Aberystwyth University
Department of Sport and Exercise Science

The Role of Vitamin D and Physical Activity in Glycaemic Homeostasis

By
Ffion Curtis
December 2013

A thesis submitted to the Department of Sport and Exercise Science in partial fulfilment of the requirements for the degree of Doctor of Philosophy
DECLARATION

This work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree.

Signed ... (candidate)

Date ..

STATEMENT 1

This thesis is the result of my own investigations, except where otherwise stated. Where *correction services* have been used, the extent and nature of the correction is clearly marked in a footnote(s).

Other sources are acknowledged by footnotes giving explicit references. A bibliography is appended.

Signed ... (candidate)

Date ..

[*this refers to the extent to which the text has been corrected by others]

STATEMENT 2

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations.

Signed ... (candidate)

Date ..
Acknowledgments

I would like to thank all those who contributed towards the completion of this thesis….

My PhD supervisors; Dr Rhys Thatcher, Dr Glen Davison and Dr Sam Rice all of whom brought something special and unique to the project. A special thank you to Mr Jones and Dan the Man who ensured my time in SES was so enjoyable – even on the “just not today days”. Members of the local community, the Diabetes Healthcare team at Bronglais Hospital and the local Diabetes UK support group, who all contributed massively when recruiting for the studies. I would also like to thank all those who helped with project development, data collection and sample analyses; this includes colleagues within the department, the Diabetes Research Network Wales, Merthyr Tydfil biochemistry laboratories, and Healthspan who donated the vitamin D tablets.

Thank you to Toni and Will for all their continued support and patience, and to my dearest friend Abi, who alongside Toni, looked after Will for the last 4 years! Diolch

And last but not least I would like to thank Chris, who during those final days inspired me to reach out for perfect…

This PhD Project was funded through a Knowledge Economy Skills Scholarship in collaboration with Hywel Dda University Health Board.
Contents

Abstract...1

Chapter 1: Literature Review...2
 1.1 Context..2
 1.2 Vitamin D...4
 1.3 Type 2 Diabetes (Pathogenesis, Diagnosis and Treatment)...15
 1.4 Vitamin D and Glucose Control...20
 1.5 Physical Activity and Glucose Control...46
 1.6 Physical Activity, Vitamin D and Glucose Control..49
 1.7 Thesis aims and objectives...52
 1.8 Rationale for Methods..54

Chapter 2: General Methods and Recruitment..65
 2.1 General Methods...65
 2.2 Ethics..65
 2.3 Procedures...66
 2.4 Blood sampling...66
 2.5 Analyses..68
 2.6 Recruitment Process...73
 2.7 Development of analytical methods...77

Chapter 3: Study 1..79
 3.1 Introduction...79
 3.2 Methods..81
 3.3 Results...84
 3.4 Discussion...92

Chapter 4: Study 2..97
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>97</td>
</tr>
<tr>
<td>4.2 Methods</td>
<td>99</td>
</tr>
<tr>
<td>4.3 Results</td>
<td>101</td>
</tr>
<tr>
<td>4.4 Discussion</td>
<td>116</td>
</tr>
<tr>
<td>Chapter 5: Study 3</td>
<td>122</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>122</td>
</tr>
<tr>
<td>5.2 Methods</td>
<td>125</td>
</tr>
<tr>
<td>5.3 Results</td>
<td>134</td>
</tr>
<tr>
<td>5.4 Discussion</td>
<td>155</td>
</tr>
<tr>
<td>Chapter 6: Concluding Remarks</td>
<td>159</td>
</tr>
<tr>
<td>6.1 Concluding Remarks</td>
<td>158</td>
</tr>
<tr>
<td>6.2 In Conclusion</td>
<td>169</td>
</tr>
<tr>
<td>References</td>
<td>173</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1.1: Metabolic pathway of vitamin D (Zitterman, 2003)…………………………………5

