Synaptic ribbons require Ribeye for electron density, proper synaptic localization, and recruitment of calcium channels
Lv, Caixia ; Stewart, William J.; Akanyeti, Otar; Federick, Courtney; Zhu, Jie; Santos-Sacchi, Joseph; Sheets, Lavinia; Liao, James C.; Zenisek, David

Published in:
Cell Reports
DOI:
10.1016/j.celrep.2016.05.045
Publication date:
2016

Citation for published version (APA):
Synaptic ribbons are features of the auditory, vestibular, and visual systems that hold vesicles close to release sites in sensory cells. Lv et al. now find that genetic reduction of Ribeye levels in zebrafish results in the disruption of synaptic ribbon localization and morphology with minor effects on kinetics or levels of vesicle exocytosis.

Lv et al., 2016, Cell Reports 15, 2784–2795 June 21, 2016 © 2016 The Author(s).
http://dx.doi.org/10.1016/j.celrep.2016.05.045
Synaptic Ribbons Require Ribeye for Electron Density, Proper Synaptic Localization, and Recruitment of Calcium Channels

Caixia Lv, William J. Stewart, Otar Akanyeti, Courtney Frederick, Jie Zhu, Joseph Santos-Sacchi, Lavinia Sheets, James C. Liao, and David Zenisek

1Department of Cellular and Molecular Physiology
2Department of Ophthalmology and Visual Sciences
3Department of Surgery (Otolaryngology)
4Department of Neuroscience
5Yale University School of Medicine, New Haven, CT 06520-8066, USA
6The Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, FL 32080, USA
7Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
8Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA

Correspondence: david.zenisek@yale.edu
http://dx.doi.org/10.1016/j.celrep.2016.05.045

SUMMARY

Synaptic ribbons are structures made largely of the protein Ribeye that hold synaptic vesicles near release sites in non-spiking cells in some sensory systems. Here, we introduce frameshift mutations in the two zebrafish genes encoding for Ribeye and thus remove Ribeye protein from neuromast hair cells. Despite Ribeye depletion, vesicles collect around ribbon-like structures that lack electron density, which we term “ghost ribbons.” Ghost ribbons are smaller in size but possess a similar number of smaller vesicles and are poorly localized to synapses and calcium channels. These hair cells exhibit enhanced exocytosis, as measured by capacitance, and recordings from afferent neurons post-synaptic to hair cells show no significant difference in spike rates. Our results suggest that Ribeye makes up most of the synaptic ribbon density in neuromast hair cells and is necessary for proper localization of calcium channels and synaptic ribbons.

INTRODUCTION

Primary sensory cells of the auditory, vestibular, and visual systems encode sensory information as graded changes in voltage that lead to graded changes in glutamate release. These non-spiking cells use synaptic ribbons, which hold a dense array of synaptic vesicles in active zones near release sites. Because these cells exhibit tonic and graded signaling in response to sensory stimuli, it has largely been assumed that the synaptic ribbon is necessary to carry out this task (Matthews and Fuchs, 2010). Indeed, ribbon-synapse-containing cells have been demonstrated to exhibit a sustained phase of exocytosis in response to prolonged stimuli (Lagnado et al., 1994; Moser and Beutner, 2000; Edmonds et al., 2004; Bartoletti et al., 2010), and optical studies have revealed that vesicles are immobilized to and move along the ribbon in response to stimuli (Vaithianathan et al., 2016; Zenisek, 2008; Zenisek et al., 2000; Midorikawa et al., 2007).

The most abundant protein in the synaptic ribbon is Ribeye, a protein arising from an alternative start site at the gene encoding for the CtBP2 transcriptional co-repressor (Schmitz et al., 2000). Ribeye can be subdivided into two domains, a ribbon-specific A-domain and a B-domain, which is nearly identical to CtBP2 (Schmitz et al., 2000).

Genetic deletion of mouse Ribeye leads to a loss of synaptic ribbons in the retina, which is accompanied by a reduction in synaptic transmission from bipolar cells without observable changes in the kinetic features of release (Maxeiner et al., 2016), whereas morpholino-oligonucleotide (MO)-driven knockdown of Ribeye expression leads to the mislocalization of calcium channels (Sheets et al., 2011; Lv et al., 2012) and a reduction of spiking rates in afferent neurons postsynaptic to zebrafish hair cells (Sheets et al., 2011).

To better understand the function of Ribeye and the synaptic ribbon, we used genome editing to introduce frameshifting mutations in the A-domain of both zebrafish Ribeye-encoding genes and used light and electron microscopy (EM), whole-cell capacitance measurements, and recordings from afferent neurons to measure the effects on neuromast hair cells. The resultant double-homozygous mutant animals exhibited dramatically reduced Ribeye levels in hair cells, leading to a loss of electron density from hair cell ribbons, shrinkage of ribbon size, mislocalization of ribbon-like structures, and disruption in the association of calcium channels with the ribbon. Despite these changes, the continuous phase of exocytosis is enhanced, and we could not detect differences in afferent neuron response in mutant animals. These results indicate that Ribeye likely makes up the electron-dense portion of the ribbon and recruits calcium channels to release sites in zebrafish hair cells but is not required for vesicle binding, transport, or maintaining continuous release.
RESULTS

