The 2016 UK Space Agency Mars Utah Rover Field Investigation (MURFI)

Standard

The 2016 UK Space Agency Mars Utah Rover Field Investigation (MURFI). / Balme, M. R.; Curtis-Rouse, M. C.; Banham, S. et al.

In: Planetary and Space Science, Vol. 165, 01.01.2019, p. 31-56.

Research output: Contribution to journalArticlepeer-review

Harvard

Balme, MR, Curtis-Rouse, MC, Banham, S, Barnes, D, Barnes, R, Bauer, A, Bedford, CC, Bridges, JC, Butcher, FEG, Caballo, P, Caldwell, A, Coates, AJ, Cousins, C, Davis, JM, Dequaire, J, Edwards, P, Fawdon, P, Furuya, K, Gadd, M, Get, P, Griffiths, A, Grindrod, PM, Gunn, M, Gupta, S, Hansen, R, Harris, JK, Hicks, LJ, Holt, J, Huber, B, Huntly, C, Hutchinson, I, Jackson, L, Kay, S, Kyberd, S, Lerman, HN, McHugh, M, McMahon, WJ, Muller, J-P, Ortner, T, Osinski, G, Paar, G, Preston, LJ, Schwenzer, SP, Stabbins, R, Tao, Y, Traxler, C, Turner, S, Tyler, L, Venn, S, Walker, H, Wilcox, T, Wright, J & Yeomans, B 2019, 'The 2016 UK Space Agency Mars Utah Rover Field Investigation (MURFI)', Planetary and Space Science, vol. 165, pp. 31-56. https://doi.org/10.1016/j.pss.2018.12.003

APA

Balme, M. R., Curtis-Rouse, M. C., Banham, S., Barnes, D., Barnes, R., Bauer, A., Bedford, C. C., Bridges, J. C., Butcher, F. E. G., Caballo, P., Caldwell, A., Coates, A. J., Cousins, C., Davis, J. M., Dequaire, J., Edwards, P., Fawdon, P., Furuya, K., Gadd, M., ... Yeomans, B. (2019). The 2016 UK Space Agency Mars Utah Rover Field Investigation (MURFI). Planetary and Space Science, 165, 31-56. https://doi.org/10.1016/j.pss.2018.12.003

Vancouver

Balme MR, Curtis-Rouse MC, Banham S, Barnes D, Barnes R, Bauer A et al. The 2016 UK Space Agency Mars Utah Rover Field Investigation (MURFI). Planetary and Space Science. 2019 Jan 1;165:31-56. Epub 2018 Dec 7. doi: 10.1016/j.pss.2018.12.003

Author

Balme, M. R. ; Curtis-Rouse, M. C. ; Banham, S. et al. / The 2016 UK Space Agency Mars Utah Rover Field Investigation (MURFI). In: Planetary and Space Science. 2019 ; Vol. 165. pp. 31-56.

