The prevalence and development of digenean parasites within their intermediate snail host, Galba truncatula, in a geographic area where the presence of Calicophoron daubneyi has recently been confirmed

Jones, Rhys; Williams, Hefin; Dalesman, Sarah; Sinmidele, Ayodeji; Thomas, Rowan; Brophy, Peter

Published in: Veterinary Parasitology
DOI: 10.1016/j.vetpar.2017.03.021
Publication date: 2017
Citation for published version (APA):
Jones, R., Williams, H., Dalesman, S., Sinmidele, A., Thomas, R., & Brophy, P. (2017). The prevalence and development of digenean parasites within their intermediate snail host, Galba truncatula, in a geographic area where the presence of Calicophoron daubneyi has recently been confirmed. Veterinary Parasitology, 240, 68-74. https://doi.org/10.1016/j.vetpar.2017.03.021
The prevalence and development of digenean parasites within their intermediate snail host, Galba truncatula, in a geographic area where the presence of Calicophoron daubneyi has recently been confirmed

Rhys Aled Jones, Hefin Wyn Williams, Sarah Dalesman, Sinmidele Ayodeji, Rowan K. Thomas, Peter M. Brophy

Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK

ARTICLE INFO

Keywords:
Fasciola hepatica
Generalized estimation equation (GEE)
UK
Calicophoron daubneyi
Haplometra cylindracea
Galba truncatula

ABSTRACT

During the past decade, rumen fluke (Calicophoron daubneyi) has established as a prominent parasite of livestock within numerous European countries. Its development and spread is enabled by the presence of its intermediate snail host G. truncatula. However, the dynamics of this stage of the C. daubneyi lifecycle is yet to be recorded in numerous northern European countries including the UK. Here, the prevalence of C. daubneyi along with F. hepatica, H. cylindracea and other parasites infecting G. truncatula snails on 10 Welsh farms was recorded using morphological and PCR techniques.

A total of 892 G. truncatula snails were collected between May and October 2016. The prevalence of C. daubneyi in sampled G. truncatula snails (4%) was lower compared to F. hepatica (5.6%). No association in prevalence between these species was recorded. Haplometra cylindracea was found infecting 8.2% of G. truncatula snails, with its prevalence within G. truncatula populations negatively associated with F. hepatica cercariae prevalence (P = 0.004). Generalized estimation equation (GEE) linear regression models identified the levels of respective fluke eggs shed onto pasture as the main significant association between prevalence levels of both C. daubneyi and F. hepatica within G. truncatula populations (P < 0.001). However, equivalent prevalence levels of C. daubneyi and F. hepatica within G. truncatula populations were associated with higher C. daubneyi egg outputs and lower F. hepatica egg outputs from livestock grazing the G. truncatula habitats. Only one of 36C. daubneyi infected G. truncatula snails was found harbouring its cercarial stages, a significantly lower proportion compared to the 29 of 50 F. hepatica infected G. truncatula harbouring its respective cercariae (P < 0.05).

These results signify that C. daubneyi may be less adept at infecting and developing in the UK’s native G. truncatula populations in comparison with F. hepatica. However, C. daubneyi has previously demonstrated its ability to progressively adapt to an intermediate host in a new environment. If C. daubneyi were to adapt to infect and develop more efficiently in UK G. truncatula populations, paramphistomosis risk would significantly increase leading to increased livestock losses. Questions are also raised regarding potential interaction between digenean species at intermediate snail host level, which could impact subsequent livestock trematodosis risk.

1. Introduction

In recent years, the UK (Jones et al., 2017) and numerous other European countries (Malrait et al., 2015; Martinez-Ibeas et al., 2016) have witnessed the establishment of rumen fluke infections within their livestock. This is of concern to livestock producers due to rumen fluke’s potential to cause disease and mortality in both cattle and sheep (Mason et al., 2012; Millar et al., 2012).