Generation of Targeted Zebrafish ribeye Mutants
To study Ribeye function, we first generated a line of zebrafish harboring mutations in the ribbon-synapse-specific A-domain of Ribeye a that leads to frameshifts resulting in a premature stop codon using zinc finger nucleases (ZFNs) (Supplemental Experimental Procedures; Figure S1). One such mutant that led to a 10-bp deletion (ribeye a(Δ10)) was bred to homozygosity for further experiments. Figure S2 shows immunostaining of retinal sections of wild-type (WT) and ribeye a(Δ10) homozygous fish with antibodies against Ribeye a or Ribeye b or with a CtBP antibody that labels CtBP1, CtBP2, and all isoforms of Ribeye. As expected, CtBP and Ribeye b staining was still evident in the ribeye a(Δ10) homozygous animals, due to expression of Ribeye b. Note that, while the CtBP expression level is greatly reduced in the inner plexiform layer (IPL), the CtBP staining in the outer plexiform layer (OPL) is similar in the ribeye a(Δ10) homozygous and WT animals, consistent with stronger expression of Ribeye b in photoreceptor terminals and higher expression of Ribeye a in bipolar cells. EM images revealed normal-appearing ribbons in both the retina and lateral line of ribeye a(Δ10) homozygous animals (data not shown). We found that animals homozygous for these mutations are viable and do not exert obvious sensory phenotypes.

Next, we targeted ribeye b using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9)-based constructs. Using this strategy, we generated eight lines of fish harboring mutations in this region of ribeye b, which led to premature stop codons (Figure S1C). As with the ZFN-generated mutations of ribeye a, the mutations introduced into ribeye b are expected to cause a truncation of the sequence in the A-domain, with no effect on CtBP2 expression.

Characterization of ribeye a(Δ10)/ribeye b(Δ7) Homozygous Zebrafish
Next, we characterized the ribeye a(Δ10)/ribeye b(Δ7) (herein-after termed re[a(Δ10)/b(Δ7)]) double-homozygous mutants at the level of light and EM in the retina and in hair cells of the lateral line. Surprisingly, double-homozygous mutants were immunopositive for CtBP and Ribeye b in the OPL of the retina, indicating that at least some Ribeye continues to be expressed, despite the mutations (Figure 1). Consistent with Ribeye expression, EM revealed that synaptic ribbons were also present in the OPL of re[a(Δ10)/b(Δ7)] fish (Figure 1D).

In contrast to the retina findings, Ribeye was found to be dramatically reduced in the hair cells of zebrafish neuromasts at 5 days postfertilization (dpf) (Figure 2). Figures 2A and 2B show results from neuromasts that are labeled for Ribeye a (Figure 2A) or Ribeye b (Figure 2B) with pan-MAGUK, a marker for post-synaptic densities that labels afferent post-synaptic structures in afferent fiber terminals (Sheets et al., 2011; Meyer et al., 2005). In WT animals, pan-MAGUK staining was found to colocalize near bright spots immunopositive for Ribeye a (Figure 2A, left) and Ribeye b (Figure 2B, left). By contrast, re[a(Δ10)/b(Δ7)] double homozygotes exhibit little staining for Ribeye a (Figure 2A, right) but continued to exhibit staining for pan-MAGUK (Figures 2A and 2B, right). Some residual fluorescent spots remained in double-homozygous mutant animals. The Ribeye a puncta were reduced in number from 2.5 ± 0.18 in WT fish to 1.5 ± 0.3 in double homozygotes (Figure 2D), and in intensity from 15,728 ± 1,517 to 6,369 ± 1,021 (Figure 2E). Ribeye b was not detectable (Figure 2B). Though the number of pan-MAGUK spots in double homozygotes was unchanged (Figure 2D), the puncta intensity was significantly reduced (Figure 2E).

Next, we tested whether overall CtBP levels were also reduced from synaptic sites by staining with an antibody that recognizes Ribeye a, Ribeye b, CtBP1, and CtBP2. As with the Ribeye a staining, we found fewer and dimmer CtBP puncta than in control animals. On average, puncta in double homozygotes had an integrated intensity of 17% of WT fish.

Lastly, to determine whether the Ribeye a immunofluorescent (IF) spots properly localized near post-synaptic structures, we measured the distance of the centroid of each Ribeye a spot to its nearest pan-MAGUK spot. Figure 2F plots the results as a cumulative histogram. As can be seen in the figure, spots in mutant animals were found further away from
post-synaptic densities, suggesting defects in their ability to localize to synapses.