Bibtex - Download

@article{3813ba7b3ab6404fb2dda5d29824feeb,
title = "The 2016 UK Space Agency Mars Utah Rover Field Investigation (MURFI)",
abstract = "The 2016 Mars Utah Rover Field Investigation (MURFI) was a Mars rover field trial run by the UK Space Agency in association with the Canadian Space Agency's 2015/2016 Mars Sample Return Analogue Deployment mission. MURFI had over 50 participants from 15 different institutions around the UK and abroad. The objectives of MURFI were to develop experience and leadership within the UK in running future rover field trials; to prepare the UK planetary community for involvement in the European Space Agency/Roscosmos ExoMars 2020 rover mission; and to assess how ExoMars operations may differ from previous rover missions. Hence, the wider MURFI trial included a ten-day (or ten-{\textquoteleft}sol{\textquoteright}) ExoMars rover-like simulation. This comprised an operations team and control centre in the UK, and a rover platform in Utah, equipped with instruments to emulate the ExoMars rovers remote sensing and analytical suite. The operations team operated in {\textquoteleft}blind mode{\textquoteright}, where the only available data came from the rover instruments, and daily tactical planning was performed under strict time constraints to simulate real communications windows. The designated science goal of the MURFI ExoMars rover-like simulation was to locate in-situ bedrock, at a site suitable for sub-surface core-sampling, in order to detect signs of ancient life. Prior to “landing”, the only information available to the operations team were Mars-equivalent satellite remote sensing data, which were used for both geologic and hazard (e.g., slopes, loose soil) characterisation of the area. During each sol of the mission, the operations team sent driving instructions and imaging/analysis targeting commands, which were then enacted by the field team and rover-controllers in Utah. During the ten-sol mission, the rover drove over 100 m and obtained hundreds of images and supporting observations, allowing the operations team to build up geologic hypotheses for the local area and select possible drilling locations. On sol 9, the team obtained a subsurface core sample that was then analyzed by the Raman spectrometer. Following the conclusion of the ExoMars-like component of MURFI, the operations and field team came together to evaluate the successes and failures of the mission, and discuss lessons learnt for ExoMars rover and future field trials. Key outcomes relevant to ExoMars rover included a key recognition of the importance of field trials for (i) understanding how to operate the ExoMars rover instruments as a suite, (ii) building an operations planning team that can work well together under strict time-limited pressure, (iii) developing new processes and workflows relevant to the ExoMars rover, (iv) understanding the limits and benefits of satellite mapping and (v) practicing efficient geological interpretation of outcrops and landscapes from rover-based data, by comparing the outcomes of the simulated mission with post-trial, in-situ field observations. In addition, MURFI was perceived by all who participated as a vital learning experience, especially for early and mid-career members of the team, and also demonstrated the UK capability of implementing a large rover field trial. The lessons learnt from MURFI are therefore relevant both to ExoMars rover, and to future rover field trials.",
author = "Balme, {M. R.} and Curtis-Rouse, {M. C.} and S. Banham and D. Barnes and R. Barnes and A. Bauer and Bedford, {C. C.} and Bridges, {J. C.} and Butcher, {F. E. G.} and P. Caballo and A. Caldwell and Coates, {A. J.} and C. Cousins and Davis, {J. M.} and J. Dequaire and P. Edwards and P. Fawdon and K. Furuya and M. Gadd and P. Get and A. Griffiths and Grindrod, {P. M.} and Matthew Gunn and S. Gupta and R. Hansen and Harris, {J. K.} and Hicks, {L. J.} and J. Holt and B. Huber and Carys Huntly and I. Hutchinson and L. Jackson and S. Kay and S. Kyberd and Lerman, {H. N.} and M. McHugh and McMahon, {W. J.} and Muller, {J. -P.} and T. Ortner and G. Osinski and G. Paar and Preston, {L. J.} and Schwenzer, {S. P.} and R. Stabbins and Y. Tao and C. Traxler and S. Turner and Laurence Tyler and S. Venn and H. Walker and T. Wilcox and J. Wright and B. Yeomans",
year = "2019",
month = jan,
day = "1",
doi = "10.1016/j.pss.2018.12.003",
language = "English",
volume = "165",
pages = "31--56",
journal = "Planetary and Space Science",
issn = "0032-0633",
publisher = "Elsevier",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - The 2016 UK Space Agency Mars Utah Rover Field Investigation (MURFI)

AU - Balme, M. R.

AU - Curtis-Rouse, M. C.

AU - Banham, S.

AU - Barnes, D.

AU - Barnes, R.

AU - Bauer, A.

AU - Bedford, C. C.

AU - Bridges, J. C.

AU - Butcher, F. E. G.

AU - Caballo, P.

AU - Caldwell, A.

AU - Coates, A. J.

AU - Cousins, C.

AU - Davis, J. M.

AU - Dequaire, J.

AU - Edwards, P.

AU - Fawdon, P.

AU - Furuya, K.

AU - Gadd, M.

AU - Get, P.

AU - Griffiths, A.

AU - Grindrod, P. M.

AU - Gunn, Matthew

AU - Gupta, S.

AU - Hansen, R.

AU - Harris, J. K.

AU - Hicks, L. J.

AU - Holt, J.

AU - Huber, B.

AU - Huntly, Carys

AU - Hutchinson, I.

AU - Jackson, L.

AU - Kay, S.

AU - Kyberd, S.

AU - Lerman, H. N.

AU - McHugh, M.

AU - McMahon, W. J.

AU - Muller, J. -P.

AU - Ortner, T.

AU - Osinski, G.

AU - Paar, G.

AU - Preston, L. J.

AU - Schwenzer, S. P.

AU - Stabbins, R.

AU - Tao, Y.

AU - Traxler, C.

AU - Turner, S.

AU - Tyler, Laurence

AU - Venn, S.

AU - Walker, H.

AU - Wilcox, T.

AU - Wright, J.

