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Abstract

In perennial energy crop breeding programmes, it can take several years before a mature yield is reached when

potential new varieties can be scored. Modern plant breeding technologies have focussed on molecular markers,
but for many crop species, this technology is unavailable. Therefore, prematurity predictors of harvestable yield

would accelerate the release of new varieties. Metabolic biomarkers are routinely used in medicine, but they

have been largely overlooked as predictive tools in plant science. We aimed to identify biomarkers of productiv-

ity in the bioenergy crop, Miscanthus, that could be used prognostically to predict future yields. This study iden-

tified a metabolic profile reflecting productivity in Miscanthus by correlating the summer carbohydrate

composition of multiple genotypes with final yield 6 months later. Consistent and strong, significant correlations

were observed between carbohydrate metrics and biomass traits at two separate field sites over 2 years.

Machine-learning feature selection was used to optimize carbohydrate metrics for support vector regression
models, which were able to predict interyear biomass traits with a correlation (R) of >0.67 between predicted

and actual values. To identify a causal basis for the relationships between the glycome profile and biomass, a
13C-labelling experiment compared carbohydrate partitioning between high- and low-yielding genotypes. A

lower yielding and slower growing genotype partitioned a greater percentage of the 13C pulse into starch com-

pared to a faster growing genotype where a greater percentage was located in the structural biomass. These

results supported a link between plant performance and carbon flow through two rival pathways (starch vs.

sucrose), with higher yielding plants exhibiting greater partitioning into structural biomass, via sucrose metabo-

lism, rather than starch. Our results demonstrate that the plant metabolome can be used prognostically to antici-
pate future yields and this is a method that could be used to accelerate selection in perennial energy crop

breeding programmes.
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Introduction

Miscanthus is a candidate lignocellulosic biofuel crop

owing to its high productivity and low chemical input

requirements (Visser & Pignatelli, 2001; Somerville et al.,

2010). As a C4 grass, it is a close genetic relative of two

major biofuel crops, Zea mays (maize) and Saccharum Sp.

(sugarcane; Hodkinson et al., 2002). However, currently,

the only commercially grown genotype of Miscanthus is

a wild accession and not a breeder’s line. Therefore, sev-

eral breeding programmes are now targeting Miscanthus

for yield and quality improvement. A major hindrance

to the improvement of perennial energy crops through

breeding is the long duration for new crosses to reach

maturity when they can be assessed for superiority

(Purdy et al., 2015). In Miscanthus, this is typically in the

region of 4 years from when a seed is planted. There is

a pressing need to identify new methods to accelerate

the selection of elite crosses in Miscanthus and other

perennial species.

In plant science, numerous studies have demon-

strated associations between metabolites and various

stress conditions such as increases in proline during

chilling (Wanner & Junttila, 1999) or increases in jas-

monic acid in response to herbivory (Wang & Wu,

2013). In medicine, metabolic biomarkers are used prog-

nostically, that is to anticipate a future outcome in an

asymptomatic individual, an example being the mea-

sure of blood cholesterol as a predictor of future heart
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attack risk. However, in plant science, the metabolome

has rarely been used to predict future outcomes in crop

species (Steinfath et al., 2010). In Arabidopsis thaliana,

several studies have successfully correlated biomass

with particular metabolites, groupings of metabolites

and enzyme activities (when expressed against total

protein content; Meyer et al., 2007; Sulpice et al., 2009,

2010, 2013; Scott et al., 2014). By combining a negative

correlation with starch and a positive correlation with

enzyme activities, approximately a third of the variation

in biomass of an Arabidopsis inbred family could be

accounted for (Sulpice et al., 2010). A notable example

of biomarker identification in a crop species is in potato,

where the abundance of glucose and fructose was found

to positively correlate with discoloration during frying

(low chip quality). When either of these hexoses was

used as markers to predict chip quality in new crosses,

the correlation (RS) between predicted and measured

quality was 0.67 (Steinfath et al., 2010). In a recent study

into drought tolerance in rainforest trees, the abundance

of nonstructural carbohydrates (NSC) was found to pos-

itively correlate with drought tolerance in trees showing

natural variation and in those that had been manipu-

lated (O’Brien et al., 2014). These studies show that

metabolites can be used as biomarkers to predict bio-

mass, quality traits and stress responses in species as

diverse as Arabidopsis, potato and rainforest trees. In all

these studies, it was carbohydrates that were success-

fully used as markers.

We recently showed that two fast-growing and high-

yielding genotypes of the perennial bioenergy grass,

Miscanthus, displayed a distinctive NSC profile com-

pared to two slower growing genotypes and that this

phenotype was consistent across 2 years and different

environments (Purdy et al., 2015). However, the limited

number of genotypes and hybrids used in this study

were insufficient to unequivocally determine whether

the carbohydrate metabolic profile (‘glycome’) could be

used as a biomarker of productivity. The phenotypic

attribute so far shown to most strongly correlate with

final yield is (log-transformed) maximum canopy height

(R2 = 0.55; Robson et al., 2013). Therefore, our primary

aim with this study was to identify single or multiple

metabolic biomarkers that could predict yield in Mis-

canthus and to determine how the strength of the corre-

lations compared with height as a predictor. Miscanthus

is usually harvested at the end of winter when senes-

cence is complete, but we sampled carbohydrates in

stems in the middle of UK summer when growth was

most rapid. The summer carbohydrate metabolic profile

was then used to predict winter yields harvested the

following year.

The choice of nonstructural carbohydrates to profile

was based on previously observed genotypic differences

in abundance and partitioning in four genotypes (Purdy

et al., 2014, 2015). Sucrose is the most abundant soluble

sugar in Miscanthus, and owing to the close phyloge-

netic relationship between Miscanthus and sugarcane

(Hodkinson et al., 2002), it was an obvious candidate for

study in diverse genotypes. Sucrose is formed of a

molecule each of glucose and fructose, and relationships

between the hexoses and biomass traits had previously

been observed (Purdy et al., 2015). Unlike many C3 tem-

perate grasses, C4 species such as Miscanthus do not

accumulate fructans (Muguerza et al., 2013) but instead

accumulate starch as a transient form of storage carbo-

hydrate (de Souza et al., 2013; Purdy et al., 2014).

To grow, plants must accumulate structural mass,

predominantly cellulose and the cell wall hemicellulose

polysaccharides. Both starch and cellulose are polymers

of glucose, and we hypothesized that rapidly growing

genotypes of Miscanthus may be accumulating cellulose

more rapidly at the expense of starch biosynthesis, thus

explaining the negative relationship between starch and

growth observed in our previous study and that of

others (Rocher, 1988; Sulpice et al., 2009; Purdy et al.,

2014, 2015). Therefore, starch, cellulose and the hemicel-

luloses were also assayed to assess a potential role as

yield biomarkers.