Morphology of Hair Cell Synaptic Ribbons in re[a(D10)/b(D7)] Homozygous Mutants

Neuromast hair cells of WT embryos at 5 dpf exhibit spherical synaptic ribbons that localize near the plasma membrane near afferent fibers (Obholzer et al., 2008). Similarly, we found that EM sections of neuromasts in WT fish exhibited electron-dense synaptic ribbons (n > 20 fish). Figures 3A and 3B show typical electron micrographs of a synaptic ribbon from a WT hair cell, which were localized near afferent neurons separated by two cell membranes. Afferent neurons were identified in electron micrographs by their reduced density, lack of synaptic vesicles, and mitochondria. In WT fish, we found that 41 of 41 ribbons were localized within 70 nm of a visible plasma membrane opposite an afferent neuron. By contrast, we found no ribbons with typical electron-dense centers in re[a(D10)/b(D7)] double homozygotes. Instead, 5-dpf embryos of re[a(D10)/b(D7)] double homozygotes exhibited ribbon-like structures that lacked electron densities but maintained an organized collection of synaptic vesicles in a spherical array (Figures 3C–3F), which we have named “ghost ribbons.” While some ghost ribbons appeared to localize adjacent to afferent neurons (Figure 3C; n = 14 of 41 ghost ribbons), most were not found near
identifiable afferent fibers. Figure 3 shows examples of ghost ribbons near efferent neurons (Figure 3D), away from the cell membrane (Figure 3E), and in the center of the cell (Figure 3F). By contrast, ribbons of the retina of re[a(D10)/b(D7)] double homozygotes were found to be largely normal; however, we found two examples of structures within photoreceptors of re[a(D10)/b(D7)] double homozygotes that resembled the hair cell ghost ribbons but took on the elongated shape of a photoreceptor ribbon (Figure 3J). These results indicate that Ribeye is necessary for the maintaining the electron density of the ribbon and plays a critical role in localizing ribbons to proper synaptic locations.

Next, we quantified and compared the morphological properties of ghost ribbons in re[a(D10)/b(D7)] double homozygotes to ribbons in WT animals. In WT hair cells (n = 45 ribbons, 18 fish), the area of the region beneath the vesicles, including both the electron density and the surrounding light space (e.g., an estimated cross-sectional area of 0.119 μm², equivalent to a 390-nm diameter sphere and a volume of 0.031 μm³. Hence, when one does not factor in the vesicle volume, the volume of ghost ribbons is only 34% of the volume of WT ribbons, less than the 57% that one would predict if ribbons only lost the density but similar to a previous estimate of the contribution of Ribeye to ribbon volume in retinal bipolar cells using a ribbon-binding peptide (Zenisek et al., 2004).

To analyze the vesicles associated with ribbons and ghost ribbons, we counted the number of vesicles within one vesicle diameter of the ribbon. Despite the smaller area of the ghost ribbons, we observed more vesicles per section associated with ghost ribbons in mutant animals (21.8 ± 1.3) than with ribbons in WT cells (15.7 ± 2.0). To measure the density of vesicles on ribbons, we divided the number of vesicles by the length of the perimeter of the ribbon in each section. On average, we found
22.7 ± 1.0 vesicles per micrometer perimeter in mutant ghost ribbons and 11.1 ± 0.9 vesicles per millimeter in images of ribbons of WT animals. Even after the removal of a subset of WT ribbons that had very few vesicles (five or less), the vesicle density on ribbons remained lower in the WT cells (13.0 ± 0.8 μm⁻¹). Figure 3H plots a histogram of these values for both genotypes. To estimate the effect on overall vesicle number, we estimated the area of ribbon assayed in each 80-nm section relative to the total ribbon surface area using our spherical assumption. Based on this method, we calculated an estimate of 133 ± 17 vesicles per ribbon in WT animals and 129 ± 8 associated with ghost ribbons in re[a(j10)/b(j7)] double-mutant animals.

Lastly, we measured the size of the vesicles associated with ribbons and ghosts. We measured the size of vesicles associated with ribbons (n = 671) and ghost ribbons (n = 627). On average, ribbon-associated vesicles in WT animals had an average area of 1,631 ± 15 nm², whereas vesicles in re[a(j10)/b(j7)] were 1,437 ± 12 nm². Since the vesicles are round in the images, we converted the areas into vesicle radii and plotted the results as a histogram in Figure 3I. While the difference in vesicle size is small (21.4 ± 0.09 in double homozygotes versus 22.4 ± 0.1 nm in WT), the differences are highly significant (p < 0.003 when comparing averages across ribbons).