Figure 1.2: Pathophysiology of hyperglycaemia and increased circulating fatty acids in type 2 diabetes (Stumvoll et al., 2010)………………………………………………………17

Figure 1.3: Hypothesized mechanisms underlying the interrelationships among vitamin D deficiency, insulin homeostasis and T2D (Song & Manson, 2010)………21

Figure 1.4: Seasonal fluctuations in HbA1c in 285,705 US diabetic veterans over 2 years (Tseng et al., 2005)………………………………………………………………………………29

Figure 1.5: Seasonal variation in vitamin D over 1.5 years in the 1958 British cohort (males n = 3725, females n = 3712) (Hyppönen & Power, 2007)……………………………29

Figure 1.6: Individual changes in C-peptide and specific insulin (30 minute OGTT concentrations) pre and post vitamin D supplementation in 22 participants with no diabetes but considered high risk for diabetes (Boucher et al., 1995)…………….…45

Figure 2.1: Geographical locations of participants recruited for Studies 1 and 2……76

Figure 3.1: Flow diagram of participant recruitment and retention…………………………81

Figure 3.2: 25(OH)D concentrations in the 3 groups; group 1: FPG ≤ 6 mmol/l, group 2: FPG ≥ 6.1 – 6.9 mmol/l and group 3: ≥ 7 mmol/l…………………………………………………85

Figure 3.3: Difference between groups (FPG ≤ 6mmol/l vs ≥ 6.1mmol/l) in 25(OH)D concentrations……86

Figure 3.4: The relationship between 25(OH)D and FPG (r = -.224, n = 101, p = 0.02)………88

Figure 3.5: The relationship between 25(OH)D and FPI (r = -.242, n = 98, p = 0.01)………88

Figure 3.6: The relationship between 25(OH)D and insulin sensitivity, (r = .256 , n = 93, p = 0.01)………………………………………………………………………………………………………89

Figure 3.7: The relationship between 25(OH)D and HOMA (r = -.233, n = 93, p = 0.02)………89

Figure 4.1: 25(OH)D concentration at the different time points: 0 months (winter), 6 months (summer) and 12 months (winter)………………………………………………..103

Figure 4.2: Fasting plasma insulin concentration at the different time points: 0 months (winter), 6 months (summer) and 12 months (winter)……………………………………104
Figure 4.3: β-cell function at the different time points: 0 months (winter), 6 months (summer) and 12 months (winter)………………………………………………………………………………105

Figure 4.4: 25(OH)D concentration at the different time points in normal and high FPG groups (FPG ≤ 6 mmol/l vs ≥ 6.1 mmol/l). ...107

Figure 4.5: 25(OH)D concentration (mean ± SD) in groups (< 48 mmol/mol vs ≥ 48 mmol/mol) at the three data collection points ...109

Figure 4.6: The relationship between 25(OH)D at 0 months (winter) and 25(OH)D at 12 months (winter) ..110

Figure 4.7: The relationship between 25(OH)D at 0 months (winter) and HbA1c at 12 months (winter) ..110

Figure 4.8: The relationship between 25(OH)D at 0 months (winter) and Fasting plasma insulin at 12 months (winter) ...111

Figure 4.9: The relationship between 25(OH)D and FPI at 6 months (summer)…..114

Figure 4.10: The relationship between 25(OH)D and HOMA-IR at 6 months (summer) ..114

Figure 4.11: The relationship between 25(OH)D and insulin sensitivity at 6 months (summer) ..115

Figure 5.1: Participant recruitment process including details of study withdrawal rates ..126

Figure 5.2: Exercise test schedule for all participants and exercise intervention protocol for the exercise groups (Ex+VitD and Ex+Pla) ..129

Figure 5.3: calculation for HR reserve ..131

Figure 5.4: Change values from pre to post intervention for fasting plasma glucose ..146

Figure 5.5: Change values from pre to post intervention for HbA1c.147

Figure 5.6: Change values from pre to post intervention for fasting plasma insulin ..147