Materials and methods

Mixed population

A total of 244 Miscanthus genotypes were collected and planted

as described previously (Allison et al., 2011; Jensen et al., 2011;

Robson et al., 2012). From this population, a selection of seven

short and 11 tall plants were used in the experiment. A

description of the different species is provided in Table 1.

Three biological replicates per genotype were harvested from

blocks 1, 2 and 3 of the trial.

Mapping family

A total of 102 genotypes from a paired cross between a diploid

M. sinensis and a diploid M. sacchariflorus were sown from seed

in trays in a glasshouse in 2009. In 2010, individual plants were

Table 1 The species and experimental structure of the mixed

population and the mapping family

Species n Total n Tall n Short

Miscanthus mixed population

M. sinensis 10 5 5

Hybrid 4 4 0

M. sacchariflorus 4 2 2

Miscanthus mapping family

M. sinensis 1 1 0

Hybrid 19 9 10

© 2017 The Authors GCB Bioenergy Published by John Wiley & Sons Ltd, doi: 10.1111/gcbb.12418
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split to form three replicates of each genotype and then planted

out into the field in a spaced-plant randomized block design

comprising three replicate blocks. The field site is located

300 m to the south from the mixed population (described

above), and therefore, stone content and soil types are as

described previously (Allison et al., 2011); however, the field

containing the mapping family is on a gentler slope than the

mixed population.

Biomass trait measurements

Growth rate: Canopy heights of the selected plants were mea-

sured weekly. The values presented are for the 2-week period

surrounding the harvests to give a value of growth rate

cm day�1.

Stem height: A single stem that was representative of canopy

height was selected for destructive harvest and its height (cm)

measured on the day of harvest.

Destructive harvests

A single stem that was representative of canopy height was

selected from each plant, cut at a height of 10 cm from the

base, measured then flash-frozen before freeze-drying. As NSC

show diurnal fluctuations in Miscanthus (Purdy et al., 2013), the

two sets of plants were harvested on different days so that each

harvest could be completed within a 2-h window at the same

time of day (Zt 8–10 of a 16-h photoperiod). The mixed popula-

tion was harvested on 04 July 2013, and the mapping family

was harvested on 19 July 2013. For the harvesting of the entire

mapping family in 2014, each of the three blocks were har-

vested on consecutive days in July to stay within the 2-h time

window specified above.

Annual yield harvest: The mixed population and mapping

family were destructively harvested for yield in March 2014

(following the 2013 growing season), and the mapping family

was harvested in Feb 2015 following the 2014 growing season.

Biomass was dried to a constant weight, and then, the average

DW weight per plant (kg) was calculated.

Nonstructural carbohydrate (NSC) compositional
analyses

Soluble sugars and starch were analysed as previously

described (Purdy et al., 2014, 2015). Soluble sugar extraction:

approximately 20 mg (actual weight recorded) of each cry-

omilled (6870 Freezer Mill, Spex, Sampleprep, Stanmore, UK)

plant tissue sample was weighed into 2-mL screwcap microcen-

trifuge tubes. Sugars were extracted four times with 1 mL of

80% (v/v) ethanol and the resulting supernatants pooled; two

extractions were at 80 °C for 20 min and 10 min, respectively,

and the remaining two at room temperature. A 0.5 mL aliquot

of soluble sugar extract and the remaining pellet containing the

insoluble fraction (including starch) were dried down in a cen-

trifugal evaporator (Jouan RC 1022, Saint-Nazaire, France) until

all the solvent had evaporated. The dried down residue from

the soluble fraction was then resuspended in 0.5 mL of distilled

water. Samples were stored at �20 °C for analysis.

Soluble sugar analysis: Soluble sugars of samples extracted

in the previous step were quantified enzymatically by the step-

wise addition of hexokinase, phosphoglucose isomerase and

invertase (Jones et al., 1977). Samples were quantified photo-

metrically (Ultraspec 4000; Pharmacia Biotech, Uppsala, Swe-

den) by measuring the change in wavelength at 340 nm for

20 min after the addition of each enzyme. Sucrose, glucose and

fructose were then quantified from standard curves included

on each 96-well plate.

Starch quantification: Starch was quantified using a modi-

fied Megazyme protocol (Megazyme Total Starch Assay Pro-

cedure, AOAC method 996.11; Megazyme International,

Wicklow, Ireland). Briefly, the dried pellet was resuspended

in 0.4 mL of 0.2 M KOH, vortexed vigorously and heated to

90 °C in a water bath for 15 min to facilitate gelatinization

of the starch. A total of 1.28 mL of 0.15 M NaOAc (pH 3.8)

was added to each tube (to neutralize the sample) before

the addition of 20 lL a-amylase and 20 lL amyloglucosidase

(Megazyme International). After incubation at 50 °C for

30 min and centrifugation for 5 min, a 0.02 mL aliquot was

combined with 0.6 mL of GOPOD reagent (Megazyme). A

total of 0.2 mL of this reaction was assayed photometrically

(Ultraspec 4000; Pharmacia Biotech) on a 96-well microplate

at 510 nm against a water-only blank. Starch was quantified

from known standard curves on the same plate. Each sam-

ple and standard was tested in duplicate. Each plate con-

tained a Miscanthus control sample of known concentration

for both soluble sugars and starch analysis.

Cell wall carbohydrates and lignin

Lignin and matrix polysaccharides were analysed as described

by Foster et al. (2010a,b). To quantify matrix polysaccharides, a

Dionex ICS-5000DC (Thermo Scientific, Loughborough, UK)

was used. Each chromatographic run contained sets of stan-

dards and a dilution series. Lignin quantification followed the

method described by Foster et al. (2010a). Crystalline cellulose

was analysed by Seaman hydrolysis and subsequent quantifica-

tion of glucose (Purdy et al., 2014).

Crystalline cellulose

Approximately 60 mg (actual weight recorded) of purified cell

wall was hydrolysed with 0.6 mL of 72% H2SO4, vortexed and

left to incubate whilst shaking at 200 rpm for 1 h at 30 °C.

After incubation, samples were diluted with 16.8 mL of deion-

ized H2O. Tubes were then capped and autoclaved at 121 °C

for 1 h. Once cooled, an aliquot of 0.65 mL was neutralized

with 30 mg CaCO3 and centrifuged to pellet the CaCO3 and

the supernatant was removed to a fresh tube. Glucose was

quantified enzymatically as previously described (Purdy et al.,

2014). Standards of glucose were treated alongside experimen-

tal samples and included on each plate with a duplicated check

sample.

The amount of glucose that was derived from hemicellulose

(as described above) was subtracted from the total to give a

value derived just from the Seaman hydrolysis of crystalline

cellulose.