re[a(j10)/b(j7)] Double Mutants Exhibit Enhanced Exocytosis and Calcium Current

Next, we tested the release properties of the re[a(j10)/b(j7)] double-homozygous animals and WT animals. To do so, we performed whole-cell membrane capacitance recordings in response to long step depolarizations in both WT and re[a(j10)/b(j7)] double-homozygous fish 5–8 dpf, using a two-sine approach that allows for measuring exocytosis during a depolarization (Ricci et al., 2013; Schnee et al., 2011). Figure 4A shows the average responses of 11 WT hair cells and 12 re
as a second test for the proximity between calcium channels and active zones, we determined the effect of the slow calcium buffer EGTA on exocytosis in WT and re[a(Δ10)/b(Δ7)] double-homozygous mutant animals. High concentrations of EGTA have little effect on calcium concentrations in small nano-domains near the mouth of open calcium channels but efficiently reduce bulk calcium concentrations and calcium at other distal locations away from the channels. Hence, if sites of exocytosis are very near calcium channels, EGTA is expected to have little effect on release. Electrophysiological studies from various synapses have used this method to demonstrate tight proximity of calcium channels to release sites (Mennerick and Matthews, 1996; Adler et al., 1991; Roberts, 1994; Moser and Beutner, 2000; Mehta et al., 2014; Coggins and Zenisek, 2009; Wong et al., 2014). Similarly, WT hair cells showed little change in the amount of exocytosis when 10 mM EGTA was introduced into the cell via patch pipette and stepped to –10 mV, suggesting tight coupling between calcium channels and release sites in these cells (Figure 5C). On average, the capacitance response to a 3-s step depolarization from –80 mV to –10 mV was 67.8 ± 5.0 fF for cells loaded with 1 mM EGTA (n = 11) and 62.8 ± 4.9 fF for cells loaded with 10 mM EGTA (n = 7) with similar kinetics. By contrast, 10 mM EGTA had a dramatic effect on ΔCm in re[a(Δ10)/b(Δ7)] double-homozygous hair cells, reducing release by 66% relative to 1 mM EGTA and only 55% of WT hair cells loaded with 10 mM EGTA (Figure 5D; Table 1). The effect of EGTA was more pronounced in the continuous phase (72% reduced) than the exponential phase (33%). These results suggest that Ribeye is required for proper formation of calcium channel/vesicle nanodomains and that the enhanced release observed in re[a(Δ10)/b(Δ7)] double homozygotes may arise primarily from vesicles residing outside of calcium channel nanodomains.

Table 1. Best-Fit Values of Hair Cell Capacitance Measurements from WT and Mutant Zebrafish

<table>
<thead>
<tr>
<th></th>
<th>Linear Phase, β (1/F/s)</th>
<th>Amplitude, A (fF)</th>
<th>Time Constant, τ (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type/1 EGTA/2.8 Ca²⁺</td>
<td>17.6</td>
<td>18.9</td>
<td>501</td>
</tr>
<tr>
<td>Wild type/10 EGTA/2.8 Ca²⁺</td>
<td>16.7</td>
<td>15.6</td>
<td>622</td>
</tr>
<tr>
<td>re[a(Δ10)/b(Δ7)]/1 EGTA/2.8 Ca²⁺</td>
<td>29.1</td>
<td>19.2</td>
<td>346</td>
</tr>
<tr>
<td>re[a(Δ10)/b(Δ7)]/10 EGTA/2.8 Ca²⁺</td>
<td>8.4</td>
<td>10.5</td>
<td>579</td>
</tr>
<tr>
<td>Wild type/1 EGTA/10 Ca²⁺</td>
<td>28.8</td>
<td>22.7</td>
<td>481</td>
</tr>
</tbody>
</table>

[a(Δ10)/b(Δ7)] fish in response to 3-s voltage steps to –10 mV. WT hair cells exhibited a steady rise in whole-cell capacitance, which could be well fit by the sum of an exponentially asymptoting fast phase and a linear continuous phase, similar to what has been observed in mouse (Moser and Beutner, 2000) and chick (Eisen et al., 2004) cochlear hair cells. To fit the data, the latter half of the capacitance response was fit to a straight line, and a line with that slope was subtracted from the raw data. The residual was then fit by an exponential. Using this approach, the WT response was best fit by a linear phase of 17.6 fF/s and an exponential with an amplitude of 18.9 fF and with a time constant of 501 ms (see Table 1).

Surprisingly, the capacitance response from re[a(Δ10)/b(Δ7)] double-homozygous animals showed a larger increase in capacitance in response to step depolarization (Figure 4A; Table 1). The linear phase (65% greater than WT) was specifically enhanced in mutant animals, whereas the exponential amplitude was only minimally larger (1.6% greater than WT). The enhanced exocytosis in double-homozygous mutant zebrafish was accompanied by an increase in the calcium current in the hair cells measured at –20 mV (Figure 4B). Figure 4C shows the average current as a function of membrane potential from WT (n = 15) and re[a(Δ10)/b(Δ7)] double-homozygous (n = 17) fish. While the shape of the current-voltage (I-V) relationship appeared similar, the calcium currents were found to be larger in the cells lacking Ribeye. Increasing extracellular calcium to 10 mM in WT animals resulted in an increase in calcium current (Figure 4D) and exocytosis (Figure 4E) to levels that mimicked that of re[a(Δ10)/b(Δ7)] double-homozygous animals, suggesting that the enhanced exocytosis can largely be explained by the enhanced calcium current.

Calcium Channels Are Poorly Coupled to Release in re[a(Δ10)/b(Δ7)] Double-Homozygous Hair Cells

Next, we performed co-immunofluorescence staining with an antibody for the calcium channel CaV1.3 (Sheets et al., 2011, 2012) and a post-synaptic marker pan-MAGUK (Meyer et al., 2005). In WT animals, CaV1.3 staining revealed spots (Figure 5A, red), which were found localized near pan-MAGUK spots (Figure 5A, green). By contrast, CaV1.3 and pan-MAGUK spots were spatially segregated in re[a(Δ10)/b(Δ7)] double homozygotes (Figure 5B), suggesting improper localization.

