Aberystwyth University

Effects of preimplantation factor on interleukin-6 and prostaglandin F2a and E2 in the bovine endometrium
Wonfor, Ruth; Natoli, Manuela; Rose, Michael; Nash, Deborah

Published in:
Theriogenology
DOI:
10.1016/j.theriogenology.2017.08.001
Publication date:
2017

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk
Accepted Manuscript

Effects of preimplantation factor on interleukin-6 and prostaglandin F2α and E2 in the bovine endometrium

Ruth E. Wonfor, Manuela Natoli, Michael T. Rose, Deborah M. Nash

PII: S0093-691X(17)30386-2
DOI: 10.1016/j.theriogenology.2017.08.001
Reference: THE 14221

To appear in: Theriogenology

Received Date: 2 May 2017
Revised Date: 31 July 2017
Accepted Date: 1 August 2017

Please cite this article as: Wonfor RE, Natoli M, Rose MT, Nash DM, Effects of preimplantation factor on interleukin-6 and prostaglandin F2α and E2 in the bovine endometrium, Theriogenology (2017), doi: 10.1016/j.theriogenology.2017.08.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Effects of preimplantation factor on interleukin-6 and prostaglandin F$_2$α and E$_2$ in the bovine endometrium.

Ruth E. Wonfora,*, Manuela Natolia,1, Michael T. Rosea, Deborah M. Nasha

a Institute of Biological, Environmental and Rural Sciences, Aberystwyth University,
Ceredigion, UK.

1 M. Natoli is now based at Cancer Research UK, Li Ka Shing Centre, Robinson Way,
Cambridge, CB2 0RE, UK.

* Corresponding author: Dr Ruth Wonfor, IBERS, Aberystwyth University, Ceredigion, SY23 3FG, United Kingdom. Phone: +44 1970 823093. E-mail: rec21@aber.ac.uk
ABSTRACT

Preimplantation factor (PIF) is a pregnancy specific peptide with immune modulatory properties exerted on the human endometrium. Viable bovine embryos secrete PIF, but its effect on the bovine endometrial immune response is unknown, both in native and inflammatory stimulated endometrial tissue. An ex vivo bovine endometrial tissue culture model was used with lipopolysaccharide (LPS) as an inflammatory stimulant. The effect of synthetic PIF (sPIF) was assessed, in three separate experiments, on the secretion or mRNA expression of essential prostaglandins and cytokines. Radioimmunoassays were used to assess prostaglandin secretion and ELISA for IL-6 secretion from endometrial explants. mRNA expression of IL6 and IL8 was analysed from endometrial explants with real-time PCR. Synthetic PIF reduced native IL-6 secretion from explants when pre-treated for 24 hours. There was no effect of sPIF on IL-6 secretion from LPS challenged explants; however, sPIF increased IL6 mRNA expression when challenged with 500 ng/mL LPS. There was no effect of sPIF on prostaglandin secretion or mRNA expression of IL8. Therefore, sPIF is able to modulate the native IL-6 production pathway in the bovine endometrium, yet demonstrates no effect on prostaglandin secretion or IL8 expression. Unlike in human studies, effects of sPIF were minimal, thus sPIF is not an effective modulator of the immune targets investigated in the bovine endometrium.

Key words: endometrium; bovine; preimplantation factor; interleukin-6, prostaglandin F$_{2\alpha}$; prostaglandin E$_2$
1. Introduction

Preimplantation factor (PIF) is a 15 amino acid peptide that is produced by viable embryos as early as the two-cell stage [1]. Bovine embryos produce PIF both pre- and post-implantation [1, 2]. Preimplantation factor works through an immune tolerance pathway in human pregnancy to facilitate the acceptance of the embryo by the mother [3, 4]. It is the action of this pathway that is of interest to studies of disease, as sPIF may have potential as an immune modulator. Applied to healthy human endometrium, sPIF is able to upregulate secretion of several interleukins, including IL-8 and IL-6 of decidualized stromal cells [5]. Interestingly, within a murine multiple sclerosis model, sPIF decreased the secretion of IL-6 from splenocytes in culture showing a tissue specific role of the peptide [6]. In a preliminary study, sPIF was investigated in an equine model of *E. coli* post-mating induced endometritis. It was shown that sPIF was able to reduce prostaglandin F\(_2\alpha\) (PGF\(_2\alpha\)) secretion from LPS induced explants 24 hours after challenge [7] but only in mares of the follicular stage of the oestrous cycle. More recently, in CD14+ cells, it has been demonstrated that sPIF does not directly interact with TLR-4, but specific downstream targets within the TLR-4 pathway [8]. As sPIF has been demonstrated to interact with the human endometrium in an immune modulatory manner, it was proposed that the peptide may act in a similar manner in the bovine endometrium. Furthermore, as uterine inflammation is a common cause of infertility in cattle through a dysregulation of endocrine function [9], it is of interest to investigate the role of sPIF as an immune modulator in an endometrial inflammatory environment.