As a digenean trematode, rumen fluke requires an intermediate snail host to complete its lifecycle. During this stage, the parasites’ miracidia will penetrate and infect a mollusc and use this interior environment to develop, multiply and mature efficiently. The numerous genera and species of rumen fluke within the paramphistomine family have differing preferences for intermediate snail host, a factor which mainly determines the potential geographical range of each species. Historically, Paramphistomum spp. were regarded as the prominent rumen fluke species in the UK, a genus which uses aquatic planorbid snails as their intermediate hosts (Sey, 1980). However, increasing reports of rumen fluke occurrence during the past decade has coincided with the detection of Calicophoron daubneyi as the prominent rumen...
fluke in UK livestock (Gordon et al., 2013). This finding is significant due to the fact that the predominant intermediate snail host of *C. daubneyi* is *Galba truncatula* (Dinnik, 1962), a snail which is also the predominant host of liver fluke (*Fasciola hepatica*). *G. truncatula* snails are widespread in the UK, especially on pastures grazed by livestock and thus the potential geographical spread of *C. daubneyi* along with its subsequent degree of contact with livestock in the country is substantial. In Wales, *C. daubneyi* has been shown to be very common in livestock, especially in western areas (Jones et al., 2017) where climate modelling of *F. hepatica* has shown it to be one of the UK’s most prone regions for fasciolosis occurrence due to its climatic suitability for *G. truncatula* (Fox et al., 2011). However, despite PCR confirmation of *C. daubneyi* infecting *G. truncatula* in the UK (Jones et al., 2015), it remains unclear how susceptible the UK’s indigenous *G. truncatula* populations are to *C. daubneyi* infection. Due to the nature of paraprofossomosis, where heavy juvenile infections seem to be the prominent cause of disease (Millar et al., 2012), the susceptibility of the intermediate host snail population will be a major factor in determining disease risk due to the necessity for large quantities of metacercariae to be present on pasture to lead to heavy infections.

Potential competition between *C. daubneyi* and *F. hepatica* to infect their common prospective intermediate host may also ultimately influence respective digenean diseases. These parasites have been shown to protect their positions in the snails’ digestive gland, the prime location for development, by predating on subsequent infecting species (Rondelaud et al., 2007). This, along with indirect antagonism, which may be caused by increased snail mortality or reduced nutrient availability associated with dual infections, can fuel population-wide digenean antagonism, where the presence of one digenean parasite within a snail population diminishes the presence of another (Lim and Heyneman, 1972; Combes, 1982). Moreover, *G. truncatula* are also infected by numerous other parasites known to antagonise *F. hepatica*, including trematodes *Echinostoma spp.* (Gordon and Boray, 1970) and *Haplorchis cilindracea* (Whitelaw and Fawcett, 1982), and non-trematodes *Protostomylid spp.* (Houdin et al., 1995) and oligochaete worm, *Chaetogaster limnaei* (Rajasekariah, 1978). However, detailed information on the potential relationship between all the potential parasites infecting *G. truncatula* remains scarce, and it is unclear if potential competition or antagonism can affect subsequent infection levels in their respective final hosts.

In this study, the prevalence of *C. daubneyi*, *F. hepatica* and other parasites within *G. truncatula* populations on Welsh farms were recorded. Data for *C. daubneyi* and *F. hepatica* prevalence was compared with faecal egg counts from livestock grazing on the pasture surrounding collection sites. This was performed with the aim of measuring the establishment and development of *C. daubneyi* within Welsh *G. truncatula* populations, and to record any potential interaction between the various other parasites infecting these snails.

2. Materials and methods

2.1. Snail collection

Between May and October 2016, a subset of farms (n = 10) identified as being positive for both *C. daubneyi* and *F. hepatica* during a previous study (Jones et al., 2017) were re-visited to study the intermediate host of both parasites. Farms were located in the Welsh counties of Ceredigion (n = 7) and Gwynedd (n = 3), and were visited on four separate occasions during late spring (May – early June), mid-summer (July – early August), September and October. During the first visit, multiple *G. truncatula* habitats in grazed fields were identified. These habitats were searched for adult *G. truncatula* (> 4 mm in length) for approximately 20 min during each visit with the snails collected transported to the laboratory for further analyses. Other snail species were found and collected on the study’s farms. However, this paper will only focus on data surrounding the primary intermediate host of *C. daubneyi*, *G. truncatula*.