As a second test for the proximity between calcium channels and active zones, we determined the effect of the slow calcium buffer EGTA on exocytosis in WT and re[a(Δ10)/b(Δ7)] double-homozygous mutant animals. High concentrations of EGTA have little effect on calcium concentrations in small nano-domains near the mouth of open calcium channels but efficiently reduce bulk calcium concentrations and calcium at other distal locations away from the channels. Hence, if sites of exocytosis are very near calcium channels, EGTA is expected to have little effect on release. Electrophysiological studies from various synapses have used this method to demonstrate tight proximity of calcium channels to release sites (Mennerick and Matthews, 1996; Adler et al., 1991; Roberts, 1994; Moser and Beutner, 2000; Mehta et al., 2014; Coggins and Zenisek, 2009; Wong et al., 2014). Similarly, WT hair cells showed little change in the amount of exocytosis when 10 mM EGTA was introduced into the cell via patch pipette and stepped to –10 mV, suggesting tight coupling between calcium channels and release sites in these cells (Figure 5C). On average, the capacitance response to a 3-s step depolarization from –80 mV to –10 mV was 67.8 ± 5.0 fF for cells loaded with 1 mM EGTA (n = 11) and 62.8 ± 4.9 fF for cells loaded with 10 mM EGTA (n = 7) with similar kinetics. By contrast, 10 mM EGTA had a dramatic effect on ΔCm in re[a(Δ10)/b(Δ7)] double-homozygous hair cells, reducing release by 66% relative to 1 mM EGTA and only 55% of WT hair cells loaded with 10 mM EGTA (Figure 5D; Table 1). The effect of EGTA was more pronounced in the continuous phase (72% reduced) than the exponential phase (33%). These results suggest that Ribeye is required for proper formation of calcium channel/vesicle nanodomains and that the enhanced release observed in re[a(Δ10)/b(Δ7)] double homozygotes may arise primarily from vesicles residing outside of calcium channel nanodomains.

Recordings from Afferent Neurons

The aforementioned results indicate that hair cells from re[a(Δ10)/b(Δ7)] double homozygotes continue to exhibit robust exocytosis in response to depolarization, despite lacking ribbon densities, but the release is inefficiently coupled to calcium channels, and ribbons are mislocalized. Next, we tested whether ghost-ribbon-containing hair cells could efficiently drive postsynaptic spiking in afferent neurons. To do so, we recorded action potentials from primary afferent neurons of the posterior lateral line system using loose-patch extracellular recordings in response to piezo-electrically driven stimuli directed to the kinocilia of neuromast hair cells (Levi et al., 2015). For these experiments, cells were selected for analysis only if a stimulus was found to generate action potentials in the recorded afferent. Hence, these recordings represent cells that receive synaptic input from hair cells. We could find no differences between WT and mutant animals in their afferent responses. Figure 6 summarizes our results from these recordings in WT and re[a(Δ10)/b(Δ7)] double-homozygous animals. Figure 6A shows representative recordings taken from neuromast L1 from a WT animal and a mutant animal stimulated at 60 Hz. As can be observed from the recordings, both the WT and mutant animals showed robust spiking throughout a 10-s stimulus train. We found no difference in the spontaneous spike rate before stimulation for WT and re[a(Δ10)/b(Δ7)] double-homozygous fish (Figure 6B). Figure 6C...
plots the recorded spike frequency that has been time averaged over the 10-s stimulus train for three frequencies (2 Hz, 30 Hz, and 60 Hz). Figure 6F shows the spike rate over the entire 10 s of 60-Hz stimulation for all fish. As can be seen from the plots, re[a(110)/b(177)] double-homozygous fish exhibited spike rates similar to WT animals at all frequencies tested. We found no effect of genotype on the ability to phase lock to stimuli, as the vector strengths for both WT and mutant animals were similar across all stimulation frequencies (Figure 6D). Similarly, the measured preferred phase angles were indistinguishable among genotypes. Figure 6E shows that the latency to the first response was also unchanged in mutant animals.

DISCUSSION

Evidence for Ribeye Forming the Core of the Ribbon

In this study, we used genome editing techniques to introduce mutations into the coding regions of the synaptic ribbon-specific A-domain of both zebrafish ribeye genes. Mutant animals exhibit greatly reduced levels of Ribeye, leading to striking morphological changes to the synaptic ribbons of hair cells. In particular, double-homozygous mutants have ribbons that lack the central electron density while maintaining a roughly spherical scaffold that harbors attached synaptic vesicles. Of note, the ghost ribbons were found to have lost 66% of their estimated volume, similar to the estimated contribution of Ribeye to ribbon volume in bipolar cells (Zenisek et al., 2004) but considerably more than the volume occupied by the density in micrographs. Previous studies have demonstrated that overexpressed Ribeye forms electron-dense aggregates in HEK and R28 cells (Schmitz et al., 2000; Magupalli et al., 2008) and leads to ectopic electron densities in neuromast hair cells (Sheets et al., 2011). In some systems, the A-domain alone is sufficient to form densities, whereas the B-domain alone forms a soluble protein (Schmitz et al., 2000). Summed together, it is reasonable to conclude that the core density observed in electron micrographs of synaptic ribbons is largely composed of the A-domain of Ribeye protein, whereas the surrounding halo of lighter material is made...
up of the B-domain of Ribeye along with other ribbon proteins that remain in place in our mutant animals. This idea is consistent with the original model put forth by Schmitz, Sudhof, and colleagues (Schmitz et al., 2000).