Previous studies have utilised an *ex vivo* bovine model of normal and inflammatory endometrium, which shows responses similar to the whole cow [10, 11] and so this model provides a basis for this initial investigation. Both prostaglandins and interleukins are secreted by
cyclic, pregnant and inflammatory endometrial tissue and so have previously been used as targets to measure in *ex vivo* studies [10-12]. Prostaglandins are eicosanoid hormones produced by the endometrium and have essential functional roles in the bovine oestrous cycle and pregnancy [13, 14]. Furthermore, both PGF$_{2\alpha}$ and prostaglandin E$_2$ (PGE$_2$) are involved in the endometrial inflammatory response. Following a challenge with *Escherichia coli*-derived lipopolysaccharide (LPS), there is an increase in secretion of PGF$_{2\alpha}$ and PGE$_2$ from endometrial tissue explants [12, 15]. Interleukins, such as IL-6 and IL-8 are demonstrated to be expressed during the oestrous cycle [16]. Furthermore, in *ex vivo* studies, IL-6 and IL-8 have been shown to have key roles within the endometrial innate immune response [11, 17].

The aim was to investigate the use of sPIF as a potential immune modulator within the bovine endometrium by assessing the role of the peptide using a previously developed endometrial tissue model, using LPS treatment to model an *E. coli* challenge [11, 12, 15]. It has already been demonstrated that sPIF does not bind to LPS [8]. It was hypothesised that sPIF would reduce key immune (IL-6 and IL-8) and endocrine (PGF$_{2\alpha}$ and PGE$_2$) factors in the bovine endometrium, at both a native and inflammatory level.

2. Materials and methods

2.1 Sample collection and endometrial explant culture

As these experiments used post-slaughter material, licencing through the Animals (Scientific Procedures) Act 1986 and ethical review were not necessary. Bovine uteri and corresponding blood samples were collected from cows presented for slaughter at a local abattoir. A total of 46 animals were used in the study. Uteri with stage I and IV ovaries were investigated to allow the study of sPIF on endometrial tissues that were not under the immune suppressive effects of
progesterone [18, 19]. Samples were staged by assessing ovarian morphology as previously described [20, 21]. Briefly, stage I was defined as having a newly ruptured corpus luteum with a diameter of 0.5 – 1.5 cm and stage IV as having a regressing corpus luteum with a diameter of < 1 cm [20].

Uteri and blood samples were stored on ice during the one-hour transportation to the laboratory. Tissues were used for explant culture and blood serum for analysis of progesterone concentration via ELISA (DRG Diagnostics, Marburg, Germany). To support ovarian morphology staging, the blood sera were used for progesterone analysis. For stage I and IV uteri, samples were deemed to have high progesterone if serum concentrations were above 1 ng/mL [10]. Progesterone inter- and intra-assay CVs were 8.66 % and 2.18 %, respectively.

Tissue culture was established using the method previously described [11]. Briefly, tissue was sampled from the uterine horn ipsilateral to the staged ovary using an 8 mm biopsy punch. Samples were weighed and placed in 6 well plates (Corning, Amsterdam, The Netherlands) with 3 mL of RPMI 1640 media (Gibco, Life Technologies, Paisley, UK) supplemented with 50 IU/mL penicillin, 50 µg/mL streptomycin (Sigma-Aldrich, St. Louis, MO, USA) and 2.5 µg/mL amphotericin B (Sigma-Aldrich). All treatments were run in duplicate or triplicate and described for each experiment. Explants were incubated in a sterile incubator at 37°C and 5 % CO₂ for up to 72 hours. Ultra-pure LPS from *E. coli* 0111:B4 strain was used (InvivoGen, Toulouse, France). Synthetic PIF (MVRIKPGSANKPSDD) was synthesised with > 95 % purity by Bioincept (New Jersey, USA). The amino acid structure of the human 15 amino acid PIF has previously been analysed and the 3D structure predicted [22]. The sPIF used in the present study is utilised in all research investigating sPIF.
2.2 Experiment 1

The aim of experiment 1 was to investigate the effect of sPIF on prostaglandin and IL-6 secretion from bovine endometrial explants with and without an LPS challenge. Bovine stage IV uteri (n=14) were utilised. Preliminary studies from our laboratory, utilising unidentified cattle breeds, showed varied results in terms of prostaglandin secretion following sPIF treatment. Therefore, cattle were separated into two groups at the abattoir through identification of being either: beef heifers (n=7), unlikely to have been pregnant or; dairy type cows (n=7) and having had one or more pregnancies. Tissues were sampled from the endometrium and challenged with the following treatments in triplicate: control (media alone); LPS (1 µg/mL) alone; sPIF at three concentrations (50, 100 or 500 nM); or LPS (1 µg/mL) combined with each of the three sPIF concentrations. The LPS concentration was chosen based on previous studies utilising the same endometrial tissue model [11, 12]. Synthetic PIF concentrations were based on the previously described physiological range within the circulation during human pregnancy (50 and 100 nM) and one supra-physiological concentration (500 nM) [23]. Media supernatants were sampled 24, 48 and 72 hours after challenge, from the same well at each time point. Time points of 24 and 48 hours were chosen based on previous studies [11, 12] and 72 hours based on an equine endometrial explant study as a persistent infection time point [24]. Supernatant samples were stored at -20°C until analysed for PGF$_2\alpha$, PGE$_2$ and IL-6.

