This paper first evaluates the relative importance of the soil–plant–animal and soil–animal pathways of Zn, Cu and (especially) Pb investigated over a 15-month study period at 12 floodplain sites located within and downstream of the mineralised and historic mining area of mid-Wales, and secondly considers the implications of a sequential extraction procedure (SEP) undertaken on soils of varying particle size sampled from the study locations. Generally, very good agreement was found between the chemical partitioning of the three metals for each of the physical soil fractions subjected to the SEP. The availability of Pb to pasture vegetation, especially at the contaminated sites, is indicated with its associations with the more soluble (i.e. exchangeable and Fe/Mn oxide) soil phases, yet soil and/or plant barriers effectively restrict above-ground herbage concentrations of this metal. Consequently, with sheep ingesting soil at rates varying according to season from 0.1% to 44% or more of dry matter intake, the soil–animal pathway accounts for the majority of Pb consumption through most of the year, and at moderately and highly contaminated sites significant quantities of relatively soluble soil–Pb can be ingested at rates exceeding safety threshold limits