We find that most “ghost ribbons,” while smaller, appear to take on a shape that is similar to that of normal ribbons (although see Figures 3C–3F) and still retain a scaffold capable of recruiting vesicles. Interestingly, we found two examples of ghost-ribbon-like structures in photoreceptors of mutant mice, which appeared more elongated than the hair cell ghost ribbons, mimicking the structure of photoreceptor ribbons. It remains possible that the sparse Ribeye remaining in these cells may maintain the structure but fail to form a density. Alternatively, numerous structural proteins have been shown to localize to the ribbon complex (Brandsta¨ tter et al., 1999), including Piccolo, Bassoon, Cast/ERC, Rim1, and Rim2, but each of these proteins is also found at conventional synapses, which lack the ribbon structure. Of note, a ribbon-specific isoform of Piccolo has been described in retina (Regus-Leidig et al., 2013, 2014b), suggesting that ribbon-specific splicing may underlie some of the diversity in ribbon shape and size.

It is noteworthy that some of the features we report here differ from those found in a recent report characterizing retinal ribbons in Ribeye knockout mice (Maxeiner et al., 2016). In that study, the authors found ribbons completely lacking from the retina and a general decrease in vesicles residing near active zones. Additionally, they found that synaptic transmission between rod bipolar cells and AII Amacrine cells was reduced by approximately 80%, whereas in our study, exocytosis, measured by capacitance, is slightly enhanced. As in our study, the kinetics of the responses remained unchanged, suggesting that ribbons are not required to maintain continuous release from bipolar cells. Although the reasons for the differences in the two studies are unknown at this point, we hypothesize several possible explanations. (1) In our study, a small amount of Ribeye remains in hair cells, which may be sufficient to nucleate the ghost-ribbon structures and be sufficient to stabilize synaptic structures containing other ribbon proteins. (2) Occult ghost ribbons might account for 20% of release from mouse bipolar cells. Ghost ribbons lack the electron density and are smaller than WT ribbons and, thus, were initially difficult to find in electron micrographs in neuromast hair cells. Identifying such structures in mouse bipolar cells ribbons would be even more difficult, since bipolar cell ribbons are smaller and vesicles are found at high densities throughout the cytoplasm. Moreover, since release is reduced by 80%, ghost-ribbon ribbons...
numbers may be similarly reduced. (3) The differences may reflect species- and/or tissue-specific roles for Ribeye.

Relationship between Ribeye and Vesicles

In this study, we find that ghost ribbons possess an estimated 50% of the surface area of WT ribbons, while maintaining near-normal vesicle numbers. Physical tethers linking the ribbon to synaptic vesicles are observable in some electron micrographs (e.g., Lenzi et al., 2002), but the molecular components of the tether remain obscure. Since vesicle numbers remain constant, despite dramatic reductions in Ribeye levels, we posit that a yet-to-be-identified protein may link vesicles to ribbons and that loss of ribbon volume results in an increase in concentration of this molecule on the ribbon. Our results here argue against Ribeye directly participating in the tethering of synaptic vesicles.

Synaptic vesicles associated with ghost ribbons were also found to be smaller than those associated with ribbons in WT animals. The reasons for this difference is currently unknown, but it is worth noting that Ribeye has been suggested to act as a lysophosphatidyl acyl tranferase that adds an acyl group to lysolipids, thus converting lysophosphatic acid (LPA) with one acyl chain to phosphatic acid (PA) with two acyl chains (Schwarz et al., 2011). Since the LPA and PA have opposite effects on membrane curvature, the acyltransferase activity has the potential to influence membrane curvature and, by extension, vesicle size.

Ribeye, Synaptic Localization, and Calcium Channels

Prior to the present study, several lines of evidence have pointed toward a close relationship between Ribeye and calcium channels in ribbon synapses. Calcium channels have been shown to localize to clusters beneath the ribbon in ribbon synapses (Roberts et al., 1990; Zenisek et al., 2003; Frank et al., 2010). Moreover, the tight coupling of fast exocytosis to calcium channels appears to be a feature of many ribbon synapses (Singer and Diamond, 2003; Mennerick and Matthews, 1996; Moser and Beutner, 2000; Wong et al., 2014). A link between Ribeye and calcium channels has previously been inferred from overexpression and knockdown studies in zebrafish. MO-driven knockdown of ribeye leads to loss of calcium channel clusters in both retina (Lv et al., 2012) and neuromast hair cells (Sheets et al., 2012), whereas animals overexpressing Ribeye exhibit ectopic calcium channel clusters that colocalize with Ribeye protein aggregates (Sheets et al., 2012). More recently, knockout of Ribeye in mouse was found to cause a subtle change in the size of calcium channel clusters in photoreceptors (Maxeiner et al., 2016). Notably, in contrast to the previous MO results in retina (Lv et al., 2012), calcium channels remained clustered in discrete locations in the retina. Additionally, knockout mice were found to exhibit an increase in sensitivity of mEPSC frequency to high levels of the membrane-permeant analog of EGTA, EGTA-AM. Since mEPSC frequency is also reduced by calcium channel blockers (Mehta et al., 2013; Maxeiner et al., 2016), the results were suggestive of a loss of coupling between calcium channels and release sites.

