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Abstract

Rough set theory provides a methodology for data analysis based on the
approximation of concepts in information systems. It revolves around the
notion of discernibility: the ability to distinguish between objects, based on
their attribute values. It allows to infer data dependencies that are useful in
the fields of feature selection and decision model construction. In many cases,
however, it is more natural, and more effective, to consider a gradual notion
of discernibility. Therefore, within the context of fuzzy rough set theory,
we present a generalization of the classical rough set framework for data-
based attribute selection and reduction using fuzzy tolerance relations. The
paper unifies existing work in this direction, and introduces the concept of
fuzzy decision reducts, dependent on an increasing attribute subset measure.
Experimental results demonstrate the potential of fuzzy decision reducts to
discover shorter attribute subsets, leading to decision models with a better
coverage and with comparable, or even higher accuracy.

Key words: rough sets, fuzzy sets, attribute selection, data analysis,
decision reducts.

1. Introduction

Rough set theory, initiated by Pawlak [32, 34] in the early eighties,
presents data analysts with an elegant and powerful formal framework for
describing and exploiting data dependencies. In particular, it serves very
well the purpose of semantics-preserving data dimensionality reduction, i.e.:
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to omit attributes (features) from decision systems (a particular form of rep-
resenting data gathered for classification purposes) without sacrificing the
ability to discern between objects belonging to different decision classes, or,
more generally, to serve for decision models that approximate those classes
well enough (see e.g. [2, 11, 31, 42, 43, 56, 60]). A minimal set of attributes
that preserves the decision making power of the original system is called a
decision reduct. It is worth noting that such understanding of minimality
of a subset of attributes is popular also in other domains (see e.g. Markov
boundaries in probabilistic reasoning [37]). It is also worth emphasizing that
such understood approach to reducing attributes should be considered within
a wider framework of feature selection methods (especially in relation to so
called filter methods [3, 29]), wherein the objective is to minimize the com-
plexity of data-based decision models with no harm to their accuracy [20, 41].

Traditionally, discernibility is modeled by an equivalence relation in the
set of objects: two objects are indiscernible w.r.t. a given set of attributes B
if they have the same values for all the attributes in B. Discernibility may
then be used to model functional dependencies between sets of attributes,
as proposed also in other fields of data analysis [15, 28]. In practice, this
amounts to verifying (exact) equality of values. Such understood concept of
discernibility works well for most qualitative data, in particular if the number
of distinct values for each attribute is limited and there is no particular
relationship among them. Quantitative data, however, satisfy neither of
these restrictions: they involve continuous (i.e., real-valued) attributes like
age, speed or length, and are tied to a natural scale of closeness, (or, e.g.,
ordering [18],) loosely expressing that the closer the attribute values of two
objects are, the less discernible they are. While the standard methodology
can be tailored to handle them, e.g. by applying discretization [31, 36, 44] to
replace exact attribute values by interval codes, it appears more natural to
consider a notion of approximate equality, or graded indiscernibility, between
objects [35, 39, 46]. Incidentally, note that for many complex qualitative
attributes, whose values can be strings, images, . . . it also makes sense to
consider degrees of indiscernibility. On the other hand, Stefanowski and
Tsoukiás [45] argued to model missing value semantics in data by means of
valued tolerance relations. In general, the notion of approximate equality can
be formally modeled by means of a fuzzy relation [59] in the set of objects.

Guided by this principle, the original rough set framework for data-based
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attribute selection and reduction has been generalized1. Besides defining
fuzzy rough sets (see e.g. [12, 57]), the use of fuzzy (similarity) relations for
deriving fuzzy decision rules has been advocated [16, 17] early on. Many
approaches have in common that they redefine the notion of a reduct of
an information system to take into account the “fuzzy” characteristics of
the data (be it objects’ gradual discernibility [21, 24, 55], or their partial
membership to the classes of a fuzzy partition [4, 5, 22, 23, 47, 50, 51, 61]).
Our approach differs from the previous research efforts by the introduction
of fuzzy decision reducts: conceptually, an attribute subset is a fuzzy decision
reduct to a degree α (a value between 0 and 1) if it preserves the predictive
ability of the original decision system at least to that degree. This idea can be
seen as the fuzzy-rough analogue of using approximate decision reducts [43,
44, 52, 58] in crisp rough set analysis, where original criteria for semantics-
preserving data dimensionality reduction turn out to be too restrictive for
real-life data.

Just as there are numerous ways of defining decision reducts in fuzzy-
rough data analysis, so there is no single way of telling how a fuzzy de-
cision reduct should look like. In the general definition that we propose,
we require an increasing [0, 1]-valued measure, so as to guarantee that the
larger an attribute subset, the higher its degree of fuzzy decision reducthood
(monotonicity), which is in analogy to other approaches to define a degree of
approximating decision classes [43, 44]. For practical purposes, we consider
various alternatives, which can be grouped along two main directions: the
first direction works with an extension of the well-known positive region and
dependency degree, similar to what has been proposed by Jensen and Shen
in [23], while the second one is based on an extension of the discernibility
function from classical rough set analysis, related to the proposal in [24]. In
this sense, the present paper also provides a unified framework of fuzzy-rough
(approximate) reduction strategies.

As the proposed fuzzy decision reducts are shorter than crisp ones, the
reduced decision systems have less conditional attributes. As such, they yield
more general classification and regression models (see also [36, 52] in the
context of approximate decision reducts). Naturally, this only makes sense
provided the accuracy of the model does not drop too much (cf. [20, 29]).

1For completeness, we mention that there also exist many fuzzy feature selection meth-
ods that are not based on rough set theory, see e.g. [38, 49].

3



Therefore, we perform a series of experiments on benchmark data sets; for
data sets involving a qualitative decision attribute, we try to establish the
decision class to which a test object belongs (classification), while with a
quantitative decision attribute, a prediction of the exact value of the decision
attribute is attempted (regression). In particular, we evaluate the impact of
decreasing the degree of reducthood α, and compare it to the special situation
where α = 1, i.e., in which the corresponding crisp reduct version is recovered.

The remainder of this paper is organized as follows: after recalling some
important preliminaries of rough sets, fuzzy sets and their hybridization in
Section 2, in Section 3 we propose a general definition for the concept of a
fuzzy decision reduct, and develop and investigate a number of concrete in-
stances of it. In Section 4, several experiments are conducted to demonstrate
the advantage of fuzzy decision reducts over crisp ones, and to compare the
effectiveness of the various alternative definitions to each other. In Section
5, we conclude. Finally, we note that a preliminary version of part of the
subject matter in this paper appears in [8].