Faecal samples from ruminants grazing each *G. truncatula* containing field were also collected. The aim was to gauge the approximate levels of *F. hepatica* and *C. daubneyi* eggs shed onto pasture, and subsequently the level of *C. daubneyi* and *F. hepatica* infective stages that *G. truncatula* snails may be exposed to. Approximately 20 ml of fresh faeces was collected from 20 fresh individual faecal pats from each snail sampled field. When cattle and sheep were grazing in the same field, faeces from both species were collected and kept separate for the following analysis. On return to the laboratory, samples were kept at 4 °C prior to homogenisation and the submission of approximately 20 g of a pooled sample for sedimentation faecal egg count (FEC). For a detailed account of the FEC protocol, see Jones et al. (2017). The numbers of each fluke’s eggs counted during the FEC protocol were recorded as eggs per gram of faeces (EPG).

2.2. Detection of snail infection

Within 24 h of collection, each snail was morphologically identified as *G. truncatula* (Macan, 1977) prior to being crushed between microscope slides and viewed under a light microscope. Larval stages of *C. daubneyi*, *F. hepatica* or other digenean species infecting each snail were morphologically identified following Frandsen and Christensen (1984). The tissue of the snail was transferred into a 0.5 ml centrifuge tube, before DNA was extracted using the Chelex® method of Caron et al. (2011) adapted for the inclusion of 3 μl of proteinase K (20 mg/ml, Fisher Scientific, Waltham, USA) prior to initial incubation. Following DNA extraction, the supernatant was diluted 10 times with nuclease free water, with samples negative for fluke by visual inspection pooled in groups of six snails.

A multiplex polymerase chain reaction (PCR) assay was designed and used to confirm the identity of species identified morphologically as *C. daubneyi* or *F. hepatica* and to detect immature infections of each or both flukes in each snail. This PCR was optimised to detect species specific *F. hepatica* and *C. daubneyi* DNA. Primers, F: 5’-GTTTGTGTTTGTGGCAGCGG-3’; R: 5’-CTACCCCAAGCGACCTAC-3’ (Jones et al., 2017) were used to amplify a region of *C. daubneyi* cytochrome c oxidase subunit 1 (cox1) gene [GenBank JQ815200], with primers, F: 5’-GGCCGTCCTCACCATAATA-3’; R: 5’-AGCACAAATCG- TGTACCTACCA-3’ (Martinez-Ibeas et al., 2013) used to amplify a region of *F. hepatica* cox1 gene [GenBank AF216697]. Generic mollusc primers based on *G. truncatula* 18S gene [GenBank: Y90919.1] were designed (F: 5’-GGAGAGGCTTTTAGTATTGCAA-3’; R: 5’-CAGAGTCATCGAAACACTCT-3’) using Geneious software (Kearse et al., 2012) to amplify DNA as a positive control. For each sample, a 25 μl master mix was created containing 12.5 μl of MyTaq™ red mix (Bioline, London, UK), 80 μM of each parasite primer set, 40 μM of the snail primer set, one μl of the extracted DNA and nuclease-free water. Each sample was subjected to PCR amplification consisting of an initial denaturation at 95 °C for 2 min followed by 38 cycles consisting of stages of denaturation (30 s at 95 °C) annealing (30 s at 63 °C) and extension (45 s at 72 °C), before a final 10 min extension phase at 72 °C. PCR products were visualised in 1.5% agarose gel stained with GelRed (Biotium, Hayward, USA) along with positive and negative controls. Amplification of a 912 bp 18S band of snail DNA confirmed the DNA isolation and PCR reaction were successful, with 169 bp and 425 bp bands signifying positive species identification for *C. daubneyi* and *F. hepatica*, respectively. In order to test the sensitivity of this newly created PCR assay, 100 ng/μl of DNA extracted directly from both adult *C. daubneyi* and *F. hepatica* was serially diluted × 10 with 100 ng/μl fluke free *G. truncatula* DNA, with each diluted DNA sample submitted for PCR via the newly designed multiplex protocol. The first dilution where the multiplex PCR would not amplify DNA from each parasite would indicate its limit of detection.

