The effects of PPO activity on the proteome of ingested red clover and implications for improving the nutrition of grazing cattle

Show download statistics
View graph of relations
Citation formats

Abstract

Increasing the rumen-stable protein content of feed would lead to improved nitrogen utilisation in cattle, and less nitrogenous waste. Red clover (Trifolium pratense L.) is a high protein ruminant feed containing high polyphenol oxidase (PPO) activity. PPO mediated protein-quinone binding has been linked to protecting plant proteins from proteolysis. To explore the mechanism underlying the effect of PPO on protein protection in fresh forage feeds, proteomic components of feed down-boli produced from wild-type red clover and a low PPO mutant, at point of ingestion and after 4 h in vitro incubation with rumen inoculum were analysed. Significant differences in proteomic profiles between wild-type and mutant red clover were determined after 4 h incubation, with over 50% less spots in mutant than wild-type proteomes, indicating decreased proteolysis in the latter. Protein identifications revealed preferentially retained proteins localised within the chloroplast, suggesting that PPO mediated protection in the wild-type operates due to the proximity of target proteins to the enzyme and substrates, either diffusing into this compartment from the vacuole or are present in the chloroplast. This increased understanding of protein targets of PPO indicates that wider exploitation of the trait could contribute to increased protein use efficiency in grazing cattle.

Keywords

  • PPO, polyphenol oxidase, red clover, protein complexing, rumen, chloroplast