2. Preliminaries

2.1. Rough Set Theory

2.1.1. Definitions

In rough set analysis [33], data is represented as an information system
(X,A), where X = {x1, . . . , xn} and A = {a1, . . . , am} are finite, non-empty
sets of objects and attributes, respectively. Each a in A corresponds to an
X → Va mapping, in which Va is the value set of a over X. For every subset
B of A, the B-indiscernibility relation2 RB is defined as

RB = {(x, y) ∈ X2 and (∀a ∈ B)(a(x) = a(y))} (1)

Clearly, RB is an equivalence relation. Its equivalence classes [x]RB
can be

used to approximate concepts, i.e., subsets of the universe X. Given A ⊆ X,
its lower and upper approximation w.r.t. RB are defined by

RB↓A = {x ∈ X|[x]RB
⊆ A} (2)

RB↑A = {x ∈ X|[x]RB
∩ A 6= ∅} (3)

2When B = {a}, i.e., B is a singleton, we will write Ra instead of R{a}
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A decision system (X,A ∪ {d}) is a special kind of information system,
used in the context of classification, in which d (d 6∈ A) is a designated
attribute called the decision attribute. Its equivalence classes [x]Rd

are called
decision classes. Given B ⊆ A, the B-positive region POSB contains those
objects from X for which the values of B allow to predict the decision class
unequivocally:

POSB =
⋃
x∈X

RB↓[x]Rd
(4)

Indeed, if x ∈ POSB, it means that whenever an object has the same values
as x for the attributes in B, it will also belong to the same decision class as
x. The predictive ability w.r.t. d of the attributes in B is then measured by
the following value (degree of dependency of d on B):

γB =
|POSB|
|X|

(5)

(X,A ∪ {d}) is called consistent if γA = 1. A subset B of A is called a
decision reduct if it satisfies POSB = POSA, i.e., B preserves the decision
making power of A, and moreover it cannot be further reduced, i.e., there
exists no proper subset B′ of B such that POSB′ = POSA. If the latter
constraint is lifted, i.e., B is not necessarily minimal, we call B a decision
superreduct.

Example 1. Consider the following decision system3 with 7 objects and 8
conditional attributes, all quantitative:

a1 a2 a3 a4 a5 a6 a7 a8 d
x1 1 101 50 15 36 24.2 0.526 26 0
x2 8 176 90 34 300 33.7 0.467 58 1
x3 7 150 66 42 342 34.7 0.718 42 0
x4 7 187 68 39 304 37.7 0.254 41 1
x5 0 100 88 60 110 46.8 0.962 31 0
x6 0 105 64 41 142 41.5 0.173 22 0
x7 1 95 66 13 38 19.6 0.334 25 0

3This is a sample taken from the Pima Indians Diabetes data
set located at the UCI Machine Learning repository, available at
http://www.ics.uci.edu/∼mlearn/MLRepository.html
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The decision attribute is qualitative, and there are only two decision
classes: X0 (= [x1]Rd

) contains all x for which d(x) = 0, while X1 (= [x2]Rd
)

contains those with d(x) = 1. If we want to apply the standard rough set
analysis approach, we first have to preprocess the system. For instance, the
numerical values for the conditional attributes can be replaced by interval
codes, i.e., integers recording the interval to which the actual values belong.
A possible discretization is given by

a1 a2 a3 a4 a5 a6 a7 a8 d
x1 0 0 0 0 0 0 2 0 0
x2 1 2 2 1 1 1 1 1 1
x3 1 1 1 1 1 2 2 1 0
x4 1 2 1 1 1 2 0 1 1
x5 0 0 2 1 0 3 2 1 0
x6 0 0 1 1 0 3 0 0 0
x7 0 0 1 0 0 0 1 0 0

Now we can easily calculate the positive region. For example, given B =
{a4, a5},

POSB = {x1, x5, x6, x7}.

On the other hand,

POSA = {x1, x2, x3, x4, x5, x6, x7, x8},

indicating that the decision system is consistent.

Decision reducts can be used to synthesize minimal decision rules: the
rules result from overlaying the reducts over the original (training) decision
system and reading off the values. These rules can then be used to evaluate
new (training) objects with unknown decision class.

2.1.2. Finding Decision Reducts

Below we recall a well-known approach to generate all reducts of a decision
system based on its (decision-relative) discernibility matrix and function [42].
The discernibility matrix of (X, A∪ {d}) is the n× n matrix O, defined by,
for i and j in {1, ..., n},

Oij =

{
∅ if d(xi) = d(xj)
{a ∈ A|a(xi) 6= a(xj)} otherwise

(6)
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On the other hand, the discernibility function of (X,A∪{d}) is the {0, 1}m →
{0, 1} mapping f , defined by

f(a∗1, ..., a
∗
m) =

∧{∨
O∗ij|1 ≤ i < j ≤ n and Oij 6= ∅

}
(7)

in which O∗ij = {a∗|a ∈ Oij}. The boolean variables a∗1, . . . , a
∗
m correspond to

the attributes from A, and we denote A∗ = {a∗1, ..., a∗m}. If B ⊆ A, then the
valuation function VB corresponding to B is defined by VB(a∗) = 1 iff a ∈ B.
This valuation can be extended to arbitrary boolean formulas, such that

VB(f(a∗1, ..., a
∗
m)) = f(VB(a∗1), ...,VB(a∗m)) (8)

Formula (8) expresses whether the attributes in B preserve the discernibility
of (X,A∪{d}) (when its value is 1) or not (when it is 0). The discernibility
function can be reduced to its disjunctive normal form, that is

f(a∗1, ..., a
∗
m) =

∧
A∗1 ∨ ... ∨

∧
A∗p (9)

in which p ≥ 1, and for all i in {1, ..., p} it holds that A∗i ⊆ A∗, and A∗i 6⊆ A∗j
for i 6= j. If we define a ∈ Ai iff a∗ ∈ A∗i , then it can be shown [42] that
A1, . . . , Ap constitute exactly all decision reducts of (X, A ∪ {d}).

Example 2. For the discretized decision system in Ex. 1, it can be verified
that the discernibility function (after reduction) is given by

f(a∗1, . . . , a
∗
8) = a∗2 ∨ (a∗1 ∧ a∗7) ∨ (a∗5 ∧ a∗7) ∨ (a∗6 ∧ a∗7) ∨ (a∗7 ∧ a∗8) (10)

Hence, the decision reducts are {a2}, {a1, a7}, {a5, a7}, {a6, a7} and {a7, a8}.