© 2017 The Authors GCB Bioenergy Published by John Wiley & Sons Ltd, doi: 10.1111/gcbb.12418
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Data modelling

Principal component analysis (PCA) was performed in SIMCA-P

v.11 (Umetrics AB, Malmo, Sweden) on values averaged across

all biological replicates (usually three) of each genotype in each

sampled population. Data were mean-centred and scaled to

unit variance, and the reported PC was ‘significant’ in the

default SIMCA-P cross-validation procedure. Machine learning

employed the AttributeSelectedClassifier in the Explorer interface

of WEKA v.3.6 (Frank et al., 2004). This WEKA ‘metaclassifier’

firstly sought an optimal subset of biomass predictors from the

individual carbohydrate levels and their derivative metrics (i.e.

sums and ratios). This involved testing all potential predictor

combinations by the ExhaustiveSearch algorithm with evaluation

by CfsSubsetEval. The metaclassifier then trained a support vec-

tor regression algorithm, SMOreg, to relate the selected carbo-

hydrate predictors to their associated biomass trait data. The

resultant model was evaluated for its accuracy in predicting

the relevant biomass values from the carbohydrate metrics of a

‘test’ set of plants. Test data were always completely excluded

from model training. Default parameters were used for each

algorithm.

13CO2 pulse labelling

Our chamber design and 13C pulse-labelling approach were

similar to previous methods (Hogberg et al., 2008; Subke et al.,

2009; Biasi et al., 2012) and applied to a field trial planted in

2010 with triplicate plots of a M. sinensis, a M. sinensis 9

M. sacchariflorus hybrid (M. x giganteus) and a M. sacchariflorus

in a randomized block design. In each replicate plot, square
13C pulse chambers were erected (2 m l, 2 m w, 3 m h) above

the crop, resulting in a total tent volume of 12 m3. Aluminium

scaffold was used to support plastic polythene film, which

allowed 90% of photosynthetically active radiation to enter the

chamber. During the 13C pulse, the chamber was sealed at the

base. To counter ambient air temperature increases within the

chambers, each was cooled using a water cooled, split air con-

ditioner (Andrew Sykes, Wolverhampton, UK).

The 13C pulse labelling was carried out on 23 July 2013 at ca.

08:20 by introducing ca. 6 L of 99% 13C-atom enriched pure

CO2 (CK Gases, Ibstock, UK) in sequential batches after sealing

the tent.

13C Harvesting and sample preparation

Pulsed samples were harvested 30 h after labelling. A single

marked stem was harvested as previously described. The level

of 13C enrichment above natural background 13C levels was

determined in the soluble, starch and structural mass, which

was extracted as previously described.

Solid sample analysis was performed on a Costech EC S4010

Elemental Analyser (Costech Analytical Technologies Inc,

Valencia, CA, USA) coupled to a Picarro G-2131i Series CRDS

analyzer (Picarro Inc, Santa Clara, CA, USA) via a split-flow

interface using a method similar to (2013). Cryomilled samples

of ~2 mg were weighed into ultraclean, 6 9 4 mm pressed tin

cups (Elemental MicroAnalysis Ltd, Okehampton, UK),

crimped and loaded into a Zero N-Blank, 50 position carousel,

autosampler. From the autosampler, samples were dropped at

a throughput of 1 every 15 min into a combustion reactor,

maintained at a constant 980 °C. Samples undergo flash com-

bustion and thermally decompose. Evolved CO2 was passed

through a thermal conductivity detector (TCD) for C detection

and then vented through a split-flow interface to the Picarro

CRDS analyzer for 13C analysis. Standard materials covering a

representative range of C and d13C values were run during

each analysis batch, and results were calibrated against these.

13C Calculations

Stable isotope notation. Studies of this kind have generally

either expressed 13C enrichment values in d13C, a measure of

the ratio of 13C and 12C, reported in parts per thousand (&) rel-

ative to a standard value (Pee Dee Belemnite – PDB) or atom

%. Outputs from the Picarro 13CO2 analyzer were in standard

delta (d) value notation (d13C). d13C values are calculated using

the following equation:

d13C sample ¼
13C=12C sample
13C=12CPDB

� 1� 1000; ð1Þ

where 13C/12CPDB is the isotopic ratio of the standard material

PDB given as 0.0112372. Results were converted to atom % and

then mg g�1 using the following equations:

Atom% ¼ 100�AR� ðd13C=1000þ 1Þ
1þAR� ðd13C=1000þ 1Þ ; ð2Þ

where AR = 0.011237. The absolute ratio of standard material

(PDB) and d13C = standard delta value of sample.

mgg�1 ¼ Atom%� 10: ð3Þ

Statistical analyses

Differences between genotypes for biomass traits, NSC, struc-

tural carbohydrates and block effects were determined from

one-way ANOVA using genotype or block as the treatment factor

(P =≤ 0.05). Genotypic differences in the deposition of 13C were

determined by one-way ANOVA using genotype as the treatment

factor and an associated Tukey’s HSD test. ANOVA, Tukey and

Wilcoxon tests were performed using GENSTAT (13th Edition).

Differences between genotypes grouped as ‘tall’ or ‘short’ were

determined from Student’s two-tailed t-tests (assuming unequal

variance; P =≤ 0.05) using Microsoft Excel. To compare biomass

measures and NSC between across years (2013 and 2014), a

Pearson correlation was performed to determine similarities in

absolute values and a Spearman rank correlation analysis to

compare the ordering of genotypes. Both analyses were carried

out in SIGMAPLOT 12 (Systat Software, Inc, San Jose, CA, USA).

Results

Two sets of field-grown plants were studied (Table 1).

The ‘mixed population’, from which 18 plants were

selected for study in 2013 (their eighth growing season),

© 2017 The Authors GCB Bioenergy Published by John Wiley & Sons Ltd, doi: 10.1111/gcbb.12418

4 A. L. MADDISON et al.



was comprised of M. sinensis, M. sinensis 9 M. sacchari-

florus hybrids and M. sacchariflorus genotypes. The

‘mapping family’, from which 20 plants were selected

for study in 2013 (their fourth growing season), was

comprised of M. sinensis 9 M. sacchariflorus hybrids,

plus a single, tall, M. sinensis genotype. Nonstructural

and structural carbohydrates and lignin were sampled

in July, during the summer growing season. Measures

of biomass traits obtained during the summer sampling

were stem height, and growth rate over the surrounding

two-week period, whereas annual yield was obtained at

harvest after the following winter. Carbohydrate and

biomass data for all genotypes are in Tables S1–S3.
Height has been shown to be the trait that best corre-

lates with final yield in Miscanthus (Robson et al., 2013).

Therefore, each set of plants was divided into ‘tall’ and

‘short’ classes for comparison of carbohydrate contents.