Here, we show that genetic disruption of Ribeye expression leads to mislocalization and redistribution of calcium channels in neuromast hair cells, in line with the previous work using MOs (Sheets et al., 2012). This redistribution of calcium channels is associated with a slight enhancement of calcium current. Although the reason for the increase in calcium current is unknown at present, we posit that homeostatic plasticity, in response to less neurotransmitter released on to afferent fibers, may trigger an upregulation of calcium current and exocytosis in these cells, similar to what has been described for other systems (Frank, 2014). Alternatively, Ribeye may act as a negative regulator of voltage-gated calcium channel expression or activity, with the latter being a distinct possibility, given that CaBP2 functions as a co-repressor. Further work will be necessary to determine the mechanisms behind the enhanced calcium current observed here. We also show here that the continuous phase of exocytosis in mutant animals exhibits an enhanced sensitivity to EGTA. Mutant hair cells retain an EGTA-insensitive component of release that retains similar exponential release kinetics, suggesting that some vesicles may still reside in nanodomains near calcium channels.

Of note, inner hair cells from mice harboring mutations to the synaptic ribbon protein Bassoon, which exhibit few ribbons that associate with the plasma-membrane exhibit a reduction in voltage-gated calcium current. Interestingly, a small subset of ribbons in Bsn mice associates with the plasma membrane at synapses, and these synapses exhibit more calcium channels than ribbon-less synapses (Frank et al., 2010). The opposite effect on calcium current in Bassoon mice, compared with re[aΔ10]/bΔ7) double-homozygous fish, may indicate that the two proteins interact with and regulate calcium channels differently, with Bassoon influencing overall expression level or channel stability and Ribeye having an effect on channel localization.

Interestingly, several studies have demonstrated that mutations to calcium channel subunits have a reciprocal effect on synaptic ribbon morphology, although the magnitude and specific effects have varied between preparations. For example, a mutation in the zebrafish gene encoding for the alpha subunit of Cav 1.4 channels results in the disappearance of cone synaptic ribbons (Jia et al., 2014), whereas genetic or pharmacological removal of calcium conductance through Cav 1.3 channels increases the size of ribbons in lateral line hair cells (Sheets et al., 2012). In mouse, the genetic removal of Cav1.4 channels prevents the formation of mature synaptic ribbons (Liu et al., 2013; Regus-Leidig et al., 2014a), whereas Cav1.3 is not required for the generation or maturation of auditory hair cell ribbons but is required for proper maintenance of the synapses (Nemzou N et al., 2006).

Effects on Synaptic Transmission

Here, our results show an enhanced continuous phase of exocytosis in animals deficient in Ribeye. Given that there are fewer ghost ribbons than WT ribbons and that most ghost ribbons fail to localize to proper synaptic locations, we suggest that much of this continuous phase of release may arise from extraribbon locations. Our results are in line with several imaging and electrophysiological studies that have demonstrated that extra-ribbon release can occur in ribbon-bearing cells during prolonged stimulation (Mehta et al., 2014; Zenisek et al., 2000; Midorikawa et al., 2007; Pangrsic et al., 2015; Chen et al.,
we et al., 2015). Given that, in the presence of 10 mM EGTA, some
ribbon-targeted fluorescent peptides cause the loss of sponta-
neous and both fast and slow components of evoked release
(Mehta et al., 2013; Snellman et al., 2011). Although the peptides
used in those studies specifically target Ribeye, FALI generates a
sphere of damage likely to also include local bystander proteins
associated with the synaptic ribbon. The comparatively mild
changes to release properties in cells missing Ribeye implicate
these other nearby proteins in functions essential for maintaining
focal neurotransmitter release in these cells. Indeed, ghost rib-
bons maintain a shape and vesicle clusters that resemble WT rib-
bons, suggesting that many ribbon-resident proteins inhabit
these structures in mutant animals. Relatedly, inner hair cells
from mice harboring mutations to Bassoon show decreases in both
transient (Khimich et al., 2005) and sustained (Frank et al.,
2010) components of exocytosis. This comparatively greater ef-
fect of Bassoon removal suggests that either Bassoon itself or
proteins recruited by Bassoon to ribbons play a more funda-
mental role in determining release properties from ribbon synap-
ses. Indeed, the genetic disruption of Bassoon causes a change in
open probability, reduces channel number, and causes a redis-
tribution of calcium channels in hair cells (Frank et al.,
2010). The effect of Bassoon removal must overwhelm any
homeostatic compensatory mechanisms that might normally re-
turn calcium current to normal levels. In addition to Bassoon,
several other proteins already known to have critical functions
in conventional synapses have been demonstrated to localize
either to the ribbon or the plasma membrane beneath the
ribbon (Regus-Leidig and Brandstatter, 2011; tom Dieck et al.,
2005).