Computing all decision reducts is an NP-complete problem [42]. In prac-
tice, however, it suffices to generate only a subset of reducts [44], or even only
one of them. Also, if reducts are too time consuming to be derived, it may
be acceptable to generate superreducts which are not necessarily minimal.
Below we recall a version of the QuickReduct algorithm ([6, 23], see also [48]
for a very similar approach), which finds a single superreduct of the decision
system based on the degree of dependency. We would like to emphasize,
however, that there are many other algorithms [2, 54], usually developed for
the classical framework of rough set-based attribute reduction, which may
be adapted to the needs of the approach proposed in this paper.
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QuickReduct starts off with an empty set R. It computes γR∪{ai} for each
attribute ai (i in {1, ...,m}); the attribute for which this value is highest (or
one of them in case there are several) is selected and added to R. Then, the
same process is repeated for the remaining attributes, until γR = γA. By
construction, when the algorithm finishes, the set R is guaranteed to equal
a decision superreduct of the decision system.

Example 3. If we apply QuickReduct to the discretized decision system from
Example 1, we get, after one iteration, R = {a2}, and since γa2 = 1, the
algorithm terminates.

2.2. Fuzzy Set Theory
Fuzzy set theory [59] allows that objects belong to a set, or couples of

objects belong to a relation, to a given degree. Recall that a fuzzy set in X is
an X → [0, 1] mapping, while a fuzzy relation in X is a fuzzy set in X ×X.
For all y in X, the R-foreset of y is the fuzzy set Ry defined by

Ry(x) = R(x, y) (11)

for all x in X. If R is a reflexive and symmetric fuzzy relation, that is,

R(x, x) = 1 (12)

R(x, y) = R(y, x) (13)

hold for all x and y in X, then R is called a fuzzy tolerance relation. For a
fuzzy tolerance relation R, we call Ry the fuzzy tolerance class of y.

For fuzzy sets A and B in X, A ⊆ B ⇔ (∀x ∈ X)(A(x) ≤ B(x)). If X is
finite, the cardinality of A is calculated by

|A| =
∑
x∈X

A(x) (14)

Fuzzy logic connectives play an important role in the development of
fuzzy rough set theory. We therefore recall some important definitions. A
triangular norm (t-norm for short) T is any increasing, commutative and
associative [0, 1]2 → [0, 1] mapping satisfying T (1, x) = x, for all x in [0, 1]. In
this paper, we use TM and TL defined by TM(x, y) = min(x, y) and TL(x, y) =
max(0, x+y−1) ( Lukasiewicz t-norm), for x, y in [0, 1]. On the other hand, an
implicator is any [0, 1]2 → [0, 1]-mapping I satisfying I(0, 0) = 1, I(1, x) = x,
for all x in [0, 1]. Moreover we require I to be decreasing in its first, and
increasing in its second component. The implicators used in this paper are
IM and IL defined by IM(x, y) = max(1 − x, y) (Kleene-Dienes implicator)
and IL(x, y) = min(1, 1− x+ y) ( Lukasiewicz implicator) for x, y in [0, 1].
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2.3. Fuzzy Rough Set Theory

Research on the hybridization of fuzzy sets and rough sets emerged in the
late 1980’s [12] and has flourished recently (see e.g. [7, 27, 30, 35]). It has
focused predominantly on fuzzifying the formulas (2) and (3) for lower and
upper approximation. In doing so, the following two guiding principles have
been widely adopted:

• The set A may be generalized to a fuzzy set in X, allowing that objects
can belong to a given concept (i.e., meet its characteristics) to varying
degrees.

• Rather than assessing objects’ indiscernibility, we may measure their
approximate equality, represented by a fuzzy relation R. As a result,
objects are categorized into classes, or granules, with “soft” boundaries
based on their similarity to one another. As such, abrupt transitions
between classes are replaced by gradual ones, allowing that an element
can belong (to varying degrees) to more than one class.

Typically, we assume that R is at least a fuzzy tolerance relation.4 For
our purposes, given a decision system (X,A ∪ {d}), let a be a quantitative
attribute in A ∪ {d}. To express the approximate equality between two
objects w.r.t. a, in this paper we use the fuzzy relation Ra from [24], defined
by, for x and y in X (σa denotes the standard deviation of a):

Ra(x, y) = max

(
min

(
a(y)− a(x) + σa

σa

,
a(x)− a(y) + σa

σa

)
, 0

)
(15)

Assuming that for a qualitative (i.e., nominal) attribute a, the classical
way of discerning objects is used, i.e., Ra(x, y) = 1 if a(x) = a(y) and

4It should be mentioned that many authors impose an additional requirement of T -
transitivity, i.e., given a t-norm T ,

T (R(x, y), R(y, z)) ≤ R(x, z)

should hold for any x, y and z in X; R is then called a fuzzy T -equivalence relation, or
similarity relation. While T -equivalence relations naturally extend the transitivity of their
classical counterparts, they may exhibit some undesirable effects, which were pointed out
e.g. in [9, 10].
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Ra(x, y) = 0 otherwise, we can define, for any subset B of A, the fuzzy
B-indiscernibility relation by

RB(x, y) = T (Ra(x, y)︸ ︷︷ ︸
a∈B

) (16)

in which T represents a t-norm. It can easily be seen that if only qualita-
tive attributes (possibly originating from discretization) are used, then the
traditional concept of B-indiscernibility relation is recovered. It should also
be noted that equation (15) is not the only possibility to define Ra(x, y) and
that it is an ongoing research to adjust fuzzy relations to real-life data.

For the lower and upper approximation of a fuzzy set A inX by means of a
fuzzy tolerance relation R, we adopt the definitions proposed by Radzikowska
and Kerre in [40]: given an implicator I and a t-norm T , they paraphrased
formulas (2) and (3) to define5 R↓A and R↑A by

(R↓A)(y) = inf
x∈X
I(R(x, y), A(x)) (17)

(R↑A)(y) = sup
x∈X
T (R(x, y), A(x)) (18)

for all y in X.

3. Fuzzy-Rough Attribute Reduction

In this section, we extend the framework for rough set analysis described
in Section 2.1 using concepts of fuzzy set theory, to deal with quantitative
attributes more appropriately. In order to do so, we introduce a number of
increasing, [0, 1]-valued measures to evaluate subsets of A w.r.t. their ability
to maintain discernibility relative to the decision attribute and to generate
adequate decision rules. Once such a measure, say M, is obtained, we can
associate a notion of fuzzy decision reduct with it.