2.3 Experiment 2

The aim of experiment 2 was to investigate the effect of a pre-treatment of sPIF on prostaglandin and IL-6 secretion from bovine endometrial explants with and without an LPS challenge and to ensure that there was no underlying inflammation in tracts that may cause variability in the results. Bovine stage I (n=12) and stage IV (n=12) uteri were utilised, as for experiment 1, split
into heifer (n=6 for each stage) or cow (n=6 for each stage) groups. To ensure there was no presence of sub-clinical inflammation, endometrial swabs were collected post-mortem using a modified cytobrush technique [25] and stained and fixed with Kwik-diff (Shandon, Thermo Scientific, Loughborough, UK) to test for inflammation. Samples were assessed for percentage of polymorphonuclear cells (PMN) by counting a minimum of 100 cells at X 400 magnification on Zeiss Axiovert 200M (Zeiss, Jena, Germany). Animals with a PMN percentage greater than 5% were excluded based on the guidelines for the detection of subclinical endometritis [26, 27].

Based on the results of experiment 1, the treatment protocol was modified so that explants were pre-treated with sPIF (50, 100 or 500 nM) or media alone (if explants were not to receive sPIF for the main treatment protocol) for 24 hours before challenging with LPS. At the end of the pre-treatment, the media supernatants were aspirated and replaced with fresh media alone or containing sPIF (50, 100 or 500 nM) or LPS (1 µg/mL) treatments as in experiment 1. Supernatant was sampled at 24 and 48 hours from different explant wells. No samples were collected 96 hours after the beginning of the pre-treatment (72 hours after LPS challenge) because integrity of tissue is likely to be compromised in serum free culture beyond 72 hours. Supernatant samples were stored at -20°C until analysed for PGF$_2$α, PGE$_2$ and IL-6.

2.4 Experiment 3

The aim of experiment 3 was to investigate the effect of a pre-treatment of sPIF on prostaglandin and IL-6 secretion and $IL6$ and $IL8$ mRNA expression in bovine endometrial explants, with and without three low dose LPS challenges to induce a less severe inflammatory response. Bovine stage I (n=4) and stage IV (n=4) uteri were utilised. Only tracts from cows (at least 1 previous pregnancy) were used. As in experiment 2, all tracts were swabbed using the cytobrush technique
and cytology examined for each tract to establish if there was any underlying inflammation. Any
animals with greater than 5% PMNs present were discarded.

A 24 hour pre-treatment of sPIF or media alone was used, as in experiment 2. Based on
the results of experiment 1 and 2 the treatment choices were modified to use lower
concentrations of LPS (5, 50, 500 ng/mL). Although 1 µg/mL of LPS is a more commonly used
dose in previous endometrial explant studies, these concentrations of LPS have also previously
been shown to significantly induce PGF$_{2\alpha}$, PGE$_2$ and IL-6 secretion from bovine endometrial
explants or cells [11, 12]. One concentration of sPIF (100 nM) was used based on results from
experiment 2. Explants were harvested 6 hours after treatment for determination of mRNA
expression of IL6 and IL8. Supernatant was collected 24 hours after treatment from separate
wells to determine IL-6 secretion.

2.5 Prostaglandin radioimmunoassay and IL-6 ELISA

Supernatant samples were analysed for PGF$_{2\alpha}$ and PGE$_2$ by radioimmunoassay (RIA) as
described previously [28]. Antisera were a kind gift from Professor N. Poyser, University of
Edinburgh and Professor Claire Wathes, The Royal Veterinary College. The limits of detection
were 0.02 ng/mL for both assays. PGF$_{2\alpha}$ inter- and intra-assay CVs were 12.8 % and 2.19 %,
respectively. PGE$_2$ inter- and intra-assay CVs were 12.69 % and 6.71 %, respectively.

Supernatant samples were analysed for IL-6 concentration as described by the
manufacturer (Bovine IL-6 ELISA; Thermo Fisher Scientific). The limit of detection was 75
pg/mL and inter- and intra-assay CVs were 8.19 % and 5.99 %, respectively.
2.6 Real time PCR

In experiment 3 where explants were analysed for gene expression, tissue pieces from each treatment were stored in RNAlater (Invitrogen, Life Technologies, Paisley, UK) and RNA extracted at a later date using the Total RNA purification kit (Norgen Biotek Corp, Ontario, Canada). From each sample, 1 µg RNA was treated for gDNA contamination with DNase I (Thermo Fisher Scientific, Loughborough, UK) and 250 ng subsequently reverse-transcribed to cDNA with the RevertAid First Strand cDNA synthesis kit (Thermo Fisher Scientific) according to the manufacturer’s instructions. Gene expression of IL6 and IL8 were analysed using SYBR Green RT-PCR, using Maxima SYBR Green/Rox qPCR master mix (Thermo Fisher Scientific) on a CFX connect (Bio-Rad, Hemel Hempstead, UK). Gene expression was normalised to two housekeeping genes, ACTB and 18s (of which expression was not altered by the experimental treatments) and then the control sample. All primers are outlined in Table 1.