Figure 5.7: Change values from pre to post intervention for OGTT glucose at 0 minutes ..148

Figure 5.8: Change values from pre to post intervention for OGTT glucose at 20 minutes ..149
Figure 5.9: Change values from pre to post intervention for OGTT glucose at 40 minutes ... 149

Figure 5.10: Change values from pre to post intervention for OGTT glucose at 60 minutes ... 150

Figure 5.11: Change values from pre to post intervention for OGTT glucose at 80 minutes ... 150

Figure 5.12: Change values from pre to post intervention for OGTT glucose at 100 minutes ... 151

Figure 5.13: Change values from pre to post intervention for OGTT glucose at 120 minutes ... 151

Figure 5.14: Change values from pre to post intervention for total area under the curve ... 152

Figure 5.15: Change values from pre to post intervention for trunk fat (DXA) ... 153

Figure 5.16: Change values from pre to post intervention for total fat ... 153

Figure 5.17: Change values from pre to post intervention for lean mass ... 154

Figure 7.1: Significant results reported in Studies 1 and 2 ... 160

Figure 7.2: Proposed mechanistic support from studies 1 & 2. Original diagram Song, & Manson (2010) ... 161

Figure 7.3: Seasonal and geographical variation in the prevalence of hypovitaminosis in the UK (25(OH)D < 40 nmol/l) ... 164
List of Tables

Table 1.1: Serum 25-Hydroxyvitamin D [25(OH)D] Concentrations and Health…..8
Table 1.2: Recommended cut-off values to define vitamin D sufficiency…………9
Table 1.3: Serum 25-hydroxyvitamin D concentrations, status and management …11
Table 1.4: Summary of research studies that have investigated the effect of vitamin D on glycaemia……………………………………………………………………………41
Table 1.5: HbA1c in old units (%) and new (mmol/mol)60
Table 2.1: D-10 HbA1c analyser inter-assay precision:………..……………….69
Table 2.2: HbA1c analyser intra-assay precision………………………………69
Table 2.3: Insulin inter-assay precision:…………………………………………70
Table 2.4: Glucose inter-assay precision:……………………………………….71
Table 2.5: 25(OH)D inter-assay precision:……………………………………...72
Table 2.6: 25(OH)D intra-assay precision:……………………………………...73
Table 2.7: Distance from participants home addresses to Aberystwyth University. .76
Table 3.1: participant characteristics (mean ± SD)..................................82
Table 3.2: Descriptive data for non-normally distributed statistics..............84
Table 3.3: Mean rank sum of 25(OH)D concentrations shown per FPG quartile…..87
Table 3.4: Non-significant relationships when exploring relationship between 25(OH)D and other variables...90
Table 3.5: Medication list for participants with T2D.....................................90
Table 4.1: Participant Characteristics...99
Table 4.2: Values for 25(OH)D concentration and measures of glycaemia in participants at all three time points...101
Table 4.3: Non significant results from Friedman tests for complete data sets at the three different time points. ..106
Table 4.4: Non-significant relationships between 25(OH)D at 0 months and other variables at 12 months

Table 4.5: Results for non-significant statistics when exploring the relationship between change in 25(OH)D and changes in all other variables over 6 months (winter to summer)

Table 4.6: Non-significant results for relationships between changes in 25(OH)D and changes in all other measures (0 – 12 months)

Table 4.7: Non-significant relationships when exploring relationship between 25(OH)D and other variables at 6 months (summer)

Table 5.1: Pre and post intervention values for measures of glycaemia: FPG, HbA1c & FPI (mean±SD)

Table 5.2: Pre and post intervention values for measures of glycaemia (OGTT)

Table 5.3: Exercise test HR for participants in the four groups (mean ± SD)

Table 5.4: RPE values for participants in the 4 experimental groups

Table 5.5: Pre and Post values for body composition

Table 5.6: 25(OH)D concentrations in the vitamin D and placebo groups

Table 5.7: Adherence to exercise sessions over the 15-week cycling intervention