AU - Yeomans, B.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - The 2016 Mars Utah Rover Field Investigation (MURFI) was a Mars rover field trial run by the UK Space Agency in association with the Canadian Space Agency's 2015/2016 Mars Sample Return Analogue Deployment mission. MURFI had over 50 participants from 15 different institutions around the UK and abroad. The objectives of MURFI were to develop experience and leadership within the UK in running future rover field trials; to prepare the UK planetary community for involvement in the European Space Agency/Roscosmos ExoMars 2020 rover mission; and to assess how ExoMars operations may differ from previous rover missions. Hence, the wider MURFI trial included a ten-day (or ten-‘sol’) ExoMars rover-like simulation. This comprised an operations team and control centre in the UK, and a rover platform in Utah, equipped with instruments to emulate the ExoMars rovers remote sensing and analytical suite. The operations team operated in ‘blind mode’, where the only available data came from the rover instruments, and daily tactical planning was performed under strict time constraints to simulate real communications windows. The designated science goal of the MURFI ExoMars rover-like simulation was to locate in-situ bedrock, at a site suitable for sub-surface core-sampling, in order to detect signs of ancient life. Prior to “landing”, the only information available to the operations team were Mars-equivalent satellite remote sensing data, which were used for both geologic and hazard (e.g., slopes, loose soil) characterisation of the area. During each sol of the mission, the operations team sent driving instructions and imaging/analysis targeting commands, which were then enacted by the field team and rover-controllers in Utah. During the ten-sol mission, the rover drove over 100 m and obtained hundreds of images and supporting observations, allowing the operations team to build up geologic hypotheses for the local area and select possible drilling locations. On sol 9, the team obtained a subsurface core sample that was then analyzed by the Raman spectrometer. Following the conclusion of the ExoMars-like component of MURFI, the operations and field team came together to evaluate the successes and failures of the mission, and discuss lessons learnt for ExoMars rover and future field trials. Key outcomes relevant to ExoMars rover included a key recognition of the importance of field trials for (i) understanding how to operate the ExoMars rover instruments as a suite, (ii) building an operations planning team that can work well together under strict time-limited pressure, (iii) developing new processes and workflows relevant to the ExoMars rover, (iv) understanding the limits and benefits of satellite mapping and (v) practicing efficient geological interpretation of outcrops and landscapes from rover-based data, by comparing the outcomes of the simulated mission with post-trial, in-situ field observations. In addition, MURFI was perceived by all who participated as a vital learning experience, especially for early and mid-career members of the team, and also demonstrated the UK capability of implementing a large rover field trial. The lessons learnt from MURFI are therefore relevant both to ExoMars rover, and to future rover field trials.

AB - The 2016 Mars Utah Rover Field Investigation (MURFI) was a Mars rover field trial run by the UK Space Agency in association with the Canadian Space Agency's 2015/2016 Mars Sample Return Analogue Deployment mission. MURFI had over 50 participants from 15 different institutions around the UK and abroad. The objectives of MURFI were to develop experience and leadership within the UK in running future rover field trials; to prepare the UK planetary community for involvement in the European Space Agency/Roscosmos ExoMars 2020 rover mission; and to assess how ExoMars operations may differ from previous rover missions. Hence, the wider MURFI trial included a ten-day (or ten-‘sol’) ExoMars rover-like simulation. This comprised an operations team and control centre in the UK, and a rover platform in Utah, equipped with instruments to emulate the ExoMars rovers remote sensing and analytical suite. The operations team operated in ‘blind mode’, where the only available data came from the rover instruments, and daily tactical planning was performed under strict time constraints to simulate real communications windows. The designated science goal of the MURFI ExoMars rover-like simulation was to locate in-situ bedrock, at a site suitable for sub-surface core-sampling, in order to detect signs of ancient life. Prior to “landing”, the only information available to the operations team were Mars-equivalent satellite remote sensing data, which were used for both geologic and hazard (e.g., slopes, loose soil) characterisation of the area. During each sol of the mission, the operations team sent driving instructions and imaging/analysis targeting commands, which were then enacted by the field team and rover-controllers in Utah. During the ten-sol mission, the rover drove over 100 m and obtained hundreds of images and supporting observations, allowing the operations team to build up geologic hypotheses for the local area and select possible drilling locations. On sol 9, the team obtained a subsurface core sample that was then analyzed by the Raman spectrometer. Following the conclusion of the ExoMars-like component of MURFI, the operations and field team came together to evaluate the successes and failures of the mission, and discuss lessons learnt for ExoMars rover and future field trials. Key outcomes relevant to ExoMars rover included a key recognition of the importance of field trials for (i) understanding how to operate the ExoMars rover instruments as a suite, (ii) building an operations planning team that can work well together under strict time-limited pressure, (iii) developing new processes and workflows relevant to the ExoMars rover, (iv) understanding the limits and benefits of satellite mapping and (v) practicing efficient geological interpretation of outcrops and landscapes from rover-based data, by comparing the outcomes of the simulated mission with post-trial, in-situ field observations. In addition, MURFI was perceived by all who participated as a vital learning experience, especially for early and mid-career members of the team, and also demonstrated the UK capability of implementing a large rover field trial. The lessons learnt from MURFI are therefore relevant both to ExoMars rover, and to future rover field trials.

U2 - 10.1016/j.pss.2018.12.003

DO - 10.1016/j.pss.2018.12.003

M3 - Article

VL - 165

SP - 31

EP - 56

JO - Planetary and Space Science

JF - Planetary and Space Science

SN - 0032-0633

ER -

Show download statistics
View graph of relations
Citation formats