Surprisingly, despite the loss of efficient coupling between
calcium channels and release sites in mutants and reduction in
ribbon numbers, we could detect no differences in afferent re-
sponses. Spontaneous and evoked release rates at three
different frequencies, the latency to first spike and the ability to
phase lock were indistinguishable between genotypes. A key
difference in capacitance measurements and afferent spike rec-
cordings is that afferent recordings are dependent upon exocy-
tosis at specific locations, namely, on to receptors populating
afferent fibers, whereas capacitance recordings have no such
spatial requirements. As such capacitance measurements
reflect both synaptic and extrasynaptic release. Similar to our re-
results, hair cells in mice lacking endogenous calcium-binding
proteins show enhanced continuous release, without an effect on
afferent responses, consistent with extrasynaptic release
contribution significantly to capacitance response (Pangršić
et al., 2015). Given that, in the presence of 10 mM EGTA, some
exocytosis persists with normal kinetics in mutant animals, we
suggest that this EGTA-resistant component represents the sub-
set of vesicles, which is properly localized near calcium chan-
nels, and could be sufficient to drive afferent neuron spiking to
near normal levels for afferents that receive synaptic input. It
should be noted that, to perform afferent recordings, one first
identifies and selects for synaptically connected neurons before
performing experiments. Thus, recordings represent only those
neurons, which generate spikes in response to mechanical stim-
uli to hair cells, and cannot account for cells that lack synaptic
connections. These results suggest that when synapses with
ghost ribbons are formed, they respond to stimuli normally under
the conditions we tested. It should also be noted that while the
stimulus frequencies we tested here are typical or slightly higher
for neuromast hair cells, auditory hair cells of the inner ear
respond to much higher frequencies and exhibit faster kinetics
and greater demands on neurotransmitter release. Because of
this, the faster hair cells of other systems may show greater de-
fects in the absence of Ribeye.

EXPERIMENTAL PROCEDURES

Zebrafish Husbandry
Zebrafish were kept in accordance with the Yale University Animal Care and
Use Committee guidelines.

Generation of ribeye a Mutant Fish
Ribeeye a mutant fish were generated using zinc finger nucleases (ZFNs) targeting
the A-domain of ribeye a (ENSDARG00000044062) purchased from
Sigma-Aldrich. mRNAs encoding the ZFNs were injected into one-cell-stage
embryos, and progeny were screened for mutations. Mutants (Figure S1)
were selected for breeding to generate homozygous mutants. Detailed
experimental procedures are provided in the Supplemental Experimental
Procedures.

Generation of ribeye b Mutant Fish
CRISPR/Cas9-induced mutagenesis procedures were adapted from previ-
ously published reports (Hruscha et al., 2013) and are detailed in the Supple-
mental Experimental Procedures. Single guide RNAs (sgRNAs) were designed
to target to the Ribeye-specific A-domain of ribeye b. Several mutant lines
were identified and selected for further study (Figure S2).

EM and Immunofluorescence
Procedures were adapted from standard previously published experimental
protocols (Obholzer et al., 2008; Lv et al., 2012) and are detailed in the Supple-
mental Experimental Procedures.

Hair-Cell Voltage-Clamp Recordings
Whole-cell voltage-clamp recordings were carried out from neuromast hair
cells in anesthetized live zebrafish (5–7 dpf), as previously described (Ricci
et al., 2013). Details can be found in the Supplemental Experimental
Procedures.

Afferent Neuron Recordings
Loose-patch recordings from soma of afferent neurons were made on anes-
ethetized and paralyzed larval zebrafish as previously described and detailed
in the Supplemental Experimental Procedures (Levi et al., 2015).

Statistical Analysis
Data are presented as mean ± SEM. Statistical significance across datasets
was determined using the unpaired two-tailed t test. Significance was consid-
ered p < 0.05; however, for most comparisons in the present study, p < 0.01.

SUPPLEMENTAL INFORMATION
Supplemental Information includes Supplemental Experimental Procedures
and two figures and can be found with this article online at http://dx.doi.org/
10.1016/j.celrep.2016.05.045.
AUTHOR CONTRIBUTIONS

C.L. designed and conducted experiments, analyzed data, and wrote the paper; W.J.S. performed experiments, analyzed data, and participated in the writing; O.A. analyzed data and participated in the writing; C.F. analyzed morphological data; J.Z. analyzed electrophysiological data; J.S.-S. analyzed data and provided technical expertise; L.S. performed experiments, analyzed data, and participated in writing; J.C.L. oversaw all the recording experiments and interpreted and analyzed data; D.Z. designed experiments, analyzed data, and wrote the paper.

ACKNOWLEDGMENTS

This work was funded by NIH grants EY021195 (to D.Z.), DC008130 (to J.S.-S.), and DC010809 (to J.C.L.); the Amelia Peabody Charitable Fund (to L.S.); and National Science Foundation grant IOS1257150 (to J.C.L.).

REFERENCES

