development, used in the training sets for GS. The presence of rapid linkage disequilibrium decay (LDD) warrants a relatively high number of markers for carrying out GWAS and GS. High rates of segregation distortions in specific populations may also pose serious challenges in GWAS, and for getting high prediction accuracies for a robust GS model development. Single-cross hybrids occupy a major market share in India, while top-cross and three-way hybrids are important for Africa. The development of GS models for hybrid parental lines resulting in heterotic combinations is quite challenging. These warrant precise estimation of general combining ability (GCA) and specific combining ability (SCA) for specific agro-ecologies, and their precise genotype-by-environment (G × E) interactions.
7. Conclusions and way forward

Pearl millet is a nutritious, climate change ready crop capable of yielding economic return in marginal conditions where other cereals may fail. In recent years, pearl millet has seen an enormous increase in terms of various genetic and genomic tools at the disposal of pearl millet workers worldwide. Whole-genome sequencing of the pearl millet genome and resequencing efforts resulting in the generation of millions of genome-wide SNPs have facilitated efforts to map various yield and yield-related, key biotic and abiotic stress tolerance, and nutritionally important traits globally. These genomic resources have also facilitated taking up of the whole-genome prediction model development and validation efforts. There is a need to further validate the loci linked to various traits of interest and move from “loci” to “genes”. There is an enormous opportunity to apply these learnings in the development of robust genomic selection prediction models with special emphasis on combining ability and heterotic gene pool studies for the development of heterotic hybrids.

8. Author Contributions

RKS and RG planned and coordinated this study. RKS, RG, RSY, CTS, RBS, SB, MP, VLP contributed to this work and drafted manuscript. RKS and RG edited the manuscript for publication.

9. Conflict of Interest Statement

The authors declare no conflict of interest.

10. Acknowledgments

Funding support from the Department of Biotechnology (DBT), Government of India, Biotechnology and Biological Sciences Research Council (BBSRC), United Kingdom, and the CGIAR Research Program on Grain Legumes and Dryland Cereals (CRP-GLDC) is gratefully acknowledged. This work has been published as part of the CRP-GLDC.
11. References

List of Table and Figure:

Table 1. Details of mapped traits and genomic resources developed in pearl millet, related to grain quality, yield, fodder, biomass, and biotic and abiotic stresses

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Mapped traits</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Reported large-effect Fe and Zn content QTLs using DArT and SSRs markers to construct a genetic linkage map with 317 RIL population developed from ICMS 8511-S1-17-2-1-1-B-P03 × AIMP 92901-S1-183-2-2-B-08 cross.</td>
<td>Kumar et al., 2018</td>
</tr>
<tr>
<td>2.</td>
<td>Pearl millet genome sequencing data was used to establish marker trait associations for genomic selection, to define heterotic pools, and to predict hybrid performance.</td>
<td>Varshney et al., 2017</td>
</tr>
<tr>
<td>4.</td>
<td>A set of 305 loci were used to construct a linkage map to map two QTLs for grain Fe content on LG3 and LG5, and two QTLs for grain Zn content on LG3 and LG7 using replicated samples of 106 pearl millet RILs (F6) derived from ICMB 841-P3 × 863B-P2 cross.</td>
<td>Kumar et al., 2016</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Mapped traits</td>
<td>Reference</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>5.</td>
<td>Identified 83,875 SNPs within five hundred pearl millet accessions, consist of 252 accessions and 248 Senegalese landraces, with genotyping by sequencing (GBS) of PstI-MspI reduced representation libraries.</td>
<td>Hu et al. 2015</td>
</tr>
<tr>
<td>6.</td>
<td>Thirty seven SSRs and CSIP markers have been developed, spanning 7 LGs evaluated in irrigated and drought stress conditions, 22 SNPs and 3 InDels for abiotic stresses.</td>
<td>Sehgal et al., 2015</td>
</tr>
<tr>
<td>7.</td>
<td>ISSR-based SCAR marker have been devised for downy mildew (DM) resistance in pearl millet and associated to DM resistance LG with genetic linkage distance of 0.72 cM.</td>
<td>Jogaiah et al., 2014</td>
</tr>
<tr>
<td>8.</td>
<td>75 SNPs and CISP were developed from EST sequences using parents of two mapping populations for 18 genes.</td>
<td>Sehgal et al., 2012</td>
</tr>
<tr>
<td>9.</td>
<td>Hundreds of polymorphic EST-derived SSRs were developed and deployed in mapping of RIL populations in pearl millet.</td>
<td>Rajaram et al., 2010, 2013</td>
</tr>
<tr>
<td>10.</td>
<td>About 300 DArT markers have been used for polymorphic in different pearl millet RIL populations.</td>
<td>Senthilvel et al., 2010</td>
</tr>
<tr>
<td>11.</td>
<td>Cross-transferability of the 31 finger millet EST-SSRs were evaluated and found to be polymorphic in pearl millet.</td>
<td>Arya et al., 2009</td>
</tr>
<tr>
<td>12.</td>
<td>4 EST-derived SSRs and 9 CISP were used in linkage mapping using biparental mapping populations of pearl millet.</td>
<td>Yadav et al., 2008</td>
</tr>
<tr>
<td></td>
<td>A panel of 21 functionally informative EST-based SSRs and 6 gSSRs were developed in pearl millet.</td>
<td>Senthilvel et al., 2008</td>
</tr>
<tr>
<td>13.</td>
<td>19 EST-SSRs, among them 11 amplified and 4 were appeared polymorphism on agarose gels.</td>
<td>Yadav et al., 2007</td>
</tr>
<tr>
<td>14.</td>
<td>16 EST-based polymorphic SSR markers.</td>
<td>Mariac et al., 2006</td>
</tr>
<tr>
<td>15.</td>
<td>SSCP-SNP primes were developed through comparison of rice and pearl millet EST collections.</td>
<td>Bertin et al., 2005</td>
</tr>
<tr>
<td>16.</td>
<td>36 genomic SSRs were developed from genomic clones.</td>
<td>Qi et al., 2004</td>
</tr>
<tr>
<td>17.</td>
<td>Genetic maps developed in four different crosses were integrated to generate a consensus map of 353 RFLP and 65 SSR markers.</td>
<td>Qi et al., 2004</td>
</tr>
<tr>
<td></td>
<td>Eighteen potential SSR markers were developed from genomic sequences in pearl millet.</td>
<td>Budak et al., 2003; Allouis et al., 2001</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Mapped traits</td>
<td>Reference</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>18.</td>
<td>RFLP probes were used to assess genetic diversity within and between 504</td>
<td>Bhattacharjee et al., 2002</td>
</tr>
<tr>
<td></td>
<td>landraces of core collection using a subset comprising 10 accessions of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indian origin</td>
<td></td>
</tr>
</tbody>
</table>

In review
Figure 1a. List of traits for which genome-wide association studies (GWAS) and genomic selection (GS) is being attempted at ICRISAT, Patancheru
Figure 1b. Workflow for genome-wide association studies (GWAS) pipeline
Training population (with phenotypic and genotypic data)

Statistical model

Predict breeding value

Genomic estimated breeding values (GEBVs)

Selection of genotypes for advancement (Based on GEBVs)

Breeding/Testing population (with only genotypic data)

Update model

Genotypes

Selection

Generation advancement

Identification of candidates/Testing and cultivar release

Figure 1c: Workflow for genomic selection pipeline