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Abstract

Candidates to the least perimeter partition of various polygonal shapes into
N planar connected equal-area regions are calculated fdd 6 42, compared to
partitions of the disc, and discussed in the context of the emrgetic groundstate
of a two-dimensional monodisperse foam. The total perimeteand the number of
peripheral regions are presented, and the patterns classed according to the number
and position of the topological defects, that is non-hexagoal regions (bubbles). The
optimal partitions of an equilateral triangle are found to follow a pattern based on
the position of no more than one defect pair, and this patternis repeated for many
of the candidate partitions of a hexagon. Partitions of a square and a pentagon
show greater disorder.

Candidates to the least perimeter partition of the surface d the sphere into N
connected equal-area regions are also calculated. For srh&l these can be related to
simple polyhedra and forN > 14 they consist of 12 pentagons antl 12 hexagons.

1 Introduction

A dry foam is a collection of polyhedral bubbles surroundedybthin Ims. Its high-
interface structure leads to a multitude of industrial and @mestic uses [1]. The surface
energy of a three-dimensional foam is the surface area of thres multiplied by the surface
tension of each one [1]. A foam in equilibrium attains a locahinimum of this energy,
subject to the constraint of xed bubble volumes. In doing spit satis es Plateau's rules
[2, 3]: three and only three Ims meet in a line (a Plateau borer) at 120 and these lines
meet with four-fold tetrahedral symmetry. In addition, the Laplace Law relating pressure
di erence and curvatures gives the further condition that ach Im is a surface of constant
mean curvature.

A celebrated problem in this context is due to Kelvin [4, 5]: Wat is the least energy
partition of space into cells of equal volume? Kelvin's sdiwn, a tetrakaidecahedral

the electronic journal of combinatorics 17 (2010), #R45 1



bubble in the form of a truncated octahedron with six quadrdteral and eight hexagonal
faces, still stands as the best monohedral tiling ever found\ proof of its optimality is,
however, elusive. One hundred years after Kelvin considdré¢he problem, Weaire and
Phelan [6] discovered a partition of space with lower energghe Weaire-Phelan structure
has a unit cell consisting of eight bubbles of two di erent tpologies.

Given the complexity of the search for a global minimum in th&elvin problem, it
makes sense to retreat to two dimensions. Consider for exaepa foam squeezed between
parallel plates, so that the Ims form a network of lines surounding the bubbles. The
surface energy of this two-dimensional foam is simply theta perimeter of the lines (or
edges) multiplied by surface tension. The rules of equiliimm now imply that each edge
is a circular arc and that they meet in threes at angles of 120 The bubble areas are
considered xed and we seek the arrangement of bubbles thavgs the global minimum
of perimeter. For bubbles lling the plane, the hexagonal heeycomb has been proved
to be optimal in this sense [7]. This result was widely belied but di cult to prove,
as is the case for so many of these minimal perimeter problemBhe approach adopted
here, and expanded upon below, is to seek candidates to suchlgpems numerically and,
except in some special cases, forgo any attempt at a proof ththe structure is a global
minimum. Instead, we rely on a procedure that calculates thgerimeter of many di erent
candidates, giving a high probability but no guarantee thatve will nd the \best" one.

So, the honeycomb conjecture is proven, but there are manyriations on the conjec-
ture that are worthy of further exploration. One obvious diection is to relax the condition
that all bubbles have equal area [8¢15.9][9]. Another is to consider nite collections oN
equal-area bubbles (clusters), which we do here. An importaassumption is that in the
global minimum each bubble consists of a single component.e\i&tain this assumption of
connectedness for all problems considered here. The di daylof proving this assumption
is the major stumbling block to proving optimality in genera.