2.7 Statistical analysis

Data were analysed using GenStat statistical software (14th edition, VSN International, Hemel Hempstead, UK) and reported as mean ± standard error of the mean (SEM). RIA and ELISA data were expressed as prostaglandin (ng) or interleukin (pg) secretion per mg of tissue, respectively and grouped into high or low progesterone groups where appropriate. Skewed data were transformed using log+1 or square root transformations in order to make the data normally distributed. Ratios of PGF$_{2\alpha}$ to PGE$_2$ secretion were calculated from the raw data within each experiment where prostaglandins were measured. Statistical significance was set at P<0.05 for all analyses and least significant difference (LSD) used as a post hoc significance test. A statistical tendency was defined as 0.05 < P < 0.1. The following analyses were completed for each experiment.
For experiment 1, a repeated measures ANOVA was performed to assess the effects of treatment, cattle type, progesterone and time. Cows were fitted as a random effect and time point as the repeated measure. Treatment and progesterone were initially used as the main treatments. Once it was established that there was no effect of progesterone, progesterone was removed as a main treatment. Treatment and cattle type were used as the main treatments for the main statistical analysis.

A general ANOVA was performed to assess the effects of treatment, cattle type and progesterone for experiment 2 and treatment and progesterone for experiment 3. Stage I and stage IV explants were analysed separately. Cows were used as blocks, and each time point analysed separately. In experiment 2 treatment and progesterone were used as the main treatments, then progesterone removed and treatment and cattle type used as the main treatments for the main statistical analysis.

3. Results

3.1 Experiment 1

3.1.1 Serum progesterone concentrations

Samples were grouped in a high progesterone (HP) group if progesterone was greater than 1 ng/mL (n=9), with the remaining samples in a low progesterone (LP) group (n=5). Mean progesterone concentrations for LP and HP were 0.27 ± 0.1 ng/mL and 13.86 ± 6.74 ng/mL, respectively. There was no significant effect of progesterone (P>0.05) on PGF$_{2\alpha}$, PGE$_2$ or IL-6 secretion; therefore, the factor of progesterone was removed from the analysis and results presented together.

3.1.2 Prostaglandin F$_{2\alpha}$, E$_2$ and IL-6 secretion from endometrial tissue
There was no interaction between sPIF treatment and cattle type (P>0.05) for prostaglandin or IL-6 secretion. LPS challenge increased (P<0.001) PGF_{2α}, PGE₂ and IL-6 secretion from explants at all time points (Fig 1). Synthetic PIF did not affect (P>0.05) PGF_{2α}, PGE₂ or IL-6 secretion from explants with or without a LPS challenge (Fig 1). Synthetic PIF treatment had no effect on the ratio between PGF_{2α} and PGE₂ (P>0.05) at all time points, although LPS treatment alone increased the ratio, meaning that PGE₂ secretion was favoured over PGF_{2α} (P<0.05; data not shown). In explants not stimulated with LPS, IL-6 secretion was lower (P<0.05) with treatment of 100 nM sPIF compared with the 50 nM and 500 nM treatments (Fig 1c).

3.2 Experiment 2

Cytobrush smears showed that no cattle had subclinical inflammation as all samples had less than 5% PMN.

3.2.1 Serum progesterone concentrations

Stage I samples were assigned to the luteal high progesterone (LHP) group if progesterone concentrations were greater than 1 ng/mL (n=6), with the remaining samples allocated to a luteal low progesterone (LLP) group (n=6). Mean progesterone concentrations for LLP and LHP were 0.66 ± 0.19 ng/mL and 8.2 ± 4.84 ng/mL, respectively.

Stage IV samples were allocated to a follicular high progesterone (FHP) group if progesterone concentrations were greater than 1 ng/mL (FHP; n=7) with the remaining samples assigned to a follicular low progesterone group (FLP; n=5). Mean progesterone concentrations for FLP and FHP were 0.56 ± 0.13 ng/mL and 9.61 ± 3.18 ng/mL, respectively.
There was no effect of progesterone on PGF$_{2\alpha}$, PGE$_2$ or IL-6 secretion within either stage I or IV explants (P>0.05). Therefore, the factor of progesterone was removed and results displayed together. However, there was an interaction between progesterone group and treatments for PGF$_{2\alpha}$ secretion in Stage I tissue at the 24 hour time point, with PGF$_{2\alpha}$ secretion being significantly lower from LPS and PIF treated explants in the LLP group, compared to the equivalent treatments in the HLP group (P<0.05; data not shown). This particular interaction did not manifest itself in any of the other experiments.