A subset of DNA amplicons of the cercariae identified morphologically as *H. cylindracea* (n = 8) were sequenced (ABI 3100, Applied
Biosystems, Waltham, USA) to confirm species identity. Primers were designed (F: 5'-ACAGCGTCAAGCTCTT-3', R: 5'-AAATCGGTCCAAAACACTG-3') using Geneious software (Kearse et al., 2012) to amplify a 542 bp region of H. cylindracea 28S gene [GenBank: AF151933.1]. The sequenced subset of these H. cylindracea amplicons incorporated samples from each farm where the parasite was detected. Sequences were aligned to the amplicon’s reference sequence using Geneious software (Kearse et al., 2012) to confirm species identity.

2.3. Statistical analysis

A linear regression model with a generalized estimating equation (GEE) was used to identify factors associated with the prevalence of C. daubneyi, F. hepatica and H. cylindracea within G. truncatula populations of sampled habitats nested within farms. Generalized estimation equation models account for potential correlations within subject and missing data points; both of which were relevant to this data set due to data collection occurring across sequential time points and the variable nature of G. truncatula visible presence. The working correlation matrix for data inputted into each GEE model was set as independent, as the lowest Corrected Quasi Likelihood under Independence Model Criterion (QICC) values were associated with models created when this working correlation matrix was specified (Cui, 2007). Candidate models were built using a stepwise backward elimination procedure, where the variables with the highest P values were sequentially removed. Both main effect variables (number of fluke eggs shed onto pasture, number of snails collected, habitat type, pasture type, altitude, farm ID, sampling period and infection prevalence of other fluke species in G. truncatula populations) and interaction effect variables (created using two main effect variables) were offered during model creation. The final models were selected via their QICC values (Pan, 2001; Burnham and Anderson, 2002), with the models with the smallest QICC regarded as having the best fit.

To analyse the development of fluke species in G. truncatula snails, the proportions of C. daubneyi and F. hepatica infected snails harbouring the respective cercariae of each species were compared using a Fisher exact test. This analysis was performed on data from each sampling period.

3. Results

3.1. Prevalence of parasite infection within G. truncatula

A total 892 G. truncatula snails were collected from 22 habitats within studied farms. Infection prevalence data for these snails are presented in Table 1. Serial dilutions revealed the PCR assay was capable of detecting 0.001 ng of both C. daubneyi and F. hepatica DNA, a similar amount of DNA as other PCR assays designed to detect digenean parasites, although none of these were shown to be harbouring cercarial stages of more than one parasite. Two snails were co-infected with C. daubneyi and F. hepatica (one F. hepatica cercariae + C. daubneyi DNA, and one C. daubneyi + F. hepatica DNA), with seven and thirteen snails infected with H. cylindracea cercariae and F. hepatica or C. daubneyi, respectively. Infections of two or more digenean parasites within G. truncatula populations were seen in 50% of studied habitats. Twenty seven percent of habitats sampled harboured two parasites within the snail population and 23% harvested three parasites. C. limnaei was seen co-infecting with F. hepatica cercariae in two G. truncatula snails.

3.2. GEE models

Details on selected GEE models can be seen in Table 2. Final C. daubneyi and F. hepatica models identified the levels of their respective eggs shed onto snail containing pastures as the only variable significantly associated with the parasites prevalence within G. truncatula populations. Both final models had QICC values at least two points lower than the QICC of other candidate models including models where interaction terms were included. Two final H. cylindracea models were selected as their calculated QICC values were separated by less than two and thus the superior model could not be identified (Burnham and Anderson, 2002). The first model identified the prevalence of C. daubneyi within G. truncatula populations as a significant positively associated variable, while the second model identified the prevalence of F. hepatica cercariae within G. truncatula populations as a significant negatively associated variable.