For small numbers of bubblesN 6 3, there are various proofs of optimality for free
clusters (in 2D, 3D and beyond); see e.g. [8, 10, 11, 12, 13pr Example, a single bubble
(N = 1) forms a circle, and two bubbles form what is known as the ahdard double
bubble { see the last column of gure 1. Cox et al. [14] \shu ed' a monodisperse cluster of
bubbles from one con guration to another by performing neigoour-switching T1 changes
[15] on an initially defect-free cluster to explore the spacof possible candidates. Those
results for the least-perimeter arrangement oN monodisperse bubbles, along with a
number of more recent improvements [16], are shown in gurdsto 5.

The colour scheme in the gures requires explanation: topagical defects are classi ed
using the idea ofcharge[17]. Bulk bubbles have a chargg=6 n, wheren is the number
of sides. Thus hexagons have zero charge and are not coloudedhe samepyvay, peripheral
bubbles have chargegg =5 n. The total charge of the cluster is then q= 6. Cox
et al. [14] found that in the free cluster case, positive (colired red in the gures ifq=1,
if g > 2) and negative (yellow) charges tend to be associated, andat the remaining
positive charges are usually well-spaced around the pergry of the cluster. As the size
of the cluster grows, the result of the honeycomb conjecturuggests that bubbles far
from the periphery of the cluster are likely to be hexagonags is indeed the case.
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Simulations by Cox and Graner [18] showed that foN up to 10,000 the trade-o
between reducing the length of the periphery of the clustemnd attaining regular hexagons
in the bulk is \won" by the bulk. That is, the perimeter of the cluster is minimized by a
cluster that has a periphery that is itself hexagonal, alloimg the bulk to consist only of
regular hexagons, rather than rounding the cluster to redecthe length of the periphery.
This suggestion has not gained universal agreement: Morg§lB], for example, expects
the periphery of the optimal cluster to become circular at ean higherN.

Bounds on the perimeterE of a nite cluster of hexagons have been given by Heppes
and Morgan [20]. These are asymptotically of the form

E¢(N)=L = 3N + kIO N; (1)

for somepp_arametek. The rst term is the contribution of hexagonal bubbles in the bulk
and the N term is a correction due to the peripheral bubbles. Thuk is the length of
one edge Ofp’:l regular hexagonal bubble (since each edge iseshhetween two bubbles) of
areaA = %3 3L2. In tting this form to the results of simulations, the secord term must
also account for deviations of hexagons from regularity anahy non-hexagonal bubbles
in the centre, or bulk, of the cluster. Cox et al. [14] found = 3:068 for free clusters.

A further re nement of the problem of nding the least perimeer arrangement of
bubbles is to consider a number of bubbles con ned within agn boundary. The equi-
librium conditions are augmented by the rule that edges meé¢he bounding walls at 90.
Canete and Ritore [21] proved that the best arrangement olitee bubbles within a circle
is the same topology as in the free cluster fdd = 3 [13]. A number of authors have
made conjectures in the monodisperse case fdrup to 6 [21, 22, 23, 24] and Cox [16]
performed a search foN up to 45 that con rmed most of these (see the fth column of
gures 1 to 5, which also contains improvements foN = 40 (this work) and N =42 [29]
to those given in [16]).

For di erent con ning geometries, there are only conjectues [22, 23, 24] for the square
and equilateral triangle, again folN up to 6. Here, we consider partitions of both of these,
as well as a pentagonal and hexagonal boundary, fof up to 42. For each boundary
shape we seek the least perimeter partition inttl bubbles of equal area, equivalent to
the energetic groundstate foN monodisperse bubbles or the optimal packing of equal-
area objects. We examine values df up to 42 and record the least perimeter, the number
of peripheral bubblesN, and the topology (number of sides) of the bubbles in the bulk
of the cluster. That is, we determine candidates to the leagberimeter arrangement,
and examine the in uence of the periphery in creating deviains of the cluster from the
regular hexagonal lattice.