3.2.2 Prostaglandin F$_{2\alpha}$, E$_2$ and IL-6 secretion from endometrial tissue

There was no interaction (P>0.05) between sPIF treatment and cattle type in stage I cattle. LPS induced secretion (P<0.001) of PGF$_{2\alpha}$, PGE$_2$ and IL-6 from explants at both 24 and 48 hours (Fig 2). There was no effect (P<0.05) of sPIF on PGF$_{2\alpha}$ or PGE$_2$ secretion, with or without the presence of LPS (Fig 2). Synthetic PIF treatment of 50 and 100 nM reduced (P<0.05) the PGF$_{2\alpha}$ to PGE$_2$ secretion ratio compared with the control at 24 hours (Table 2), but not after 48 hours (P>0.05). The 500 nM sPIF treatment had no effect (P>0.05) on the PGF$_{2\alpha}$ to PGE$_2$ secretion ratio at either time point (Table 2). At 24 hours LPS treatment alone did not increase the PGF$_{2\alpha}$ to PGE$_2$ secretion ratio compared with the control, but LPS with 100 nM sPIF treatments did increase (P<0.05) the ratio from the control (Table 2). At 48 hours, LPS alone and in combination with all sPIF treatments increased (P<0.05) the PGF$_{2\alpha}$ to PGE$_2$ secretion ratio compared with the control (Table 2). Synthetic PIF at 100 and 500 nM reduced (P<0.05) native IL-6 secretion from unchallenged explants compared with the control at 24 hours (Fig 2c), but not at 48 hours (P>0.05; Fig 2f). There was no effect (P>0.05) of sPIF on IL-6 secretion from LPS stimulated explants (Fig 2).
In Stage IV cattle, there was no interaction (P>0.05) between sPIF treatment and cattle type. As with Stage I cattle, LPS induced (P<0.001) PGF$_{2\alpha}$, PGE$_2$ and IL-6 secretion from explants at both 24 and 48 hours (Fig 3). There was no effect (P>0.05) of sPIF on PGF$_{2\alpha}$ or PGE$_2$ secretion with or without the presence of LPS (Fig 3). Synthetic PIF alone had no effect (P>0.05) on the PGF$_{2\alpha}$ to PGE$_2$ secretion ratio (Table 3). At both time points, LPS alone and with all sPIF treatments increased (P<0.05) the PGF$_{2\alpha}$ to PGE$_2$ secretion ratio compared with the control (Table 3). However, as with Stage I cattle, sPIF at 100 nM reduced (P<0.05) IL-6 secretion compared with the control at 24 hours from explants that were not challenged with LPS (Fig 3c), but not at 48 hours (P>0.05; Fig 3f). There was no effect of sPIF on LPS stimulated explants (P>0.05; Fig 3).

3.3 Experiment 3

Cytobrush smears showed no cattle to have subclinical inflammation as all samples had less than 5% PMN.

3.3.1 Serum progesterone concentrations

Stage I samples were assigned to the luteal high progesterone (LHP) group if progesterone concentrations were greater than 1 ng/mL (n=1), with the remaining samples allocated to a luteal low progesterone (LLP) group (n=3). Mean progesterone concentrations for LLP and LHP were 0.59 ± 0.24 ng/mL and 1.88 ng/mL, respectively.

Stage IV samples were allocated to a follicular high progesterone (FHP) group if progesterone concentrations were greater than 1 ng/mL (FHP; n=2) with the remaining samples assigned to a follicular low progesterone group (FLP; n=2). Mean progesterone concentrations for FLP and FHP were 0.13 ± 0.06 ng/mL and 3.88 ± 1.91 ng/mL, respectively.
There was no effect of progesterone on PGF$_{2\alpha}$, PGE$_2$ or IL-6 secretion within either stage of cycle (P>0.05). Therefore, the factor of progesterone was removed and results displayed together.

3.3.2 Expression of *IL6* and *IL8* in endometrial tissue

IL6 and *IL8* expression were increased (P<0.05) in both stage I and IV tissue following 50 and 500 ng/mL LPS treatments (Fig 4). The treatment of 5 ng/mL LPS increased (P<0.01) *IL6* gene expression in stage I tissue (Fig 4a). There was no effect (P>0.05) of 5 ng/mL LPS treatment on *IL6* expression in stage IV tissue or *IL8* expression in any tissue (Fig 4b, c, d).

In stage IV tissue, when sPIF was added with 500 ng/mL LPS, *IL6* gene expression was increased (P<0.05) compared with the expression induced by 500 ng/mL LPS treatment alone (Fig 4c). However, there was no effect (P>0.05) of sPIF treatment in combination with any other concentration of LPS or in the control samples in stage I or stage IV tissue (Fig 4a, c). Furthermore, there was no effect (P>0.05) of sPIF on *IL8* expression in control or LPS treated samples (Fig 4b, d).

3.3.3 IL-6 secretion from endometrial tissue

IL-6 secretion from tissue not stimulated with LPS in stage I tissue was undetectable. All three concentrations of LPS induced (P<0.05) IL-6 secretion from stage IV explants at 24 hours (Fig 5b). Only 50 and 500 ng/mL LPS treatments induced (P<0.001) IL-6 secretion from stage I explants (Fig 5a). There was no effect (P>0.05) of sPIF on IL-6 secretion from explants with or without LPS treatment (Fig 5). However, there was a statistical tendency (P<0.1) for sPIF to decrease IL-6 secretion from the 500 ng/mL LPS treatment in stage IV tissue only.
4. Discussion

This is the first study to investigate the effects of sPIF within the bovine endometrium. Although by a small amount, sPIF significantly reduced IL-6 secretion from unstimulated stage I and stage IV endometrial explants when using a pre-treatment of sPIF, but not from LPS challenged explants. Conversely, sPIF increased IL_6 mRNA expression from explants challenged with LPS, demonstrating possible differential effects of sPIF on mRNA expression and protein secretion, which needs further elucidation. There was no effect of sPIF on prostaglandin secretion from explants with or without LPS challenge. Heifers were separated from parous cows and cytobrush analysis on all tracts exhibited < 5% PMN, therefore any lack of effect was not attributed to whether the animal had previously been pregnant or had active inflammation in the uterus, respectively.