The average heights of plants grouped as short or tall

from the mixed population were 79 cm and 151 cm,

respectively, and in the mapping family, the average

heights of the short and tall classes were 56 cm and

120 cm, respectively (Table S1).

In both sets of plants, the abundance of fructose was

significantly greater in the tall plants compared to the

short plants, whereas the opposite was true for starch,

which was significantly more abundant in the short

plants (Fig. 1a and b; Table S2). Glucose, total hexose

and total soluble carbohydrates were significantly dif-

ferent between tall and short plants only in the mixed

population.

The ratios between different NSC were examined in

the short and tall groups, to further investigate the con-

trasting relationships of fructose and starch with plant

height. The greatest difference between tall and short

plants was the starch/fructose ratio, which was >four-
fold greater in the short plants of the mixed population

and >twofold greater in the short plants of the mapping

family (Fig. 1c and d). The glucose/fructose and

sucrose/fructose ratios were also significantly nega-

tively associated with height in both populations. Dif-

ferences in the starch/glucose and sucrose/starch ratios

of tall and short plants were significant only in the

mixed population (Fig. 1c and d).

Significant differences in hemicellulosic glucan were

observed between the short and tall plants in both pop-

ulations, with short plants exhibiting higher glucan

levels (Fig. 2a and b). Other significant differences, seen

only in the mapping family, were arabinose, galactose

and mannose, which were more abundant in short

plants, whereas crystalline cellulose and lignin were

more abundant in tall plants (Fig. 2b; Table S3b). In the

mixed population, these last cell wall components did

not show significant height-associated differences

(Fig. 2a; Table S3a), possibly due to a significant effect

of the replicate field blocks at the relevant trial site

(Table S4). These replicate blocks were arranged parallel

to the slope of the hill on which the mixed population

was grown (see Materials and Methods). A block effect

was previously reported in this population at the end of

the growing season and attributed to differences in

wind exposure and water dynamics (Allison et al.,

2011). No significant block effects were detected for any

of the NSC from either set of plants, or in the cell wall

composition of the mapping family (Table S4).

Having found differences in carbohydrates of height

classes of plants selected in 2013, we examined the

potential for using carbohydrates to model biomass

traits (summer height, summer growth rate and annual

yield). To provide more data for this purpose, a much

larger selection (102 genotypes) was made in 2014 from

the mapping family and similarly analysed for NSC and

biomass traits. As an exploratory stage for modelling,

we first sought to correlate carbohydrate contents with

biomass traits in each set of plants, using Spearman’s

rank coefficients (RS), which are robust to potential non-

linearity. Of the NSC in the mixed population, both glu-

cose and fructose produced positive correlations with

biomass traits, with the strongest correlation being

between fructose and stem height (0.91; Fig. 3a). In the

mapping family, biomass traits were significantly posi-

tively correlated with fructose (correlation coefficients

of ~0.5), though not with glucose (Fig. 3b and c). No

strong correlation between sucrose and biomass traits

was detected in either set (Fig. 3a–c). In contrast, starch

negatively correlated with all biomass traits (and with

fructose) in both sets of plants (Table S3a–c), the stron-

gest relationship being with growth rate in the mixed

population (�0.76). The relationships observed in the

mapping family in 2013 and in the extended number of

genotypes in 2014 were largely consistent, both showing

strong positive correlations of fructose with stem height

and yield (~0.5) and strong negative relationships

between starch and yield (Fig. 3b and c). Correlations

with growth rate, however, were considerably lower in

2014 than 2013 (Fig. 3b and c).

Ratios between NSC produced stronger correlations

with biomass traits than did the individual components

(Fig. 3a–c, middle row). In both the mixed population

and mapping family, significant negative correlations

between biomass traits and the starch/fructose and

sucrose/fructose ratios were observed. Conversely, pos-

itive correlations between the sucrose/starch ratio and

biomass traits were observed in both sets of plants

(Fig. 3a–c).
In both sets of plants, the matrix polysaccharide com-

ponents arabinose, galactose and glucan were nega-

tively correlated with biomass traits (Fig. 3a and b,

bottom row). The strongest negative correlation in the
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Fig. 1 Quantification of NSC in short and tall genotypes of the mixed population (a) and mapping family (b), and ratios between

carbohydrate levels in short and tall genotypes of the mixed population (c) and mapping family (d). Circles show outliers. Significant

differences between tall and short plants are shown by an asterisk (Student’s t-test assuming unequal variances, P =≤ 0.05). Key:

NSC = total nonstructural carbohydrate, Suc/Sta = sucrose-to-starch ratio, Glc/Fru = glucose-to-fructose ratio, Sta/Fru = starch-to-

fructose ratio, Suc/Fru = sucrose-to-fructose ratio, Sta/Glc = starch-to-glucose ratio.
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mixed population was between arabinose and growth

rate (�0.76), whilst in the mapping family, matrix glu-

can correlated negatively with yield (�0.92). In the map-

ping family, crystalline cellulose and lignin showed

positive correlations with biomass traits of 0.5–0.8,
whereas these relationships were not observed in the

mixed population (Fig. 3a and b).

As similar correlations manifested in the various

genotypes, in two different field trial sites and two dif-

ferent years (Fig. 3), it was pertinent to ask whether a

‘carbohydrate phenotype’ related to biomass traits was

sufficiently robust to be identifiable across all sampled

populations. When the NSC levels (glucose, fructose,

sucrose, starch) measured in all populations were sub-

jected to PCA in a unified data set, the first component,

PC[1], accounted for 58.3% of overall variance (Fig. 4).

The loadings for each NSC on PC[1] identified opposite

variations in starch on the one hand, and the hexoses

fructose and glucose on the other (Fig. 4a). Thus, PC[1]

could be regarded as a composite index of NSC status,

such that negative scores on PC[1] were indicative of

high starch and low hexoses, and the converse for posi-

tive PC[1] scores. Moreover, PC[1] scores of the sampled

genotypes showed significant correlations to biomass

traits. As seen in Fig. 4b, genotypes with negative PC[1]

scores (high starch, low hexoses) tended to be

characterized by shorter stature than genotypes with

positive scores (low starch, high hexoses). Pearson cor-

relations with PC[1] scores were highly significant

(P < 10�12) for height (R, 0.65), yield (R, 0.56) and

growth rate (R, 0.62).

Considering the carbohydrate/biomass correlations in

different Miscanthus populations (Fig. 3), and evidence

for a biomass-correlated multivariate ‘carbohydrate phe-

notype’ across populations (Fig. 4), we sought to test

the predictive power of the glycome for biomass traits

by multivariate modelling. A machine-learning

approach was chosen to address the complexity of the

potentially relevant carbohydrate and genetic data, in

the context of the small number and variability of bio-

logical replicates typical of a screening trial in the field.