In addition, we consider the least perimeter partition of tle surface of the unit sphere
into N regions of equal area. In this case each edge is an arc of a gogale, and the
edges meet in threes as before. The cale= 2 is solved by two hemispherical shells.
There are proofs that three identical strips joining the pas is optimal forN = 3 [25], and
that the optimal partition into N = 4 regions consists of four equal triangles [26]. Hales
[27] proved that for N = 12 the optimal partition is the one based on the pentagonal
dodecahedron. It is believed that the cube provides the topamy of optimal partition into
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N = 6 regions. Indeed, we nd that the ten geodesic partitions fothe sphere that are
three-connected at 12Q which occur forN =2 10,12 (see [28]), provide the minimum
perimeter. Further conjectures can be found in [30, 31].

Our aim is partly to inspire the derivation of exact results. In addition, in the same
way that the optimal arrangement of a free cluster of bubblesppears to predict the
arrangement of retinal cells inDrosophila [32], the solutions found here may provide
information about other biological structures, such as tharrangement of seeds in a ower
[33, 34]. They are also reminiscent of the results of more tliéional packing problemsin
which objects should Il a given space with least deformatim

2 Method

The value of surface tension, which is equal for all edges téken as one.

For smallN 6 6, all possible combinatorial types can usually be enumesat, which
provides a check on the numerical procedures described beloFor certain boundary
shapes, there arenagic numbersof bubbles: con gurations in which the least perimeter
solution has no topological defects. Two examples are (i)Xegonal numbers, of the form
3i2 3i+1fori=1;2;::: which were found to be optimal for free clusters, those coned
in a circle, and, as we will see below, are optimal for thosercoed in a hexagon; (ii)
triangular numbers, of the formNt = %i(i + 1), which we nd (see below) to be optimal
for bubbles con ned in an equilateral triangle; that is, forvalues ofN = Ny the cluster
formed by cutting a triangular segment from a hexagonal hogeomb and allowing it to
deform slightly to satisfy area constraints provides the gbal minimum.

2.1 Polygonal boundary

Candidates to the optimal arrangement of bubbles within a dggonal boundary are cre-
ated as follows (the method is similar to the one described if16]): N points, which
represent bubble centres, are scattered at random in a uniggare. The points are moved
S0 as to minimize a potential (see below) and then a Voronoi gaion of these N seed
points is calculated [35], The resulting structure is impded into the Surface Evolver [36],
where each Voronoi cell represents a bubble. The polygonalundary is set to have sides
of unit length, the bubble areas are prescribed to be equal @we then use Evolver's
circular arc mode to converge to a minimum of the perimeter. Ae equilibrium perimeter
E of the candidate con guration is then calculated, includig the length of the boundary
to facilitate comparisons between di erent boundary shape

This complete procedure is repeated for each local minimurhtbe potential, of which
there are of the order of ten to twenty for eachN, and the least-perimeter candidate
recorded in each case. Following the initial perimeter mimiization step, short edges are
sequentially removed, through T1 neighbour switching prasses, and the perimeter again
minimized to seek better nearby minima.

We supplement this automated procedure with manipulationef the existing candi-
dates by hand, based upon intuition about the structure andysnmetry of the candidates,
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and any patterns noticed.

There is no reason why any given inter-particle potential shuld provide good candi-
dates to the minimum perimeter problem. Indeed, there are mg well-known potentials
[37], the solutions to which may show a precise corresponderbetween the particle po-
sitions and the arrangement of bubble centres in the optimadartition, at least at small
N. We therefore choose a number of di erent potentials and cqgeare their e ectiveness
in determining the least perimeter candidate.

Each potential consists of a sum of di erent contributions:

X X X
V=g #°+ Vii; )
i i j8i

where+ = (x;;V;) is the position vector of thei" particle. The rst term is a symmetric
harmonic con ning potential that keeps the particles closdo the origin, weighted by a
constant ¢;, usually equal to one. The second term is the inter-particlpotential, which
tries to keep the points well-spaced. We tried three possiities for V; :

V__Coulomb 1 (3)
! ifn i
1
V__Squared = : 4
: i A2 @
Vi = logjf ) (5)

In the triangular (s = 3) and square & = 4) cases, we used only the second, squared,
inter-particle potential in the second term, and added a fuher term that acts to make
the boundary of the cluster of points polygonal:

X
Vooy = 2 2cod( imod(2=s)); (6)

with tan ; = y;=x;. The constant ¢, is between zero and one, and in these casgsis
reduced.