The response of endometrial tissue to LPS in the present study is comparable to previous ex vivo studies [11, 12, 15]. LPS significantly induced PGF$_{2\alpha}$, PGE$_2$, IL-6 secretion and expression and IL_8 expression from bovine endometrial explants, as previously demonstrated in bovine endometrial tissue and cell culture [11, 12, 15, 17, 29]. Prostaglandin and IL-6 secretions were above the assay limits of detection unless otherwise stated in figures. There was little change in IL-6 secretion between 24 and 48 hours. Whether IL-6 was simply not secreted after this time point, or whether it was metabolised from the explant, was not clear and further evidence for explant metabolism relative to IL-6 is currently not available.

Synthetic PIF reduced native IL-6 secretion 24 hours post treatment from both stage I and IV explants at 100 nM and at 500 nM in stage I tissue. Yet there was no effect of sPIF on individual prostaglandin secretion. Synthetic PIF is demonstrated to function in a TLR-4
dependent manner in neuronal tissue [30, 31] and IL-6 is controlled directly through the TLR-4 pathway, amongst other pathways. Within a multiple sclerosis model, murine splenocytes secreted less IL-6 and IL-17 into culture media following sPIF treatment compared with the disease control [32]. Furthermore, RAW 264.7 macrophages secrete less IL-6 and TNF-α, when cultured with sPIF, compared to both an unstimulated and irradiated control [33]. However, in decidualized human endometrial stromal cells, an increase in IL-6 protein expression was identified following sPIF treatment, converse to a decrease in IL-6 secretion in the present study [5]. IL-6 is known to be an important cytokine in the implantation period in humans, with maximum expression occurring at this point of the menstrual cycle [34]. In the pregnant bovine endometrium, IL6 mRNA expression, amongst other immune factors, has been demonstrated to be lower in the endometrium of heifers which carried a viable early stage embryo compared to those carrying a non-viable embryo, although expression was not compared to a reference native endometrium [35]. Yet, during pregnancy, there is a milieu of hormones and immune factors, such as interferon-τ, which circulate and modulate gene expression in the endometrium [36]. The present study has investigated the effects of sPIF on cyclic tissue and so, effects of pregnancy related hormones on the actions of sPIF need to be further elucidated.

A 24 hour pre-treatment period was required to obtain an effect of sPIF on IL-6 secretion compared to the control. Previous human based studies have not used pre-treatment, but treated with sPIF for up to 24 hours [3, 5]. Yet, work on the human endometrium has only been completed on decidualized cells, which constitute the native environment for PIF within pregnancy [3, 5]. Decidua may be more responsive to sPIF as they are pregnancy specific. It is postulated that cyclic endometrial cells, not recently exposed to pregnancy signals, need a period of sPIF priming so that the peptide is able to modulate the uterine immune response.
When examining the effect of sPIF on LPS stimulated prostaglandin or IL-6 secretion in the present study, sPIF had no effect. Synthetic PIF has previously been shown to reduce nitric oxide production by macrophages, following LPS stimulation [31, 37], but this is the first study to investigate the effect of sPIF on the cytokine or prostaglandin secretion from the endometrium following LPS stimulation. As sPIF reduced native IL-6 secretion from tissue, it was considered whether the concentration of LPS was too high; a concentration of 1 µg/mL LPS may induce an acute immune response too extreme for sPIF to have an effect. Therefore, experiment 3 utilised three lower LPS concentrations based on a previous bovine endometrial explant study (5, 50 or 500 ng/mL) [11]. There was no effect of sPIF on IL-6 secretion when explants were stimulated with these lower LPS concentrations, yet stage IV *IL6* mRNA expression was up-regulated following treatment with sPIF and 500 ng/mL LPS. Moreover, in the same tissue, there was a statistical tendency for sPIF to decrease IL-6 secretion. Samples were collected at different time points, 6 hours for mRNA and 24 hours for protein secretion, to detect gene expression changes ahead of the down-stream expression of the corresponding protein secretion. Expression of *IL6* is maximally increased at 6 hours post LPS challenge. Furthermore, expression of other cytokines, such as *TNF* and *IL1B*, are severely reduced by 24 hours post LPS treatment [17, 38]. Secreted IL-6 was sampled at 24 hours to show the accumulation of IL-6 throughout the innate immune response to the LPS challenge and is the general time point used in similar work [10, 11].

The increase in *IL6* mRNA expression following sPIF treatment in LPS stimulated tissue is supported by data from human endometrial stromal cells, where sPIF increased IL-6 secretion, although decidualized cells were used and so, are not directly comparable to the present study [5]. Yet there was a tendency for IL-6 secretion to decrease in tissue where mRNA expression increases following sPIF treatment. Synthetic PIF has been shown to alter the expression of
microRNA (miRNA) let-7, which represses translation of proteins and destabilises mRNA, in a TLR-4 dependent manner through the phosphatidylinositol-3 kinase/Akt pathway and subsequent destabilisation of the KH-type splicing regulatory protein, which also regulates several other miRNAs [31]. Such mechanisms of sPIF should be further studied in the bovine endometrium to assess the differential effects of sPIF on IL6 mRNA expression and subsequent protein secretion.