3.3. Galba truncatula infectivity

Discrepancies between F. hepatica and C. daubneyi levels in G. truncatula snails (where overall F. hepatica prevalence was higher) and in grazing livestock (where overall C. daubneyi egg counts were higher) were observed and can be seen in Table 1. These discrepancies were highlighted in the regression equations calculated in the final F. hepatica and C. daubneyi models, and are visualized in Fig. 1.

The proportions of C. daubneyi and F. hepatica infected snails harbouring their respective cercariae during the sampling periods of July/August and September were significantly higher for F. hepatica compared to C. daubneyi (Table 3). Higher proportions of F. hepatica infected snails harbouring cercariae were also seen in the sampling periods of May/June and October (Table 3), however, these differences were not significant, likely due to the small sample size of infected snails collected during those periods.
and smaller increases in numbers of *F. hepatica* eggs shed by livestock onto pastures containing *G. truncatula* habitats. This may indicate that *C. daubneyi* was less effective at infecting sampled snails compared to *F. hepatica*, which may be indicative of *C. daubneyi* snail infection prevalence which remained low in comparison to *F. hepatica* despite *C. daubneyi* egg output being on average 10-fold greater than that of *F. hepatica*. This higher burden for *C. daubneyi* in livestock is likely to have occurred due to Welsh farmers’ lack of awareness of, and reluctance to treat rumen fluke infections (Jones et al., 2017); with only one farm in the study indicating that they specifically treat against the parasite. The models also highlight the importance of reducing fluke egg contamination of pasture to reduce the future infective snail population, a practice which is commonly ignored by farmers within their liver fluke treatment regimens (as cited by Claxton, 2015). Yet, it remains to be seen how effective a *C. daubneyi* treatment regimen can be in the UK, with treatment options limited to Oxyclozanide, an anthelmintic that is unlicensed for treatment against rumen fluke in Europe (Malrait et al., 2015) and is known to have variable efficacy against paramphistomes in the absence of multiple administration of the drug (Rolfe and Boray, 1987). Differences in the proportions of *C. daubneyi* and *F. hepatica* infected snails harbouring infective cercarial stages of each respective parasite were also recorded which raise questions regarding the effectiveness of *C. daubneyi* development within sampled snails. Indeed, only one *C. daubneyi* cercariae harbouring *G. truncatula* was identified throughout the study.

Table 2
GEE linear regression model of factors associated with the prevalence of *C. daubneyi*, *F. hepatica* and *H. cylindracea* within populations of *G. truncatula* on Welsh farms.

<table>
<thead>
<tr>
<th>Model</th>
<th>QICC</th>
<th>Variable</th>
<th>β</th>
<th>S.E</th>
<th>95% CI</th>
<th>Wald χ^2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. daubneyi prevalence%</td>
<td>3.383</td>
<td>Intercept</td>
<td>0.0121</td>
<td>0.0082</td>
<td>−0.004: 0.028</td>
<td>2.17</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. daubneyi EPG</td>
<td>0.0015</td>
<td>0.0002</td>
<td>0.001: 0.002</td>
<td>42.57</td>
<td>0.000</td>
</tr>
<tr>
<td>F. hepatica prevalence%</td>
<td>4.538</td>
<td>Intercept</td>
<td>0.0292</td>
<td>0.0131</td>
<td>0.003: 0.055</td>
<td>4.95</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F. hepatica EPG</td>
<td>0.0115</td>
<td>0.0066</td>
<td>0.010: 0.013</td>
<td>418.8</td>
<td>0.000</td>
</tr>
<tr>
<td>H. cylindracea prevalence%</td>
<td>5.607</td>
<td>Intercept</td>
<td>0.068</td>
<td>0.0344</td>
<td>0.000: 0.135</td>
<td>3.89</td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. daubneyi snail prevalence%</td>
<td>0.69</td>
<td>0.1438</td>
<td>0.408: 0.972</td>
<td>23.07</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F. hepatica cercariae snail prevalence%</td>
<td>0.109</td>
<td>0.0316</td>
<td>0.047: 0.171</td>
<td>11.97</td>
<td>0.001</td>
</tr>
</tbody>
</table>

EPG = eggs per gram of faeces shed onto pasture.