2.2 The surface of a sphere

To nd candidates to the least perimeter partition of the suface of a sphere, the method
is simpler. We choose the sphere to have radibs= 1, centred at the origin, and tile it
with N bubbles of areaA = 4 R ?>=N. We use the Surface Evolver [36] in a \spherical
arc mode", that represents each edge as an arc of a great @rcdlo minimize the total
perimeter P.

We commence by covering the sphere with curvilinear triang$ that have their base
on the equator and their apices at one of the poles. By sequitiy allowing neighbour
switching topological changes on short edges and convegito a local equilibrium after
each one, the perimeter of the pattern is reduced. We contiauthis process until the
perimeter ceases to decrease, and then introduce furtheptdogical changes at random
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to search the nearby energy \landscape”. We record the perater E and the pattern
of the topology with the least perimeter. A two-dimensionaimage of each pattern is
obtained by projecting the vertices and edges on the surfacé the sphere to the plane

according to a Gauss map:
gl

x? = 1 +tan ! pzi cos(tan ? y )
2 X2+ y2 X
1 o

yo = 2 +tan ! pzi sin(tan ! y ) (7)
2 X2+ y2 X

2= 1

It became apparent (see4) that many candidates, particularly at largerN, consisted
of arrangements of hexagons and pentagons only. We therefamplemented an additional
procedure: the software CaGe [38] was used to enumerati tilings of the sphere by
hexagons and pentagons for eadth. Each of these was imported into the Surface Evolver
and its equilibrium perimeter found. This showed that the radom search procedure
described above was in general only nding optimal candides forN 6 20.

3 Results

3.1 Triangular boundary

Even in the monodisperse case, the least perimeter partitioof an arbitrary triangle will
depend on its precise shape. For example, in the cdde= 3 in an isosceles triangle there
are three optimal arrangements, each of which is best for artzn range of angles [39].
We thus concentrate our e ort on the equilateral case.

Our candidate con gurations are shown in gures 1 to 5, and th perimeters plotted
in gure 6 and tabulated in Table 1. We nd the same candidatesor N = 1;2;3 and
6 as those found by Bleicher [23] and give better ones fidr = 4 and N = 5. To the
best of our knowledge, no candidates have been given for hegiN. It can be shown,
by enumerating all topologies, that the least-perimeter $ation for N = 4 does not have
three-fold rotational symmetry [40] but is instead of the same form as the free cluster.

In the candidate con gurations it is never optimal to have anedge emanating from an
apex of the triangle. A semi-rigorous proof can be obtainedylronsidering the partition
of a scalene triangle into two bubbles.

For the triangular values,Nt =1;3;6;10;:::; %i(i +1), the optimal candidate consists
of part of a hexagonal honeycomb, albeit a deformed one that@mmodates the area
constraints. Based upon the number of peripheral bubbles ithis defect-free case, we
propose the following formula foN:

Np:g 1+8N 3 ; (8)
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where [] denotes the nearest integer. This expression tsehdata well, except (at higher
N) on either side of the triangular values wher&, changes more steeply.