There was no effect of sPIF on IL8 mRNA expression in experiment 3, with or without LPS treatment. Within decidualized human endometrial stromal cells, sPIF up-regulated IL-8 protein secretion to a greater extent than that of IL-6 in the same study [5]. The disagreement with the present study may be due to one of several factors. Firstly, the cellular response to sPIF may be different, the present study used cyclic bovine endometrial tissue, whereas previous studies used decidualized human cells [5]. Additionally, the present study used whole tissue comprised of epithelial and stromal cells, compared with a culture of isolated stromal cells as used in human studies [5].

In the context of sPIF as an immune modulator within the bovine endometrium, the evidence provided here shows that sPIF has limited effects. Nonetheless, it would be of interest to determine the response of bovine endometrial stromal cells alone to sPIF, because postpartum stromal cells are intermittently exposed through the syndesmochorial placenta in bovine pregnancy.

In conclusion, although to a small extent, sPIF significantly reduced native IL-6 secretion from healthy stage I and IV bovine endometrial explants following a 24 hour pre-treatment with sPIF. Furthermore, when stage IV explants were stimulated with 500 ng/mL LPS, sPIF increased
IL6 mRNA expression at 6 hours post treatment, following an initial 24 hour pre-treatment. There was no effect of sPIF on prostaglandin secretion from endometrial explants. Therefore, the present study demonstrates limited effects of the ability of sPIF to modulate key immune factors of bovine endometrial tissue.

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. R. Wonfor was funded by Aberystwyth University through the Doctoral Career Development Scheme.

The authors would like to extend their thanks to Dr Eytan Barnea, BioIncept LLC (New Jersey, USA) for the kind donation of sPIF and the staff at Randall Parker Foods for assistance in sample collection. In addition, Basil Wolf for advice on statistics, James Cronin for methodological advice and Jennifer Paddison and Michael Allman for help with sampling.

Conflict of interest

All authors declare no conflict of interest.
References

Table 1. Primer sequences, amplicon length and accession numbers for ACTB, 18s, IL6 and IL8. All primers synthesised by Sigma-Aldrich.

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Gene name</th>
<th>Primer sequence</th>
<th>Amplicon length (bp)</th>
<th>Genbank accession number</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTB</td>
<td>Actin beta</td>
<td>F - CAGAAGGACTCGTACGTGGG R - TTGGCCTTGGGGGTTCAGGG</td>
<td>199</td>
<td>NM_173979</td>
<td>Cronin, Turner [17]</td>
</tr>
<tr>
<td>IL6</td>
<td>Interleukin-6</td>
<td>F – CTTCTGCTTTCCCTACCCCG R - CTCCAGAAGACCAGCAGTGG</td>
<td>296</td>
<td>EU276071</td>
<td>Designed using PrimerBLAST (Pub Med)</td>
</tr>
<tr>
<td>IL8</td>
<td>Interleukin-8</td>
<td>F – GCAGGTATTTGTGAAGAGAGCTG R - CACAGAACATGAGGACTGAA</td>
<td>148</td>
<td>NM_173925</td>
<td>Cronin, Turner [17]</td>
</tr>
</tbody>
</table>
Table 2. Ratio of PGF$_2\alpha$ to PGE$_2$ secretion from all Stage I endometrial explants in experiment 2 challenged with LPS and sPIF at 24 and 48 hours.

<table>
<thead>
<tr>
<th>Treatment1</th>
<th>Time point</th>
<th>24 hours</th>
<th>48 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td>1.30 ± 0.38abc</td>
<td>0.85 ± 0.25a</td>
</tr>
<tr>
<td>LPS</td>
<td></td>
<td>1.70 ± 0.49ade</td>
<td>1.58 ± 0.46b</td>
</tr>
<tr>
<td>sPIF 50</td>
<td></td>
<td>0.87 ± 0.25f</td>
<td>1.10 ± 0.32a</td>
</tr>
<tr>
<td>sPIF 100</td>
<td></td>
<td>0.74 ± 0.21f</td>
<td>0.82 ± 0.24a</td>
</tr>
<tr>
<td>sPIF 500</td>
<td></td>
<td>1.12 ± 0.32bcf</td>
<td>0.94 ± 0.27a</td>
</tr>
<tr>
<td>LPS & sPIF 50</td>
<td></td>
<td>1.83 ± 0.53bd</td>
<td>1.90 ± 0.55b</td>
</tr>
<tr>
<td>LPS & sPIF 100</td>
<td></td>
<td>2.01 ± 0.58d</td>
<td>1.73 ± 0.5b</td>
</tr>
<tr>
<td>LPS & sPIF 500</td>
<td></td>
<td>1.53 ± 0.44abe</td>
<td>1.99 ± 0.57b</td>
</tr>
</tbody>
</table>

Means ± SEM within a time point, data not sharing a letter are significantly different (P<0.05).