Definition 1. (FuzzyM-decision reduct) LetM be a monotonic P(A)→
[0, 1] mapping such that M(A) = 1, B ⊆ A and 0 < α ≤ 1. B is called a
fuzzy M-decision superreduct to degree α if M(B) ≥ α. It is called a fuzzy
M-decision reduct to degree α if moreover for all B′ ⊂ B, M(B′) < α.

5Note that when X is finite (as will always be the case in the context of decision
systems), inf and sup can be replaced with min and max, respectively. We will use both
notations interchangeably in this paper.
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Below, we outline two important approaches to obtain such fuzzy decision
reducts. Specifically, in Section 3.1, we extend the notion of positive region,
while in Section 3.2 we introduce a fuzzy discernibility function. In Section
3.3, we investigate the relationships between these approaches. Throughout
this section, we assume that RB, the fuzzy relation that provides the means
to evaluate to what extent objects are indiscernible w.r.t. the attributes of
B ⊆ A, is defined by Eq. (16). On the other hand, as already noted before,
it is not the only possibility to introduce fuzzy relations for real-life data.

3.1. Fuzzy Positive Region

Using fuzzyB-indiscernibility relations, we can define the fuzzyB-positive
region by, for y in U ,

POSB(y) =

(⋃
x∈X

RB↓Rdx

)
(y) (19)

This means that the fuzzy positive region is a fuzzy set in X, to which
an object y belongs to the extent that its RB-foreset is included into at least
one of the decision classes. The following proposition shows that when the
decision attribute d is qualitative, only the decision class that y belongs to
needs to be inspected.

Proposition 1. For y ∈ X, if Rd is a crisp relation,

POSB(y) = (RB↓Rdy)(y)

Proof. We find

POSB(y) = max
x∈X

inf
z∈X
I(RB(z, y), Rd(z, x))

= max

(
max
x∈Rdy

inf
z∈X
I(RB(z, y), Rd(z, x)),

max
x 6∈Rdy

inf
z∈X
I(RB(z, y), Rd(z, x))

)
= max

(
max
x∈Rdy

inf
z∈X
I(RB(z, y), Rd(z, x)), 0

)
= inf

z∈X
I(RB(z, y), Rd(z, y))

= (RB↓Rdy)(y)

11



where we used RB(y, y) = 1, I(1, 0) = 0 and the fact that Rd(z, x) = Rd(z, y)
when x ∈ Rdy. �

Example 4. Let us come back to the undiscretized decision system in Ex. 1.
Using Eqs. (15) and (16) with T = TL to compute approximate equality, and
I = IL in (19), we can calculate the fuzzy positive region for B = {a4, a5}.
For instance, since σa4 = 16.385 and σa5 = 131.176,

POSB(x3) = inf
x∈X
I(RB(x, x3), Rdx3(x)) = inf

x∈X
I(RB(x, x3), X0(x))

= min(1, 1−RB(x2, x3), 1, 1−RB(x4, x3), 1, 1, 1)

= 1−max(RB(x2, x3), RB(x4, x3))

= 1−max(0, Ra4(x2, x3) +Ra5(x2, x3)− 1,

Ra4(x4, x3) +Ra5(x4, x3)− 1)

= 1−max(0, 0.512 + 0.680− 1, 0.817 + 0.710− 1) = 0.473

The complete result is

POSB = {(x1, 1), (x2, 0.808), (x3, 0.473), (x4, 0.473), (x5, 1), (x6, 1), (x7, 1)}

Compare this with Ex. 1, where POSB was computed for the discretized sys-
tem: the fuzzy positive region allows gradual membership values, and hence
is able to express that e.g. x2 is a less problematic object than x3 and x4.
Finally, it can also be verified that, with the given parameters, POSA = X
still holds.

Now assume that d is quantitative. In this case, to each object x in X, a
fuzzy tolerance class Rdx is associated, and for different objects these classes
may be partially overlapping. Unfortunately, in this case Proposition 1 no
longer holds: POSB(y) is at least equal to (RB↓Rdy)(y), but because of the
partial overlapping between decision classes, it is possible that a higher value
is obtained for x 6= y, as the following example illustrates.

Example 5. Consider the following decision system6 with 7 objects, 13 con-
ditional attributes and a quantitative decision attribute:

6This is a sample taken from the Boston Housing data set located at the UCI Machine
Learning repository, available at http://www.ics.uci.edu/∼mlearn/MLRepository.html
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a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 d
x1 0.088 12.5 7.87 0 0.524 6.012 66.6 5.5605 5 311 15.2 395.6 12.43 22.9
x2 3.321 0.0 19.58 1 0.871 5.403 100.0 1.3216 5 403 14.7 396.9 26.82 13.4
x3 2.149 0.0 19.58 0 0.871 5.709 98.5 1.6232 5 403 14.7 261.9 15.79 19.4
x4 1.414 0.0 19.58 1 0.871 6.129 96.0 1.7494 5 403 14.7 321.0 15.12 17.0
x5 0.084 45.0 3.44 0 0.437 7.185 38.9 4.5667 5 398 15.2 396.9 5.39 34.9
x6 0.035 95.0 2.68 0 0.416 7.853 33.2 5.1180 4 224 14.7 392.8 3.81 48.5
x7 0.106 30.0 4.93 0 0.428 6.095 65.1 6.3361 6 300 16.6 394.6 12.40 20.1

We use the same parameters as in Ex. 4. For B = {a3}, we get e.g.,

(RB↓Rdx2)(x2) = inf
z∈X
I(RB(z, x2), Rd(z, x2))

= min(1, 1, 0.512, 0.707, 1, 1, 1) = 0.512

but on the other hand,

(RB↓Rdx4)(x2) = inf
z∈X
I(RB(z, x2), Rd(z, x4))

= min(1, 0.707, 0.805, 1, 1, 1, 1) = 0.707

As a consequence,

POSB(x2) = max
x∈X

inf
z∈X
I(RB(z, x2), Rd(z, x))

= max(0.228, 0.512, 0.512, 0.707, 0, 0, 0.455) = 0.707

> (RB↓Rdx2)(x2)

While formula (19) provides the most faithful way to define the fuzzy
positive region, it is not the most practically useful one in this case, since
the computational complexity is high (cubic in the number of objects for
computing the entire positive region). Therefore we may opt to replace it by

POS ′B(y) = (RB↓Rdy)(y) (20)

which results in smaller positive regions (as shown above), that are easier to
compute (quadratic complexity in the number of objects for computing the
entire positive region).
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Example 6. Continuing Ex. 5, it holds that

POSB = {(x1, 0.571), (x2, 0.512), (x3, 0.512), (x4, 0.707), (x5, 0.094),

(x6, 0.094), (x7, 0.184)}

when (19) is used, and

POS ′B = {(x1, 0.572), (x2, 0.707), (x3, 0.707), (x4, 0.707), (x5, 0.094),

(x6, 0.094), (x7, 0.209)}

when (20) is used.

