Potential Activity of Subglacial Microbiota Transported to Anoxic River Delta Sediments

Authors Organisations
  • Karen Cameron(Author)
  • Marek Stibal(Author)
    University of Copenhagen
  • Nikoline S. Olsen(Author)
    Geological Survey of Denmark and Greenland
  • Andreas B. Mikkelsen(Author)
    University of Copenhagen
  • Bo Elberling(Author)
    University of Copenhagen
  • Carsten Jacobsen(Author)
    Geological Survey of Denmark and Greenland
    University of Copenhagen
    Aarhus University
Type Article
Original languageEnglish
Pages (from-to)6-9
Number of pages4
JournalMicrobial Ecology
Volume74
Issue number1
Early online date09 Jan 2017
DOI
Publication statusPublished - 01 Jul 2017
Links
Show download statistics
View graph of relations
Citation formats

Abstract

The Watson River drains a portion of the SW Greenland ice sheet, transporting microbial communities from subglacial environments to a delta at the head of Søndre Strømfjord. This study investigates the potential activity and community shifts of glacial microbiota deposited and buried under layers of sediments within the river delta. A long-term (12-month) incubation experiment was established using Watson River delta sediment under anaerobic conditions, with and without CO2/H2 enrichment. Within CO2/H2-amended incubations, sulphate depletion and a shift in the microbial community to a 52% predominance of Desulfosporosinus meridiei by day 371 provides evidence for sulphate reduction. We found evidence of methanogenesis in CO2/H2-amended incubations within the first 5 months, with production rates of ~4 pmol g−1 d−1, which was likely performed by methanogenic Methanomicrobiales- and Methanosarcinales-related organisms. Later, a reduction in methane was observed to be paired with the depletion of sulphate, and we hypothesise that sulphate reduction out competed hydrogenotrophic methanogenesis. The structure and diversity of the original CO2/H2-amended incubation communities changed dramatically with a major shift in predominant community members and a decline in diversity and cell abundance. These results highlight the need for further investigations into the fate of subglacial microbiota within downstream environments

Keywords

  • subglacial environment, river delta, sulphate reduction, methanogenesis, meltwater export, methane oxidation