As evident from Fig. 3, a number of potential carbo-

hydrate metrics, including sums and ratios of individual

NSC, would be available for inclusion in such a model.

However, use of too many of these metrics would be

redundant. We therefore used machine learning to iden-

tify parsimonious subsets of effective predictors from

the following list of 20: glucose, fructose, total hexose,

sucrose, total soluble carbohydrates, starch, total NSC,

arabinose, galactose, glucan, xylose, mannose, crys-

talline cellulose, lignin and the ratios sucrose/starch,

glucose/fructose, starch/fructose, sucrose/fructose,

Fig. 2 Quantification of structural carbohydrates and lignin in short and tall genotypes of the mixed population (a) and mapping

family (b). Circles show outliers. Significant differences between tall and short plants are shown by an asterisk (Student’s t-test assum-

ing unequal variances, P =≤ 0.05).
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starch/glucose and sucrose/glucose. For the full list of

20 carbohydrate predictors, 1 048 576 possible combina-

tions needed evaluation. We also fitted models using

only the NSC predictors (8192 combinations), and

excluding starch, only soluble sugar predictors (256

combinations). Evaluations were performed using a

‘correlation-based feature selection’ algorithm, CfsSub-

setEval, which prefers sets of predictors that have low

correlation amongst themselves, but each has high pre-

dictive worth (Wang et al., 2005).

A support vector regression algorithm, SMOreg, was

‘trained’ to fit regression models of a given biomass trait

Mixed Popula�on Mapping family 2013 Mapping family 2014

Height 0.93 Height 0.67 Height 0.42

2014 Yield 0.78 0.71 2014 Yield 0.74 0.87 2015 Yield 0.77

Glc 0.81 0.84 0.54 Glc Glc
Fru 0.82 0.91 0.48 0.92 Fru 0.56 0.47 0.57 Fru 0.24 0.53 0.49 0.61

Hex 0.86 0.90 0.58 0.98 0.95 Hex 0.94 0.62 Hex 0.23 0.27 0.27 0.93 0.84

Suc Suc 0.45 Suc 0.21 0.30

Sol 0.78 0.88 0.94 0.98 0.96 Sol 0.88 0.53 0.82 0.75 Sol 0.29 0.35 0.23 0.75 0.71 0.80 0.70

Sta –0.76 –0.67 –0.63 –0.65 –0.62 –0.69 –0.62 Sta –0.59 –0.53 –0.56 –0.55 –0.47 Sta –0.19 –0.45 –0.56 –0.36 –0.47 –0.45 0.19

NSC 0.43 0.57 0.70 0.74 0.67 0.60 0.76 NSC –0.53 –0.59 –0.61 0.95 NSC –0.32 –0.48 –0.20 0.43 0.91
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Fig. 3 Spearman’s rank correlations between biomass parameters, NSC levels (top) and ratios (middle), and cell wall components

(bottom) in the Miscanthus mixed population in 2013 (a) and the mapping family in 2013 (b) and 2014 (c). Significant positive correla-

tions are coloured red, and significant negative correlations are coloured blue (P =≤ 0.05). Nonsignificant correlations are coloured

grey. Key: Glc = glucose, Fru = fructose, Hex = total hexose, NSC = total nonstructural carbohydrate, Suc = sucrose, Sta = starch,

Glc/Fru = glucose-to-fructose ratio, Suc/Glc = sucrose-to-glucose ratio, Suc/Fru = sucrose-to-fructose ratio, Suc/Sta = sucrose-to-

starch ratio, Sta/Glc = starch-to-glucose ratio, Ara = arabinose, Cel = cellulose, Glu = glucan, Gal = galactose, Lig = lignin.
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using the NSC predictors selected in the above process.

Support vector machines were originally developed for

classification and may be conceived as mapping to

higher dimensional space of a ‘hyperplane’ between

two data classes, the ‘support vectors’ being the least-

separated members of the opposite classes. To perform

regression, the task is converted to classification by

duplicating each y-axis value by addition and subtrac-

tion of a new parameter e. The hyperplane between the

plus-e and minus-e ‘classes’ is equivalent to a regression

function (Li et al., 2009). Regression modelling was

investigated for each Miscanthus population by

cross-validation, in which model performance was aver-

aged over nine successive random partitions of the data

into training and validation subsets. For each partition,

both predictor selection and SMOreg modelling used

the training data, and models were tested on the held-

out validation data (Table 2).

As each experimental population comprised up to

102 genotypes, usually in biological replicates of only

three, and distributed in field plots potentially subject to

environmental gradients (Table S4), we were interested

if genetic structure was detectable in the carbohydrate

data. The effects on the SMOreg models of including or

excluding genotype information for each replicate plant

were therefore examined. Models of height (Table 2a)

or harvest yield (Table 2b) were significantly improved

(P < 0.05, Wilcoxon tests) by appending genotype infor-

mation to the carbohydrate predictors. Mean R of pre-

dicted vs. actual biomass values improved from 0.59 to

0.89 for height, and from 0.61 to 0.80 for yield, when

models had prior knowledge of genotypes. This evi-

dence for genetically conditioned ‘carbohydrate pheno-

types’ was supported by the significantly better

performance (P < 0.05, Wilcoxon tests) of models con-

structed on averaged replicates of each genotype (mean

R values: 0.73 for height; 0.71 for yield), relative to those

based on all replicates (Table 2). This was presumably

due to improved signal to noise for each genotype.

Models based on all carbohydrates including cell wall

constituents, or on NSC, or on soluble carbohydrates,

were all statistically significant (Table 2) and suggested

that the more extensive analytical procedures were unli-

kely to prove essential in screening of Miscanthus popula-

tions for biomass potential. The numbers of predictors

selected in the machine-learning models ranged from 4 to

8 for the ‘all carbohydrates models’, 3 to 5 for the ‘NSC

models’ and 2 to 4 for the ‘soluble carbohydrates models’,

and detailed lists are available in Table S5. For each cate-

gory of model, Table 2 highlights the carbohydrates that

featured in every predictor list, whether as an individual

metabolite or in a sum or ratio metric. The single metabo-

lite that featured in every model in all categories was fruc-

tose. The other NSCs were prominent in some model

categories, but ignored in others, with sucrose featuring

the least frequently. Amongst cell wall constituents, glu-

can was ubiquitous in the all-carbohydrate models of

height (Table 2a), but not yield (Table 2b).