Table 3
Fisher exact tests for the proportion of *C. daubneyi* and *F. hepatica* infected *G. truncatula* snails harbouring cercarial stages of each respective parasite.

<table>
<thead>
<tr>
<th>Month</th>
<th>C. daubneyi</th>
<th>F. hepatica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cercariae harbouring snails</td>
<td>Total infected snails</td>
</tr>
<tr>
<td>May/Jun</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jul/Aug</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Sep</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>Oct</td>
<td>30</td>
<td>50</td>
</tr>
</tbody>
</table>

χ² 1.39 6.877 5.723 1.875
Sig. 0.520 0.009 0.034 0.400

Overall, these findings indicate that *C. daubneyi* may be less suited to infecting and developing in the UK’s native *G. truncatula* populations compared to *F. hepatica*. This suggests that at present, the potential for *C. daubneyi* to become a highly problematic parasite in the UK may be limited. As a preferential selfer, *G. truncatula* snails have a high genetic differentiation between populations (Trouvé et al., 2003), a trait which could explain why *G. truncatula* susceptibility to *F. hepatica* can vary significantly between populations, with snails sourced from habitats devoid of natural contact with livestock shown to be more resistant to *F. hepatica* infection and its subsequent development (Rondelaud, 1993).
The latter finding may be caused by incomplete adaptation between snail and parasite due to lack of contact (Rondelaud, 1993; Vignoles et al., 2002; Dreyfuss et al., 2012), with digenean/snail adaptation processes reliant on persistent contact (Boray, 1966; Rondelaud et al., 2014; Rondelaud et al., 2015). It remains unclear whether C. daubneyi is a new parasite in the UK, or has been present in the country at undetectable levels prior to its recent apparent emergence (Jones et al., 2017). However, even in the latter instance, its historical exposure to the majority of G. truncatula populations would have been negligible. With numerous G. truncatula populations across the UK now being newly exposed to C. daubneyi, it is feasible that the parasite could be in the process of progressively adapting to infect and develop within these snail populations. Ominously, C. daubneyi has already demonstrated its ability to progressively adapt to an intermediate host in a new environment. Retrospective analysis of over eighteen thousand G. truncatula snails collected in Corrèze, France, revealed prevalence of C. daubneyi within these snails had progressively increased between 1989 and 2000 (Mage et al., 2002). Furthermore, free redial burdens within individual infected snails had also increased over the same period, with levels rising to become similar to consistently observed F. hepatica redial burdens in the same populations by the final year of the study (Mage et al., 2002). Similar findings have also been observed in two other regions of France regarding C. daubneyi prevalence and its infection intensity in G. truncatula snails, with the number of G. truncatula snails found harbouring three or four sporocysts progressively increasing during a twelve year period from 1994 (Dreyfuss et al., 2008).

If this progressive adaptation was to occur in the UK as well as in other potentially novel geographical areas for C. daubneyi, it could have major implications for future paramphistomosis risk. At present, all reports of paramphistomosis in the UK have been attributed to heavy juvenile infections (Mason et al., 2012; Millar et al., 2012; SAC, 2016; Anon, 2016). For this to occur, a ruminant would have to simultaneously ingest large numbers of C. daubneyi metacercariae, which in turn would only be present on pastures inhabited by a large population of C. daubneyi shedding snails. Currently, high levels of C. daubneyi eggs are being shed onto pastures leading to, presumably, a high level of development within snails. If indeed UK G. truncatula are currently not fully susceptible to C. daubneyi infection. However, no snails harboring cercariae of more than one species were recorded. Laboratory studies have shown that H. cylindracea infected G. truncatula snails are capable of being infected and fully sustaining a F. hepatica or C. daubneyi infection through to shedding, however, cercarial output of both subsequent infecting parasites was very low due to indirect antagonistic effects (Moukrim et al., 1993).