Once we have fixed the fuzzy positive region, we can define an increasing
[0, 1]-valued measure to implement a corresponding notion of fuzzy decision
reducts. The most obvious way is to introduce a normalized7 extension of
the degree of dependency, i.e.

γB =
|POSB|
|POSA|

and γ′B =
|POS ′B|
|POS ′A|

(21)

These measure resemble the one introduced by Jensen and Shen in [23].
Rather than considering an average of the membership degrees to the B-
positive region, it is also possible to focus on the most problematic element.
This is reflected by the following measures:

δB =
min
x∈X

POSB(x)

min
x∈X

POSA(x)
and δ′B =

min
x∈X

POS ′B(x)

min
x∈X

POS ′A(x)
(22)

They reflect the extent to which all objects can still be classified correctly,
when only the attributes in B are considered. Their use is inspired by the
fact that in standard rough set theory, the property of being a (super)reduct
is also determined by the worst object. The following easily verified propo-
sitions show that these measures can indeed be used to define fuzzy decision
reducts.

7Normalization is required in order that the measure yields a value of 1 for the whole
attribute set. In this paper, we assume POSA(x) > 0 for every x in X.
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Proposition 2. For subsets B1, B2 of A,

B1 ⊆ B2 ⇒
{
γB1 ≤ γB2 and γ′B1

≤ γ′B2

δB1 ≤ δB2 and δ′B1
≤ δ′B2

Proposition 3. γA = γ′A = δA = δ′A = 1

Example 7. For the Pima decision system from Ex. 4, it is easy to verify
that for B = {a4, a5}, γB = 0.822, while δB = 0.473. For the Housing
decision system from Examples 5 and 6, note that POSA = X (and hence
also POS ′A = X). Given B = {a3}, γB = 0.441, while γ′B = 0.382. On the
other hand, δB = δ′B = 0.094.

3.2. Fuzzy Discernibility Function

The fuzzy tolerance relations that represent objects’ approximate equality
can be used to redefine the discernibility function (7) as an {0, 1}m → [0, 1]
mapping, such that, for each combination of conditional attributes, a value
between 0 and 1 is obtained, indicating how well these attributes maintain
the discernibility, relative to the decision attribute, between all objects.

In order to obtain such a generalization, first note that Eq. (7) can be
rewritten as

f(a∗1, ..., a
∗
m)

=
∧{

m∨
k=1

a∗k[d(xi) 6= d(xj)⇒ ak(xi) 6= ak(xj)]|1 ≤ i < j ≤ n

}

=
∧{

m∨
k=1

a∗k [ak(xi) = ak(xj)⇒ d(xi) = d(xj)] |1 ≤ i < j ≤ n

}

=
∧

 ∧
a∗k=1

(ak(xi) = ak(xj))

⇒ d(xi) = d(xj)|1 ≤ i < j ≤ n

(23)

provided the decision system is consistent8.

8Recall that if (X,A ∪ {d}) is inconsistent, there exist xi and xj such that (∀a ∈
A)(a(xi) = a(xj)), yet d(xi) 6= d(xj). Such xi and xj are not considered in Eq. (7), since
Oij = ∅.

15



Interpreting the connectives in Eq. (23) by a t-norm T and an implicator
I, and replacing the exact equalities by the respective approximate equalities
(fuzzy indiscernibility relations), we can extend the discernibility function to
a {0, 1}m → [0, 1] mapping in the following way:

f(a∗1, ..., a
∗
m) = T (cij(a

∗
1, ..., a

∗
m)︸ ︷︷ ︸

1≤i<j≤n

) (24)

with
cij(a

∗
1, ..., a

∗
m) = I(T (Rak

(xi, xj)︸ ︷︷ ︸
a∗k=1

), Rd(xi, xj)) (25)

By the definition of an implicator, this means that the degree to which an
attribute ak serves to distinguish between objects xi and xj increases as their
approximate equality Rak

(xi, xj) w.r.t. ak decreases, and their approximate
equality Rd(xi, xj) w.r.t. d increases. If Rak

and Rd are crisp, the traditional
format (23) is regained (again, assuming consistency).

Referring again to the valuation VB corresponding to a subset B of A,
VB(f(a∗1, ..., a

∗
m)) is now a value between 0 and 1 that expresses the degree to

which, for all object pairs, different values in attributes of B correspond to
different values of d. Based on this, we introduce the following normalized
subset evaluation measure:

fB =
VB(f(a∗1, ..., a

∗
m))

VA(f(a∗1, ..., a
∗
m))

(26)

Alternatively, rather than taking a minimum operation in Eq. (24), one
can also consider the average over all object pairs, i.e.,

g(a∗1, ..., a
∗
m) =

2.
∑

1≤i<j≤n

cij(a
∗
1, ..., a

∗
m)

n(n− 1)
(27)

This formula exhibits a less rigid behaviour than Eq. (24), which yields 0 as
soon as one of the cij equals 0. Analogously to fB, the associated measure is
given by

gB =
VB(g(a∗1, ..., a

∗
m))

VA(g(a∗1, ..., a
∗
m))

(28)

The following two propositions express that the measures we have defined
are monotonic, and that they assume the value 1 when all the attributes
are considered, which makes it possible to consider fuzzy f - and g-decision
reducts.
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Proposition 4. For subsets B1, B2 of A,

B1 ⊆ B2 ⇒
{
fB1 ≤ fB2

gB1 ≤ gB2

Proposition 5. fA = gA = 1

Example 8. We first take up the undiscretized Pima decision system from
Ex. 1. Using Eq. (15) to compute approximate equality, and T = TL, I = IL

in Eqs. (24) and (25),

fB =
VB(f(a∗1, ..., a

∗
m))

VA(f(a∗1, ..., a
∗
m))

=
T

1≤i<j≤7
cij(0, 0, 0, 1, 1, 0, 0, 0)

T
1≤i<j≤7

cij(1, 1, 1, 1, 1, 1, 1, 1)