In modelling yield for the mixed population, one

M. sacchariflorus genotype, Sac-2, proved particularly detri-

mental (without genotype information) and was omitted

for Table 2b. Amongst over four hundred plants sampled

for this study, the two tallest individuals belonged to Sac-

2, but its yields per unit height were by far the lowest in

Fig. 4 Correlation of multivariate carbohydrate phenotypes

and biomass across all experimental populations. Horizontal

axis shows scores on PC[1], the major component (58% of vari-

ance) from PCA of NSC levels (Glc, Fru, Suc, starch) of each

genotype in the mixed population (triangles), the mapping

population selected in 2013 (squares) and the extended map-

ping family analysed in 2014 (open circles). Vertical axis shows

mean canopy height of each sampled genotype. R indicates

Pearson correlation (***, P < 0.001) between heights and PC[1]

scores.
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the mixed population. Inclusion of this outlier genotype in

the yield models saw R values for the mixed population

(genotypes averaged) fall to 0.62, 0.36 and 0.52 for the all-

carbohydrate, NSC and soluble carbohydrate models,

respectively. It was concluded that the traits responsible

for the particular morphology of Sac-2 were not accessible

to modelling from carbohydrates.

Biomass and NSC data for the same genotypes in

2013 and 2014 showed high absolute (R) and rank (RS)

interyear correlation (Table 3). We therefore

investigated whether predictive models relating carbo-

hydrates to biomass traits could be applicable from

1 year to another. Figure 5 shows the application of the

machine-learning regression method to prediction of (a)

height, and (b) yield of the mapping family genotypes

analysed in 2014, based purely on the measurements of

their NSC levels (Table S6). The regression models were

pretrained on the NSC and biomass data of the smaller

number of mapping genotypes analysed in 2013. Corre-

lations between predicted and actual biomass trait

Table 2 Machine-learning models of biomass traits using carbohydrate data

A. Canopy height

Information included in models

Genotype, carbohydrates Carbohydrates only

All genotype replicates All genotype replicates Averaged by genotype

Plants Carbohydrate fractions R values

Mixed population All 0.92*** 0.44*** 0.76***

Nonstructural 0.81*** 0.70*** 0.81***

Soluble 0.84*** 0.52*** 0.70**

Mapping family 2013 All carbohydrates 0.94*** 0.72*** 0.77***

Nonstructural 0.92*** 0.63*** 0.68***

Soluble 0.93*** 0.68*** 0.70***

Mapping family 2014 Nonstructural 0.88*** 0.61*** 0.76***

Soluble 0.86*** 0.44*** 0.66***

Carbohydrate fractions Constituents common to predictors of all models*

All Glucan; Fructose (as Fru, Glc/Fru, Hex or Suc/Fru); Glucose (as Glc/Fru, Hex or Sta/Glc); Starch (as Sta,

Sta/Glc or Suc/Sta)

Nonstructural Fructose (as Fru, Glc/Fru, Hex, NSC or Suc/Fru); Glucose (as Glc/Fru, Hex, NSC, Sta/Glc or Suc/Glc);

Starch (as NSC, Sta, Sta/Fru, Sta/Glc or Suc/Sta)

Soluble Fructose (as Fru, Glc/Fru, Hex or Suc/Fru)

B. Harvest yield

Information included in models

Genotype, carbohydrates Carbohydrates only

All genotype replicates All genotype replicates Averaged by genotype

Plants Carbohydrate fractions R values

Mixed population† All 0.79*** 0.61*** 0.81***

Nonstructural 0.79*** 0.62*** 0.75***

Soluble 0.79*** 0.62*** 0.75***

Mapping family 2013 All carbohydrates 0.85*** 0.77*** 0.70***

Nonstructural 0.86*** 0.65*** 0.72***

Soluble 0.86*** 0.68*** 0.72***

Mapping family 2014 Nonstructural 0.75*** 0.56*** 0.68***

Soluble 0.74*** 0.40*** 0.58***

Carbohydrate fractions Constituents common to predictors of all models*

All Fructose (as Fru, Glc/Fru or NSC)

Nonstructural Fructose (as Fru, Glc/Fru, NSC or Suc/Fru); Glucose (as Glc/Fru, NSC or Suc/Glc); Sucrose (as NSC,

Suc/Fru, Suc/Glc or Suc/Sta); Starch (as NSC, Sta or Suc/Sta)

Soluble Fructose (as Fru, Glc/Fru or Suc/Fru)

Support vector regression (SMOreg) models were trained using subsets of predictors selected (CfsSubsetEval) for individual correlation

with trait but low correlation with each other. Models were evaluated in ninefold cross-validations. R values indicate Pearson correla-

tion between actual and predicted biomass data.

*Full lists in Supplementary Information.

†M. sacchariflorus genotype Mb306 was excluded from Table B.
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values were highly significant (P < 10�14) for height

and yield, with Pearson correlation values of 0.67–0.68
(Fig. 5). Predictions for growth rate data were weaker

(R, 0.25; P < 0.05).

To investigate our hypothesis of a competitive rela-

tionship between starch and cellulose biosynthesis, we

conducted a 13C-labelling experiment in the field. We

used a M. sinensis genotype (‘Goliath’), which was com-

paratively slow-growing, a fast-growing hybrid geno-

type phylogenetically similar to Hyb 2 of the mixed

population (M. x giganteus), and a M. sacchariflorus geno-

type phylogenetically similar to Sac-2. Stems were har-

vested 30 h after labelling. The slower growing

genotype, Goliath, partitioned significantly more pulse-

derived 13C into starch than the fast-growing hybrid and

M. sacchariflorus (Table 4). When analysed by ANOVA,

there appeared to be no difference between the geno-

types in % deposition into the cell wall even though the

mean values were quite different. We considered that

the analysis was being skewed by a large amount of vari-

ation between replicate in the M. sacchariflorus genotype

(Table 4). Therefore, we also performed t-tests between

the three genotypes, which showed that M. x giganteus

had deposited significantly more pulse-derived 13C into

the insoluble fraction which would be mainly comprised

of cellulose. This approach was also applied on other

measurements (such as % soluble), and no additional

significant differences between genotypes were

observed. The M. sacchariflorus genotype, whilst taller

than M. x giganteus, had a slower growth rate at the time

of labelling and was not statistically distinct from either

of the other genotypes in its pulse-derived 13C deposi-

tion. All three genotypes had accumulated the same total

amount of pulse-derived 13C. Therefore, the observed

differences between the hybrid and Goliath were in car-

bon partitioning rather than capture (Table 4).

In the mapping family in 2013, there was a positive

correlation between concentrations of cellulose and fruc-

tose, and negative relationships between cellulose and

the ratios of glucose/fructose and sucrose/fructose

(Fig. 6). However, no negative relationship between

starch and cellulose was observed, which did not sup-

port our starting hypothesis that a competitive

Fig. 5 Interyear prediction of biomass traits from carbohy-

drates. From NSC levels in the 20 genotypes selected in 2013

from the mapping population, machine learning was used to

select minimal lists of predictors to model biomass traits of the

sampled plants. The machine-learning models thereby ‘trained’

on the 2013 data were subsequently provided with the NSC

data (only) of the 102 mapping family genotypes analysed in

2014 and ‘tested’ for prediction of (a) canopy height, and (b)

yield, of the 2014 plants. For both models, the predictor metrics

selected by machine learning were as follows: total NSC, and

the Glc/Fru and Suc/Fru ratios. R indicates Pearson correlation

(***, P < 0.001) between actual and predicted values.