An approximate formula for the perimeter can be derived, basl upon the idea that
each bubble in the bulk attains its optimal hexagonal shapenad that each wall bubble
(except for those in the corners, which are not signi cant irthis approximation) attains
the optimal stretched-half hexagon shape that accommodat¢he area constraint. There
are N 2N, 3 edges of lengtiL in the bulk and N, edges of length B=4 that touch
the walls, with N, given byq(8). For a polygonal boundary withs sides, we must add

s walls of length L(s)=L = 6p 3tan(=s)N=s. The resulting expression for the total
perimeter is

5

. 1 g

with s = 3 in this case. P p__

Based upon the perimeter for théN = 3 case, the expressiok=L = (3+ N,= 12) 6N
appears to give the perimeter for all triangular numbers, ahthus provides a Q)ogd lower
bound for the perimeter for allN. A tto the formin (1), E{(N)=L=3N + k N gives
k =4:302.

For all other N there is exactly one pair of defects, i.e. one bubble with positive
topological charge adjacent to one bubble with negative tapogical charge. This provides
a clear realization of the conjecture of Cox et al. [14] thatefects should associate.

The position of the defect pair depends upon the proximity oN to a triangular
number. If N is of the form Nt 1, then the defect pair will touch the boundary. IfN
is of the form Nt + 1 then the positive charge will be against the boundary whd if N
is of the form Nt 1, the negative charge will touch the boundary. IN is two or more
away from N1, the defect pair will move into the bulk, keeping the same ahtation of
the positive-negative charge.

This suggests a recipe to generate the optimal candidate feach value ofN, given
the optimal defect-free candidate for the nearesti;, as follows. Find the closest value of
Nt to N, and if there are two, choose the lower. Consider each deféiede con guration
for Nt as a stack of rows of bubbles. Then add (or subtract N < N 1) bubbles to/from
the middle of successive rows, starting from the row along ehbase of the triangle, until
the number of bubbles reacheBl. Then re-converge to equilibrium, allowing neighbour
switching events on short edges where required.

3.2 Square boundary

Our candidate con gurations are shown in gures 1 to 5 and theperimeters plotted
in gure 6 and tabulated in Table 1. We conrm Tomonaga [22] ad Bleicher's [23]
conjectures forN 6 5.
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The magic numbers are squares, of the forhs = i2: although the number of defects
is not minimized in these candidates, the defects lie alongosite edges of the square to
leave hexagonal bubbles in the bulk. Figure 6(b) suggestsaththis does not result in a
signi cant lowering of the perimeter compared to clustersdr similar N.

Keeping the defects close to a pair of opposite boundariesssen in many of the
candidates. Again, it often appears to beat candidates thabave few defects. AN
increases, an isolated 5-sided bubble in the bulk no longezrgrates a large penalty and
is seen occasionally. About half of the candidates show reteve or rotational symmetry.

Following the derivation of (8), the square values dil suggest the following expression
for the number of peripheral bubbles:

No= 4 N 1 : (10)

Were it not for the valuesN = 8; 15 and 23, this would provide an upper bound, and it
overestimatesN, for the majority of the candidates.

A t of the perimeters to the form in (1) gives k = 3:809, less than in the triangular
case but still signi cantly above the free case, re ectinghie e ect of con nement.

3.3 Pentagonal boundary

Our candidate con gurations are shown in gures 1 to 5 and theerimeters plotted in
gure 6 and tabulated in Table 1.

Five-fold rotational symmetry is exhibited for the pentago for the magic numbers
N = 6;16;,31, as for the circle [16], and may continue to be found fod of the form
1+5i(i 1)=2. In addition, the pentagon shows the same topology as therae for
N =15;32 33.

In general, however, the candidate con gurations in a pentpon are highly disordered.
With the further exception of N = 9;11;13, 18 21; 24 and 34, all candidates foN > 7
show at least one negative defect, usually in the form of a et pair.

Based on the patterns for the magic numbers, we propose thditg number of peripheral
bubbles follows "y I#

5 8N 3
N,= = 1 ; 11
P 2 5 ’ (11)

which turns out provides a (tight) lower bound to the data.
A t of the perimeters to the form in (1) gives k = 3:569, slightly lower than the
square case.