=
T (1, 1, 1, 1, 1, 1, 0.808, 1, 1, 1, 1, 0.473, 1, 1, 1, 1, 1, 1, 1, 1, 1)

1
= 0.281

gB =
VB(g(a∗1, ..., a

∗
m))

VA(g(a∗1, ..., a
∗
m))

=

∑
1≤i<j≤7

cij(0, 0, 0, 1, 1, 0, 0, 0)

21
=

20.281

21
= 0.966

Next, consider again the Housing data set from Ex. 5. Using the same pa-
rameters as above for B = {a3}, we obtain

fB = T
1≤i<j≤7

cij(0, 0, 1, 0, 0, 0, 0, 0)

= T (1, 1, 1, 0.572, 0.641, 1, 0.512, 0.707, 1, 1, 1, 0.805, 1, 1, 1, 1, 1, 1, 0.094,

0.184, 0.278) = 0

gB =

∑
1≤i<j≤7

cij(0, 0, 1, 0, 0, 0, 0, 0)

21
=

16.792

21
= 0.800

3.3. Relationships between Fuzzy Decision Reducts

As we have shown, the evaluation measures γ, γ′, δ, δ′, f and g intro-
duced in the previous subsections all give rise to corresponding fuzzy decision
reducts. However, not all of them are independent: e.g., δ′B ≤ γ′B ≤ γB and
δ′B ≤ δB ≤ γB always hold, and γB = γ′B and δB = δ′B when the decision
attribute is qualitative. Moreover, a number of interesting relationships hold
between the approaches based on the fuzzy positive region and those based
on the fuzzy discernibility function, which are summed up by the following
propositions; we assume that the same t-norm T and implicator I are used
in Eqs. (16), (17), (24) and (25).
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Proposition 6. If POS ′A = X,

fB ≤ δ′B and γ′B ≤ gB (29)

for B ⊆ A. Moreover, in case T = TM , fB = δ′B, regardless of POS ′A = X.

Proof.

fB =
VB(f(a∗1, . . . , a

∗
m))

VA(f(a∗1, . . . , a
∗
m))
≤ VB(f(a∗1, . . . , a

∗
m))

= T (I(RB(xi, xj), Rd(xi, xj))︸ ︷︷ ︸
1≤i<j≤n

)

≤ min
1≤i<j≤n

I(RB(xi, xj), Rd(xi, xj)) = min
x,y∈X

I(RB(x, y), Rd(x, y))

= min
y∈X

(RB↓Rdy)(y) = min
y∈X

POS ′B(y) = δ′B

where we have used the fact that min is the largest t-norm, and that it is sym-
metric and idempotent. When T = TM , it is clear that VB(f(a∗1, . . . , a

∗
m)) =

miny∈X POS
′
B(y) for eachB ⊆ A, hence it also holds that VA(f(a∗1, . . . , a

∗
m)) =

miny∈X POS
′
A(y). This completes the proof of fB = δ′B. To see that γ′B ≤ gB,

γ′B =

∑
y∈X

(RB↓Rdy)(y)

n

=

∑
y∈X

inf
x∈X
I(RB(x, y), Rd(x, y))

n

=

∑
1≤j≤n

inf
x∈X
I(RB(x, xj), Rd(x, xj))

n

≤
2

∑
1≤i<j≤n

I(RB(xi, xj), Rd(xi, xj))

n(n− 1)
= gB

�

The above proof shows that f and δ are essentially built upon the same
idea, with some variations due to the parameter choice, and also reveals the
essential difference between γ and g: while the former looks at the lowest
value of the formula I(RB(x, y), Rd(x, y)) for each y (reflecting to what extent

18



there exists an x that has similar values for all the attributes in B, but a
different decision), and averages over these values, the latter evaluates all
pairwise evaluations of this formula.

The following proposition shows that, for consistent data, a crisp g-
decision reduct is always a crisp γ/γ′-decision reduct.

Proposition 7. If POS ′A = X,

gB = 1⇒ (γ′B = 1 and γB = 1) (30)

for any B ⊆ A.

Proof.

gB = 1 ⇒
2

∑
1≤i<j≤n

I(RB(xi, xj), Rd(xi, xj))

n(n− 1)
= 1

⇒ (∀1 ≤ i < j ≤ n)(I(RB(xi, xj), Rd(xi, xj)) = 1)

⇒ (∀1 ≤ j ≤ n)

(
inf
x∈X
I(RB(x, xj), Rd(x, xj)) = 1

)
⇒ γ′B = 1

Since γ′B ≤ γB, γB = 1 holds as well. �

Example 9. Some of the relationships discussed above are illustrated in the
following table, which contains the values obtained with TL and IL in the
previous sections (B = {a4, a5} for pima, B = {a3} for housing), along with
those obtained with TM and IM :

Data set Connectives γB γ′B δB δ′B fB gB

Pima
TM , IM 0.72 0.72 0.29 0.29 0.29 0.94
TL, IL 0.82 0.82 0.47 0.47 0.28 0.97

Housing
TM , IM 0.43 0.38 0.09 0.09 0.09 0.79
TL, IL 0.44 0.38 0.09 0.09 0 0.80

Note that there is no general pattern in the relationship between the
results obtained with TM and IM and those with TL and IL; in this particular
example, the latter connectives result in a higher evaluation for all measures,
except for f , but this does not hold in general.
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4. Experimental Analysis

To evaluate the use of the various fuzzy decision reduct instances that
we have introduced in this paper, we have run a series of classification and
regression experiments on a number of benchmark data sets whose character-
istics are summarized in Table 1; |Vd| denotes the number of decision classes
(only for data sets with a qualitative decision attribute). Like the Pima and
Housing samples used as running examples in the previous sections, several
of them are taken from the UCI Machine Learning repository. Water 2 and
Water 3 are derived from UCI’s water quality dataset, with the decision
feature values collapsed to 2 or 3 classes representing the overall state of the
system behaviour. The Web dataset is from [22], where the task was to
classify web pages based on their content into one of several predefined cat-
egories. The Algae data sets9 are provided by ERUDIT [14] and describe
measurements of river samples for each of seven different species of alga, in-
cluding river size, flow rate and chemical concentrations. The decision feature
is the corresponding concentration of the particular alga. Finally, the CPU
dataset is taken from Delve10, where the regression task is to predict the
portion of time that CPUs run in user mode based on a number of computer
system activity measures.