Table 3 Correlations between 2013 and 2014 for biomass traits

and nonstructural carbohydrate composition. For biomass

traits, N = 102, and for carbohydrates and ratios, N = 20,

*P =≤ 0.05 **P= ≤0.01

Trait Pearson’s (R)

Spearman’s

Rank (R) P

Canopy Height 0.8 0.8 **

Yield 0.9 0.9 **

Glucose 0.6 0.6 **

Fructose 0.8 0.7 **

Hexose 0.7 0.4 *

Sucrose 0.7 0.6 **

Starch 0.8 0.8 **

Total NSC 0.8 0.8 **

Suc/Sta 0.7 0.7 **

Glc/Fru 0.7 0.8 **

Sta/Fru 0.9 0.7 **
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relationship exists between these two polymers of glu-

cose (Fig. 6).

Discussion

We have demonstrated that the abundance and parti-

tioning of carbohydrates, particularly the NSC, can act

as metabolic biomarkers of productivity in diverse

genotypes of field-grown Miscanthus. These findings

thereby support other studies that have modelled bio-

mass from metabolites using the model species

A. thaliana in controlled environments (Meyer et al.,

2007; Sulpice et al., 2009, 2010, 2013; Scott et al., 2010).

The present article, by contrast, takes the important step

of applying this approach to the field environment

using a bioenergy crop species with a limited breeding

history. Despite the likely complex impacts of sunlight,

temperature and rainfall on the carbohydrate status of

the field plants, informative and significant biomass

models could be generated.

In our field-grown Miscanthus, we observed that

fructose consistently, positively correlated with yield

traits. Fructose is produced exclusively from the meta-

bolism of sucrose by the action of sucrose synthases

(SuSy) and invertases, whereas glucose is produced

both by the action of invertases (but not SuSy) and the

metabolism of starch (Koch, 2004; Smith et al., 2005;

Ruan, 2014). Therefore, fructose is a direct indication of

sucrose metabolism, whereas glucose provides informa-

tion about both sucrose and starch metabolism. Whilst

our observations are strictly correlative (there is no evi-

dence from our results that a high abundance of fruc-

tose specifically causes plants to be taller or higher

yielding), there is evidence in the literature that altered

partitioning in the ratio of sucrose/starch can follow

increases in biomass in other species (Foyer & Ferrario,

1994; Laporte et al., 1997; Signora et al., 1998). For exam-

ple, sucrose phosphate synthase (SPS) catalyses the

penultimate step in the synthesis of sucrose in the cyto-

sol (Signora et al., 1998). In tomato plants engineered to

constitutively overexpress maize SPS, biomass was

increased up to 100% compared to wild-type controls

(Foyer & Ferrario, 1994; Laporte et al., 1997). Further-

more, when the experiment was replicated in Arabidop-

sis, the ratio of sucrose to starch increased due to a

reduction in starch in the transgenic plants (changes in

biomass were not observed in this study; Signora et al.,

1998). More recently, it has been found that transgenic

expression of Arabidopsis SPS and sucrose phosphate

phosphatase also enhanced growth and biomass accu-

mulation in hybrid poplar (Maloney et al., 2015). Con-

versely, an Arabidopsis double knockout mutant of the

major SPS leaf isoforms was strongly impaired in

growth and accumulated high levels of starch (Volkert

et al., 2014). In the Poaceae, SPS has been of interest as a

biochemical marker for complex agronomic traits in sev-

eral species (Castleden et al., 2004). In rice, an SPS gene

coincides with a quantitative trait locus for plant height

Table 4 Biomass traits and % 13C recovered from the stem 30 h after labelling in three genotypes. N = 3 � SE. Different letters show

significant differences between genotypes according to an ANOVA and associated t-test. Values in parentheses in the % insoluble col-

umn show the additional results of t-tests between the three genotypes (P =≤ 0.05)

Stem weight

(g DW)

Stem height

(cm)

Growth rate

(cm day�1)

Pulse derived
13C (mg g�1 DW)

13C recovered in each fraction as a % of

the total

Soluble Starch Insoluble

Hybrid 30.0 � 3.5 a 241.0 � 11.6 a 2.8 � 0.4 a 2.0 � 0.2 a 19.0 � 2.7 a 18.2 � 2.8 a 62.8 � 0.8 a (a)

Goliath 20.0 � 1.1 ab 180.3 � 2.0 b 1.0 � 0.5 b 2.2 � 0.4 a 17.4 � 2.5 a 38.2 � 4.8 b 44.4 � 3.2 a (b)

M. sacchariflorus 54.1 � 10.7 b 274.3 � 3.5 c 1.3 � 0.3 ab 1.5 � 0.2 a 39.0 � 12.3 a 26.3 � 1.5 a 34.8 � 13.8 a (ab)

Fig. 6 Spearman’s rank correlation between cellulose and the

NSC levels and ratios in the mapping family in 2013. Signifi-

cant positive correlations are coloured red, and significant neg-

ative correlations are coloured blue (P =≤ 0.05). Nonsignificant

correlations are coloured grey.

© 2017 The Authors GCB Bioenergy Published by John Wiley & Sons Ltd, doi: 10.1111/gcbb.12418

12 A. L. MADDISON et al.



(Ishimaru et al., 2004; Venu et al., 2014), whilst plants

with a maize SPS transgene grew taller (Ishimaru et al.,

2004).

Sucrose-metabolizing enzymes are candidates for

explaining the correlation between hexose and bio-

mass. The overexpression of SuSy and UDP-glucose

pyrophosphorylase (either as individual or as double

mutants) in transgenic tobacco resulted in an increase

in the abundance of hexoses, particularly fructose, a

decrease in the glucose/fructose ratio and a concurrent

increase in plant biomass (Coleman et al., 2006). Poova-

iah et al. (Poovaiah et al., 2015) overexpressed a SuSy

transgene in the biofuel feedstock switchgrass (Panicum

virgatum), achieving increased height and biomass in

some transformants. In Populus alba x grandidentata (hy-

brid poplar), overexpression of SuSy caused increases

in soluble carbohydrates and cellulose, and a decrease

in cell wall-derived arabinose (Coleman et al., 2009). A

plasma membrane-bound isoform of SuSy is thought

to transfer UDP-glucose units directly to the extending

glucan chains of cellulose (McFarlane et al., 2014), pro-

viding a link between the metabolism of the nonstruc-

tural pool and the formation of structural biomass.