3.4 Hexagonal boundary

Our candidate con gurations are shown in gures 1 to 5 and theerimeters plotted in
gure 6 and tabulated in Table 1.
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Many of these con gurations are similar to either or both thecircular and/or free
cases N =1 121417 2224252729 30,34,35 37 39 41), including the magic
numbers of the form 1 + 3(i + 1).

There is a similar progression to that seen in the triangulacase (e.g. for 3@ N 6 42)
with a single defect pair that moves away from the boundary aN increases. For lower
N this is disrupted by defect-free cases, that di er from the rmgic numbers by an uneven
spacing of bubbles around the sides of the hexagon.

The number of peripheral bubbles is well-approximated by 4l

"o I#

No= 3 4N31 1 (12)

which gets all but eleven values correct. The same expressigets all but thirteen values
correct for the circular case and all but four values corredor free clusters.

The expression for the perimeter derived in (9), witiN, given by (12) ands = 6,
works well here, indicating that the bubbles are quite regaf. (This expression fails to
describe the square and pentagonal data.) A t of the perimets to the form in (1) gives
k = 3:452, only slightly greater than in the circular casek = 3:378 [16]) and the free
case. In common with these two cases and the triangle, the pdons of the hexagon
never show more than one negative defect.

3.5 Discussion

To test the potentials, we consider the circular case for wt¢h good candidate con g-
urations exist [16]. No choice of potential nds all these calidates, but between the
potentials all known solutions are found and one better sdion for N = 40 (both log
and coulomb potentials). The coulomb potential performs ts, nding 40 out of 42 of
the known least perimeter con gurations. ForN > 25 the least perimeter con guration
rarely corresponds to the minimum energy arrangement of garles; rather, it is one of the
local minima that gives it. In a small number of cases the lebperimeter con guration is
only found after performing T1s. In summary, there appearsotbe no \magic" potential
for which the groundstate corresponds to the groundstate rfoéhe bubble cluster, and an
optimal strategy should probably include variation of the ptential as well as the random
initial placement of the seed points.

How do the candidates compare for eadd? Cox [16] showed that the least-perimeter
partition of the circle is often the same as the solution in tb free case, and it is also
the case that the topology of the partitions of the hexagon aroften the same. As the
number of sides of the polygonal boundary increases, we egpthis correspondence to
be retained.

Referring to gure 1, it is clear that for N 6 4 the same topology solves all least
perimeter partitions. Omitting the triangular case, whichsatis es the procedure remarked
upon above, the same topology solves the remaining ve cases N = 6 and 7, and
omitting both the square and triangle, we nd the same topolgy for N = 5;8;9;11; 17
and 18.
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The positions ofs positive defects are pre-determined to lie in the corners afpolygonal
boundary with s sides, and this constrains the problem further. But for polgons with
more than six sides (not considered here) there will be moresfécts than necessary,
implying that a negative defect must always be introduced smewhere. A single seven-
sided bubble at the centre of the cluster and seven-fold synetny overall, which was
observed for the circle foN =8 and 22 (but not for N = 43, the next in the sequence)
[16] may be found for clusters con ned within a regular hepon, where the cost may be
su ciently low at higher N for this topology to win.

The number N, of perigheral bubbles does not increase monotonically, atiugh in all
cases it scales roughly as N [14]. Despite the relatively high energy of the clusters in
a pentagon,N; is lowest in this case. It is highest for the triangular clusgrs, because of
the sharp corners.

A comparison of the perimeters of the candidates to each minal perimeter problem
is given in gure 6(a). It shows, for eachN, the perimeter of the candidates for a free
cluster and a cluster con ned in a circular, triangular, sqare, pentagonal or hexagonal
boundary. The perimeter increases monotonically wittN in all cases. It is clear that
the lack of con nement in the free case leads to the lowest pereter. Hexagonal clusters
have slightly higher perimeter than those constrained by aircle, but the two are very
similar. The triangular clusters have particularly high peimeter, followed by the square
and then the pentagon.