The general setup of these experiments is as follows: given a decision
system (X,A ∪ {d}), a measure M as in Definition 1, and a threshold α
(0 < α ≤ 1), we run a 10-fold cross validation experiment. In each iteration,
we apply an adapted version of the QuickReduct heuristic, shown in Figure
1, to the training data to obtain a fuzzy M-decision superreduct to degree
α. All measures use Eq. (15) for evaluating attribute level discernibility, and,
unless explicitly stated otherwise, the  Lukasiewicz connectives TL and IL are
used throughout the experiments11.

The quality of the obtained attribute subset B is then evaluated as the
classification accuracy obtained by running a fixed classifier (respectively,
the root mean square error obtained by running a fixed regression method,

9See http://archive.ics.uci.edu/ml/datasets/Coil+1999+Competition+Data
10Data for Evaluating Learning in Valid Experiments, see

http://www.cs.toronto.edu/∼delve/. The considered regression task corresponds to
the CPU prototask on the Comp-Activ database.

11All evaluation measures described in this paper, along with the adapted
QuickReduct heuristic, have been implemented in Weka [53]. The program can be
downloaded from http://users.aber.ac.uk/rkj/book/programs.php
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Table 1: Data set characteristics

data set n m |Vd| origin
Cleveland 297 13 5 UCI

Glass 270 13 7 UCI
Ionosphere 230 34 2 UCI

Pima 392 8 2 UCI
Spambase 4601 57 2 UCI
Water 2 390 38 2 adapted from UCI
Water 3 390 38 3 adapted from UCI

Web 149 2556 5 [22]
Wine 178 13 3 UCI

Algae A→F 187 11 quantitative ERUDIT [14]
CPU 8192 21 quantitative Delve

Housing 506 13 quantitative UCI

in case the decision attribute is quantitative) on the reduced test data. In
our experiments, we have used the very simple K-nearest neighbour classifier
[1], implemented in Weka [53] as IBk, with default parameters (K = 1, no
distance weighting). This means that the method uses Euclidean distance to
compute the closest neighbour in the training data, and outputs this object’s
decision as its prediction. The reason for using such a basic classifier like
IBk is that we want to evaluate the intrinsic quality of the selected subsets
of attributes, influenced by the choice of parameters in the definition of a
fuzzy reduct, in isolation from the gain related to application of more ad-
vanced models. On the other hand, we obviously assume a usage of more
advanced classifiers in real life applications, once we collect more experience
with the phase of fuzzy reduct-based feature selection at this level of our
research. We also intend to investigate other distance measures in IBk, pos-
sibly better adjusted to the way of searching for optimal fuzzy reducts (see
also Conclusion).

4.1. Cross-Comparison between Different Measures

In the first set of experiments, for each of the data sets in Table 1 (ex-
cluding CPU and Spambase which are used in the detailed analysis later),
we compared the IBk classification/regression performance on the full at-
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(1) B ← {}
(2) do
(3) T ← B, best ← −1
(4) foreach a ∈ (A \B)
(5) ifM(B ∪ {a}) > best
(6) T ← B ∪ {a}, best ←M(B ∪ {a})
(7) B ← T
(8) untilM(B) ≥ α
(9) return B

Figure 1: Modified QuickReduct to obtain a fuzzy M-decision
superreduct to degree α.

tribute set to that obtained on versions reduced according to the different
strategies in this paper. For each of the fuzzy-rough measures introduced, we
ran QuickReduct once with α = 1, and a second time with a fixed α < 1;
in particular, a value of α = 0.95 was deemed a suitable overall choice for
most measures, except for g, which requires a much higher threshold, and for
which α = 0.9999 was selected. All measures use  Lukasiewicz connectives,
except f , which was found to perform better in combination with TM and
IM . Note that, by Proposition 6, this implementation of f coincides with the
corresponding δ measure based on TM and IM . In order to compare how well
the methods perform against the state-of-the-art, correlation-based feature
selection (CFS) [19] and Kohavi’s wrapper subset evaluator (WSE) [26] were
also run on the same data folds.

The results are shown in Table 2 and Table 3. When interpreting these re-
sults, one should always keep in mind the trade-off between accuracy (RMSE)
and attribute subset size: a higher accuracy (lower RSME) is of course de-
sirable, but so is a smaller subset size, i.e., the less conditional attributes
there are in the reduced data set, the stronger its generalization capacity.
Like this, it is clear that on Algae A, the overall best result is obtained
for γ and γ′ with α = 0.95, since they have the highest accuracy and the
lowest average attribute subset size across folds. On the other hand, for
Water 3, the accuracy for g and α = 0.9999 is similar to that obtained on
the unreduced data set and the one reduced with f , but the number of used
conditional attributes is considerably less, arguably making the reduction by
g the better option here.
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The selected subsets for δ and f are generally longer, without necessar-
ily being better than their γ and g counterparts, some notable exceptions
notwithstanding, like the f results on Glass and Pima. The problems are
especially visible on some of the larger data sets, like Spambase and Web,
which are either poorly reduced, or hardly reduced at all. This behaviour is,
to a large extent, due to the strictness of these measures: because they focus
on the worst object in the data set, they tend to have zero values very often,
especially for small attribute subsets. This affects QuickReduct’s opera-
tion adversely; when all of the considered subsets in a given iteration evaluate
to 0, the heuristic is forced to select one without any information about its
true merit. For the data sets with a quantitative decision, the results are
more balanced, with less of the negative effects plaguing the operation of
δ and f . Note also that in several cases (e.g. Algae A/B/C), the latter
three measures manage little or no reduction when α = 1 is selected, but
yield good results when a slightly smaller threshold is selected, illustrating
the use of fuzzy decision reducts.

A paired t-test was used to determine the statistical significance of the
results at the 0.05 level. From this it was determined that, generally speak-
ing, all the measures performed dimensionality reduction with no significant
drop in accuracy (increase in RMSE). For the classification results, there
is only one case where a fuzzy rough measure performs significantly worse
than that of the unreduced data approach (g, with α = 0.9999 for the Web
dataset). For the remaining measures, the performance cannot be said to be
better or worse from a statistical viewpoint, even though a high proportion
of features have been removed via these methods. This is also reflected in the
regression results, where all measures perform equivalently to or better than
the unreduced approach. Eight methods (γ with α = 1, γ with α = 0.95,
γ′ with α = 1, γ′ with α = 0.95, δ′ with α = 1, g with α = 1, g with
α = 0.9999 and CFS) produce results that are statistically better than the
unreduced approach for at least one dataset. Considering the measures them-
selves, when using fuzzy decision reducts (α < 1) the resulting performance
is almost always statistically equivalent to that of the corresponding crisp
decision reduct methods (α = 1). Again, this is achieved with substantially
smaller subsets.