Some of these results therefore complement our find-

ings using natural variation, in that the highest yield-

ing plants had high hexoses, a low glucose/fructose

ratio, higher cellulose and lower arabinose. Therefore,

the abundance or activity of enzymes involved in

sucrose biosynthesis or metabolism are candidates for

the causal basis of our observations on hexoses and

biomass.

No negative correlation between cellulose and starch

was observed, which did not support our starting

hypothesis that a competitive relationship exists. How-

ever, significant, negative correlations were observed

between cellulose and the ratios of glucose/fructose

and sucrose/fructose and a positive relationship

between fructose and cellulose. This suggests that when

the proportion of fructose is higher (relative to glucose

or sucrose), cellulose is also in greater abundance. Cel-

lulose biosynthesis is dependent on sucrose metabolism

(Amor et al., 1995; Coleman et al., 2009; Baroja-Fernan-

dez et al., 2012), and the positive correlation between an

increased proportion of fructose and cellulose could be

a demonstration of this; as UDP-glucose units, cleaved

from sucrose through the action of SuSy, are trans-

ported across the plasma membrane to the extending

cellulose chain, an increasing pool of fructose is left

behind. Our findings from the 13C-labelling experiment

support this, as the differences in partitioning were

observed between the fast- and slow-growing genotype.

Therefore, a more rapid rate of growth depends upon a

greater accumulation of cellulose, via sucrose metabo-

lism, rather than transient storage as starch.

The strength of the significant correlations found in

our study is within the same range as those reported

in pairwise analyses of molecular markers and traits.

Correlations between short nucleotide polymorphisms

(SNPs) and starch quality showed significant correla-

tions (R2) of 0.17–0.67 in rice. In a human asthma,

study correlations between SNPs and lung physiology

ranged from (R2) ~0.3 to 0.9 (Kim & Xing, 2009;

Kharabian-Masouleh et al., 2012). This demonstrates

that the strength of the correlation between the

starch/fructose ratio (for example) of R = 0.6–0.8 is

within a range comparable to molecular markers.

Height is the trait that best correlates with yield

(R2 = ~0.55; Robson et al., 2013). Using modelling to

combine the strongest biomarkers, the predicted and

actual yields of the mapping family in 2014 produced

correlations of R = 0.67 (R2 = 0.44), which is a weaker

predictor than height (Robson et al., 2013). However,

whilst metabolic profiling was not a stronger predictor

of final yield than height alone in Miscanthus, detailed

knowledge of the relations of metabolism and biomass

accumulation can be expected to yield powerful novel

tools to accelerate and enhance energy plant breeding

programmes (Robson et al., 2013). For example, in Mis-

canthus, the juvenile phase severely hinders early phe-

notypic selection (Robson et al., 2013), but if the

metabolic profile could predict mature height in juve-

nile plants, metabolic biomarkers could then be used

in a similar way to molecular markers. To address this

hypothesis, the next stage of our experimentation is to

screen first-year seedlings and 1-year-old and 2-year-

old plants to discover at what stage in development

the glycome can be used as a biomarker for yield in

mature plants. As Miscanthus takes 4 years from sow-

ing seed to reach maturity, if the markers could only

be used in the 2nd year of growth, this could reduce

screening time by 50%. An alternative scenario in

which yield prediction through biomarkers could be

highly beneficial is in species such as trees where

physical phenotyping is particularly challenging, or in

screening for abiotic or biotic stress tolerances. It is

also possible that metabolic and molecular markers

could be used synergistically in breeding programmes

to improve selection.

A concern about the use of metabolic biomarkers is

their reliability, given that metabolites are dynamic and

their absolute abundances will vary. However, a num-

ber of studies have demonstrated that the abundance of

NSC and the ratios between different pools is under

genetic control (Calenge et al., 2006; Purdy et al., 2015).

Furthermore, it is generally accepted (and experimen-

tally demonstrated, e.g. Table 3) that a high-yielding

genotype will consistently produce high yields com-

pared to a low-yielding type, even though climatic
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conditions over the course of a whole growing season

may vary tremendously from year to year. As yield is

implicitly dependent upon the NSC pool to form the

structural biomass, it is logical that the NSC composi-

tion must also be genetically controlled and similar

enough between years and within genotypes to produce

consistent results in yield and quality traits. Many of

the metabolites measured, such as glucose and most cell

wall components, were found to be unreliable for pre-

dicting yield when used alone, as they only produced

significant relationships with biomass in one or other of

the field sites. In contrast, fructose, starch and several of

the ratios were found to be consistent indicators of bio-

mass traits in both sets of plants and in both years of

study. Therefore, as with molecular markers, it is

important to choose robust markers to produce reliable

results.

The model generated for the mapping family was

based on data from plants in their 3rd and 4th complete

growing season in the field. Whilst this is considered a

mature crop, it has been shown that yields continue to

increase at least until the 5th year of growth (Robson

et al., 2013). Therefore, the current model may underes-

timate yields in subsequent years and have to be repa-

rameterized once the annual increase in yields has

plateaued.

In conclusion, our study has shown that fructose and

starch positively and negatively correlate with yield

traits, respectively. The glycome in the summer growing

season can be used as a biomarker to predict future har-

vest yields in the following year. Plants that partitioned

a greater proportion of captured carbon into cellulose

rather than starch attained greater biomass. Metabolic

biomarker identification may also be an approach that

could be adapted for other agronomic traits such as

stress tolerance or disease resistance.
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Supporting Information

Additional Supporting Information may be found online in the supporting information tab for this article:

Table S1. Biomass traits in the mixed population (a) and mapping family (b). The population consisted of M. sinensis (Sin),
Hybrids (Hyb) and M. sacchariflorus (Sac) and the mapping family were all hybrids (M. sacchariflorus 9 M. sinensis) except a single
M. sinensis genotype, Goliath. Statistics show differences between genotypes from ANOVA (P =≤ 0.05). N = 3, �SE.

Table S2. NSC composition in the mixed population (a) and mapping family (b). All carbohydrates are in mg g�1 DW. Statistics
show differences between all genotypes from ANOVA (P =≤ 0.05). N = 3, �SE.

Table S3. Cell wall composition in a mixed population (a) and mapping family (b). All carbohydrates are in mg g�1 DW. Statistics
show differences between all genotypes from ANOVA (P =≤ 0.05). N = 3, �SE.

Table S4. Block effects across the two trials. For the mixed population N = 18 and for the mapping family N = 19. Statistics (F Pr)
show the results of a one-way ANOVA with block as a treatment factor (Significant differences = ≤ 0.05).

Table S5. Carbohydrate predictors of biomass traits selected by CfsSubsetEval (in the Weka software) for each of the machine
learning models in Table 2.

Table S6. NSC composition in the complete mapping family in 2014.
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