1Treatments: LPS = 1 µg/mL; sPIF 50 = 50 nM; sPIF 100 = 100 nM; sPIF 500 = 500 nM.
Table 3. Ratio of PGF$_{2\alpha}$ to PGE$_2$ secretion from all Stage IV endometrial explants in experiment 2 challenged with LPS and sPIF at 24 and 48 hours.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>24 hours</th>
<th>48 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.57 ± 0.13a</td>
<td>0.93 ± 0.29ab</td>
</tr>
<tr>
<td>LPS</td>
<td>1.14 ± 0.2b</td>
<td>1.38 ± 0.26b</td>
</tr>
<tr>
<td>sPIF 50</td>
<td>0.51 ± 0.1a</td>
<td>0.47 ± 0.08a</td>
</tr>
<tr>
<td>sPIF 100</td>
<td>0.40 ± 0.07a</td>
<td>0.67 ± 0.18a</td>
</tr>
<tr>
<td>sPIF 500</td>
<td>0.69 ± 0.17a</td>
<td>0.97 ± 0.26ab</td>
</tr>
<tr>
<td>LPS & sPIF 50</td>
<td>1.29 ± 0.27b</td>
<td>1.45 ± 0.28b</td>
</tr>
<tr>
<td>LPS & sPIF 100</td>
<td>1.44 ± 0.23b</td>
<td>1.49 ± 0.27b</td>
</tr>
<tr>
<td>LPS & sPIF 500</td>
<td>1.56 ± 0.3b</td>
<td>1.42 ± 0.24b</td>
</tr>
</tbody>
</table>

^a-b Means ± SEM within a time point, data not sharing a letter are significantly different (P<0.05).

1 Treatments: LPS = 1 µg/mL; sPIF 50 = 50 nM; sPIF 100 = 100 nM; sPIF 500 = 500 nM.
Fig 1. Secretion of a) PGF$_2\alpha$, b) PGE$_2$ and c) IL-6 from endometrial tissue explants in experiment 1 challenged with LPS and sPIF at the same time, displayed as average across all time points (24, 48 and 72 hours). Data are expressed as mean ± SEM. *** indicate significant differences from control (P<0.001). Bars not sharing a letter are significantly different (P<0.05).

Fig 2. Secretion of a,d) PGF$_2\alpha$; b,e) PGE$_2$ and c,f) IL-6 from all Stage I endometrial tissue explants in experiment 2 following a pre-treatment of sPIF for 24 hours and then challenge with LPS and sPIF for 24 (a,b,c) and 48 hours (d,e,f). Data are expressed as mean ± SEM. * (P<0.05); *** (P<0.001) indicates significant differences from the control.

Fig 3. Secretion of a,d) PGF$_2\alpha$; b,e) PGE$_2$ and c,f) IL-6 from all Stage IV endometrial tissue explants in experiment 2 following a pre-treatment of sPIF for 24 hours and then challenge with LPS and sPIF for 24 (a,b,c) and 48 hours (d,e,f). Data are expressed as mean ± SEM. * (P<0.05), *** (P<0.001) indicates significant differences from the control.

Fig 4. Expression of a,c) IL6 and b,d) IL8 in stage I (ab) and stage IV (c,d) endometrial tissue explants in experiment 3 following a pre-treatment of sPIF for 24 hours and then a challenge with three LPS concentrations alone (closed bars: 5, 50 and 500 ng/mL) or in combination with sPIF (open bars: 100 nM) for 6 hours. Expression was normalised against two housekeeping genes – ACTB and 18s for each sample (ΔCq). Data are expressed as mean ± SEM. * (P<0.05), ** (P<0.01), *** (P<0.001) indicates significant differences from the control; within a graph, bars not sharing a letter are significantly different (P<0.05).

Fig 5. Secretion of IL-6 from a) stage I, and b) stage IV endometrial tissue explants in experiment 3 following a pre-treatment of sPIF for 24 hours and then a challenge with three LPS concentrations (closed bars: 5, 50 and 500 ng/mL) and sPIF (open bars:100 nM) for 24 hours.
Data are expressed as mean ± SEM. * (P<0.05); ** (P<0.01) indicates significant differences from the control; bars not sharing a letter are significantly different (P<0.05). ND signifies no detection of IL-6 in the samples.
Figure 1
Figure 2

Figure 2 shows the secretion per mg tissue (Prostaglandin (ng/mg); IL-6 (pg/mg)) of different treatments over 24 hours and 48 hours. The treatments include varying concentrations of PIF (nM) and LPS (µg/mL). The results are represented as mean ± SEM, with statistical significance indicated by stars (**p < 0.001, *p < 0.05). The graphs illustrate the effects of these treatments on the secretion of Prostaglandin and IL-6.
Figure 3

PGF$_{2\alpha}$

- 24 hours
- 48 hours

PGE$_2$

- 24 hours
- 48 hours

IL6

- 24 hours
- 48 hours

Figure 3

- Secretion per mg tissue (Prostaglandin (ng/mg); IL-6 (pg/mg))
- LPS (µg/mL)
- sPIF (nM)

Figure 3
Figure 4

IL6

IL8

Stage I

Stage IV

LPS concentration (ng/mL)
Figure 5

Stage I

Stage IV

LPS concentration (ng/mL)

IL-6 secretion per mg tissue (pg/mg)

ND

0 5 50 500

0 5 50 500
Highlights

- The effect of sPIF on bovine endometrial interleukins and prostaglandins was assessed.
- A 24 hour pre-treatment with sPIF was needed to exert effects on the endometrium.
- sPIF reduced native IL-6 secretion from the endometrium.
- sPIF increased *IL6* gene expression in LPS stimulated endometrial tissue.
- There was no effect of sPIF on prostaglandin secretion or *IL8* expression.