C. limnaei, a parasite known to predate on (Michelson, 1964; Rajasekariah, 1978) and potentially regulate trematode larvae (Ibrahim, 2007), was also recorded infecting G. truncatula snails. Considering its rarity and its presence co-infecting G. truncatula within sampled snails, its negative association with subsequent livestock effects on subsequent livestock could be an indication of antagonism. On the contrary, C. daubneyi prevalence was positively associated with H. cylindracea which potentially indicates a facilitation effect between two parasites, a phenomenon whereby the presence of one infecting parasite may increase a snail’s susceptibility to another infecting species (Combes, 1982). This potential facilitation effect could be an important factor in C. daubneyi establishment if indeed UK G. truncatula are currently not fully susceptible to C. daubneyi infection. However, no snails harbouring cercariae of more than one species were recorded. Laboratory studies have shown that H. cylindracea infected G. truncatula snails are capable of being infected and fully sustaining a F. hepatica or C. daubneyi infection through to shedding, however, cercarial output of both subsequent infecting parasites was very low due to indirect antagonistic effects (Moukrim et al., 1993).
H. cylindracea prevalence within G. truncatula populations. This, on some farms at least, may indirectly heighten F. hepatica prevalence within its G. truncatula populations and subsequent fasciolosis risk.

5. Conclusion

This study demonstrates that C. daubneyi is infecting G. truncatula snails in the UK, although questions remain regarding its capabilities to infect and develop within these populations efficiently. However, evidence suggests that C. daubneyi could adapt to become more suitable to this intermediate host. If so, the risk of paraparamphistomosis could increase significantly in the future, and thus further research on C. daubneyi epidemiology is imperative in the eventuality of this scenario. The study also recorded high levels of F. hepatica and H. cylindracea infecting G. truncatula snails on Welsh farms. This raises numerous questions regarding potential interactions at intermediate host level between the three digenean parasites studied and potentially other parasite groups as well. These interactions may involve an antagonistic effect which in theory could be a novel method of negating livestock losses due to trematodiasis.

Acknowledgements

Rhys Aled Jones gratefully acknowledges the Owen Price scholarship for funding his Ph.D. Ayodeji Sinnimile and Rowan K Thomas gratefully acknowledge funding from Aberystwyth University’s Aber Forward scheme. The project was funded by the Coeleg Cymraeg Cenedlaethol (to H. W. W.) and BBSRC Innovate UK (102108) to P.M.B. The authors would like to thank all participating farmers; the staff at YFC Wales; Dr Martin Vickers for assistance in creating the project website; and Dr Basil T. Wolf for statistical advice.

References

H. cylindracea prevalence within G. truncatula populations. This, on some farms at least, may indirectly heighten F. hepatica prevalence within its G. truncatula populations and subsequent fasciolosis risk.

5. Conclusion

This study demonstrates that C. daubneyi is infecting G. truncatula snails in the UK, although questions remain regarding its capabilities to infect and develop within these populations efficiently. However, evidence suggests that C. daubneyi could adapt to become more suitable to this intermediate host. If so, the risk of paraparamphistomosis could increase significantly in the future, and thus further research on C. daubneyi epidemiology is imperative in the eventuality of this scenario. The study also recorded high levels of F. hepatica and H. cylindracea infecting G. truncatula snails on Welsh farms. This raises numerous questions regarding potential interactions at intermediate host level between the three digenean parasites studied and potentially other parasite groups as well. These interactions may involve an antagonistic effect which in theory could be a novel method of negating livestock losses due to trematodiasis.

Acknowledgements

Rhys Aled Jones gratefully acknowledges the Owen Price scholarship for funding his Ph.D. Ayodeji Sinnimile and Rowan K Thomas gratefully acknowledge funding from Aberystwyth University’s Aber Forward scheme. The project was funded by the Coeleg Cymraeg Cenedlaethol (to H. W. W.) and BBSRC Innovate UK (102108) to P.M.B. The authors would like to thank all participating farmers; the staff at YFC Wales; Dr Martin Vickers for assistance in creating the project website; and Dr Basil T. Wolf for statistical advice.

References

infection of several successive snail generations. Parasites Vectors 7, 296.