We subtract the t to the perimeter of the free clusters,E; (N)=L =3N + 3:06§ N,
from each set of data, shown in gure 6(b). It is now easier toe® the \magic" clusters {
the dips in the data { where the perimeter is particularly low These occur at the same
N for hexagonal, circular and free clusters.

4 Least perimeter partition of the surface of a sphere

We seek the least perimeter partition of the sphere intdl bubbles of equal area [30, 31],
equivalent to the energetic groundstate foN monodisperse bubbles or the optimal packing
of equal-area objects. We examine values Nf up to 32 and record the least perimeter
and the con guration that realizes it.

Candidate con gurations are shown in gure 7, and the perimiers are tabulated
in Table 2. In gure 8 the perimeters are shown and compared thi a tiling of the
plane WitI‘bN hexagons of aread\, = 4 R ?=N, which hasEpe,=L = 3N and therefore
Enex=R= 8 3N.

For N =2 4;12 we nd the candidates for which proofs exist. For otheN 6 10,
the candidates have the topology of the geodesic networkssdebed in [28], with edges
meeting at 120. For example, the topology ofN = 5 consists of a pair of triangles
covering the poles joined by 3 quadrilateralsN = 6 is cubic, N = 7 consists of a pair
of pentagons covering the poles joined by 5 quadrilateralsl = 8 consists of a pair of
guadrilaterals covering each pole joined by four pentagorsnd N = 10 has quadrilaterals
at the poles and two rows of four pentagons.
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A hexagon rst appears in the caseN = 11 and the angles are no longer 120 For
N =13 it is not possible to insert just one hexagon and this is # highestN for which a
guadrilateral bubble appears; in fact, it has the same topogly as the Matzke cell, one of
the most common types of bubble in 3D monodisperse foams [42).

For N > 14 it is apparent that all candidates found consist of 12 peagons andN 12
hexagons. These are fullerenes, now well known from carbdwemistry. For example, the
optimal candidate for N = 32 is the Cgg fullerene, in which each pentagon is separated
from the other pentagons by hexagons. Thus fdd > 14 we conjecture that the best
candidate can be found by nding the optimal location of the 2 pentagons in a partition
that otherwise consists of hexagons.

5 Conclusions

We have found candidates to the minimal perimeter of partitins of a regular polygon with
up to six sides intoN regions of equal area. Equivalently, we have found the gldben-
ergetic groundstate of a monodisperse two-dimensional foacon ned within a polygonal
boundary. For the triangle we conjecture that optimal parttions for other N can be found
from the nearest \magic" cluster, i.e. forN a triangular number, by adding/subtracting
bubbles in successive layers from the wall. A similar procet nds many candidates for
the hexagonal boundary but not for any other boundary shape.

Few general results emerge from the data for square and pegb@aal boundaries. Only
defects with charge 1 are observed (foN > 3) and they tend to be close to the bound-
aries. Seven-sided bubbles are usually paired with ve-&d bubbles.

We have also found candidates to the minimal perimeter of pétions of a sphere into
N regions of equal area. Equivalently, we have found the gldbenergetic groundstate of
a monodisperse two-dimensional foam con ned to the surfacéa sphere. FolN > 14 all
candidates are fullerenes. Thus, we conjecture that ndinghe least perimeter partition
of the sphere for largeN is equivalent to the problem of nding the fullerene with the
largest spacing between pentagonal faces.

For each N, the algorithm, even though repeated many times, exploremnly a few
hundred di erent candidates at most. It remains an open qué&®n as to how many
candidates actually exist, and whether it is possible to emoerate and test them in a
reasonable time. Certainly, to extend the results preserdehere to higherN will require
an improved algorithm. Similarly, relaxing the condition & monodispersity, to consider
for example bidisperse clusters [9], leads to many more catates and the likelihood of
fully exploring the space of all good candidates decreases.
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Figure 4: Least perimeter candidates foN = 31 to 40.
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