Finally, from the complexity point of view, it is interesting that regression
results obtained with γ′ and δ′ are in general competitive with those of the
more complex measures γ and δ, which justifies their simplification.
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4.2. Detailed analysis on Spambase and CPU

From the above results, it is clear that the selection of an adequate α
threshold is not only dependent on the measure used but also on the data
set. On the other hand, it may be argued that—just like membership degrees
in a fuzzy set—the exact values of the measures are less important than the
partial ordering they induce on attribute subsets. In particular, in keeping
with the nature of QuickReduct, we can rank individual attributes in the
order in which they are added by this heuristic, and after each iteration
evaluate the performance of the attribute subset constructed thus far. We
have done this for Spambase and CPU, using the measures γ and g. The
results are listed in Tables 4 and 5. Each row in these tables records the size
of the current subset, the attribute selected by QuickReduct, the value of
the measure and the accuracy (RMSE) of the reduced decision system.

In particular, the reduction of Spambase by means of γ and g both
resulted in 45 attributes being added before a corresponding crisp decision
superreduct was obtained; attributes 3, 10, 14, 16, 28, 29, 31, 33, 37, 39, 42
and 46 do not belong to the final result for either of them. The order in which
the attributes are added does differ, however. As can be seen in Figure 2a),
g’s order of selection is markedly better, especially in the 10–25 subset size
region, when the corresponding subset outperforms the one obtained with γ
by several percents.

Figure 2: Spambase results: a) Classification accuracy versus subset size b) Accuracy
drop versus subset size reduction
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The most important observation about these results, however, is the obvi-
ous benefit fuzzy decision reducts have over crisp ones. For instance, a crisp
γ-decision reduct contains 45 out of 57 conditional attributes and achieves a
classification accuracy of 90.42% (compared to 90.76% obtained for the full
data set), in other words, a 21% reduction in the number of attributes versus
a 0.34% drop in accuracy; compare this to the 23-attribute subset obtained
by g which manages a 60% reduction at an even smaller 0.24% accuracy loss.
Moreover, as seen in Figure 2b), if a 1% accuracy drop is permissible, fuzzy
γ-decision reducts manage to reduce the subset size by over 40%, while with
g a reduction of the data set by more than 63% is possible.

Table 4 also reveals that the selection of α = 0.95 for γ and α = 0.9999 in
the experiment of Section 4.1 was probably a bit too low; this again stresses
the relative, rather than absolute, importance of this threshold, which should
always be tuned in relation to the size of the obtained subset.

The results for CPU, given in Table 5 and Figure 3, show a largely similar
picture. In this case, the advantage of fuzzy decision reducts is even more
evident: γ and g both yield a 20-attribute crisp decision reduct (5% size
reduction, only attribute 12 is not selected), but each of them can get a
better RMSE using only 10 attributes (52% size reduction). The difference
between the γ and g results is smaller than in the Spambase experiment,
with a small advantage of γ over g.

Figure 3: CPU results: a) RMSE versus subset size b) RMSE increase versus subset size
reduction
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Table 5: CPU results

size att. γ RMSE att. g RMSE
1 20 0.06 10.20 2 0.92 22.30
2 17 0.48 5.18 17 0.98 22.53
3 2 0.76 4.05 20 0.999 4.05
4 7 0.91 3.9 8 0.9998 3.78
5 8 0.97 3.75 19 0.9999 3.65
6 19 0.99 3.66 7 0.9999 3.66
7 4 0.99 3.6 4 0.9999 3.60
8 3 0.998 3.6 3 0.9999 3.60
9 0 0.999 3.52 0 0.9999 3.52
10 14 0.9995 3.39 14 0.9999 3.39
11 16 0.9996 3.35 15 0.9999 3.40
12 15 0.9997 3.34 16 0.9999 3.34
13 1 0.9998 3.38 10 0.9999 3.48
14 10 0.9998 3.53 1 0.9999 3.52
15 18 0.9999 3.52 18 0.9999 3.52
16 6 0.9999 3.43 13 0.9999 3.52
17 13 0.9999 3.44 6 0.9999 3.44
18 5 0.9999 3.4 9 0.9999 3.53
19 9 0.9999 3.51 5 0.9999 3.51
20 11 1 3.49 11 1 3.49

5. Conclusion and Future Work

In this paper, we have introduced a framework for fuzzy-rough set based
feature selection, built up around the formal notion of a fuzzy decision reduct.
By expressing that an attribute subset should retain the quality of the full fea-
ture set up to a certain extent only, we are able to generate shorter attribute
subsets, without paying a corresponding price in subset quality (evaluated
by means of the corresponding classification accuracy or RMSE).

At the same time, we have provided a comprehensive typology of sub-
set evaluation measures that can be used to define fuzzy decision reducts,
and that take into account the gradual nature of objects’ discernibility. We
have shown that, while these measures come in various different shapes, with
many variations possible due to the choice of connectives and other charac-
teristics like how to define the positive region (e.g., γ versus γ′), a common
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thread running through all of them is the question whether objects that have
(sufficiently) similar conditional attributes, also have (sufficiently) similar
decisions. The main differences between the proposed measures lie in the
strictness with which they enforce this criterion: δ and f focus on its worst
single violation within the data, γ makes an average assessment of individual
objects’ performance, while g simply averages over all pairwise evaluations
of the criterion.

Our experiments clearly endorse the benefit of using fuzzy decision reducts,
showing a greater flexibility and better potential to produce good-sized, high-
quality attribute subsets than the crisp decision reducts that have been used
so far in fuzzy-rough data analysis. At the same time, these experiments
also raise the challenge of measure selection and parameter optimization.
While some generic guidelines can be given and some general observations
apply (like the fact that the δ/f measure is typically too strict for realis-
tic data), different data sets require different parameter settings for optimal
performance.

On the other hand, this unpredictability may also be due in part to
the gap that still exists between the attribute reduction procedure and its
evaluation by means of classification or regression; an interesting proposition,
therefore, would be to adapt the IBk classifier such that it uses the same
approximate equality/distance metric (viz. based on Eqs. (15), (16)) as in
our approaches, instead of the currently used Euclidean distance.

Finally, in view of the different behaviour of different types of measures, it
may be worthwhile to combine their characteristics into aggregated measures
(e.g., weighted averages), or to allow the heuristic to use different measures
at different iterations (e.g., QuickReduct could start by adding attributes
based on γ, then at some point shift to δ to fine-tune the result).
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