Novel Miscanthus hybridsModelling productivity on marginal land in Europe using dynamics of canopy development determined by light interception

Authors Organisations
  • Anita Shepherd(Author)
    University of Aberdeen
  • Danny Awty‐Carroll(Author)
  • Jason Kam(Author)
  • Chris Ashman(Author)
  • Elena Magenau(Author)
    University of Hohenheim
  • Enrico Martani(Author)
    Università Cattolica del Sacro Cuore
  • Mislav Kontek(Author)
    University of Zagreb
  • Andrea Ferrarini(Author)
    Università Cattolica del Sacro Cuore
  • Stefano Amaducci(Author)
    Università Cattolica del Sacro Cuore
  • Chris Davey(Author)
  • Vanja Jurišić(Author)
    University of Zagreb
  • Gert‐Jan Petrie(Author)
    Miscanthusgroep Zwanenburg The Netherlands
  • Mohamad Al Hassan(Author)
    Wageningen University and Research Centre
  • Isabelle Lamy(Author)
    French National Institute for Agriculture Food, and Environment Paris France
  • Iris Lewandowski(Author)
    University of Hohenheim
  • Emmanuel de Maupeou(Author)
    Novabiom, Ferme de Vauventriers, Champhol France
  • Jon McCalmont(Author)
    University of Aberdeen
  • Luisa Trindade(Author)
    Wageningen University and Research Centre
  • Kasper van der Cruijsen(Author)
    Wageningen University and Research Centre
  • Philip van der Pluijm(Author)
    Novabiom, Ferme de Vauventriers, Champhol France
  • Rebecca Rowe(Author)
    NERC Centre for Ecology and Hydrology
  • Andrew Lovett(Author)
    University of East Anglia
  • Iain Donnison(Author)
  • Andreas Kiesel(Author)
    University of Hohenheim
  • John Clifton‐Brown(Author)
    University of Giessen
  • Astley Hastings(Author)
    University of Aberdeen
Type Article
Original languageEnglish
Pages (from-to)444-461
Number of pages18
JournalGCB Bioenergy
Early online date26 Jan 2023
Publication statusPublished - 13 Mar 2023
Permanent link
Show download statistics
View graph of relations
Citation formats


New biomass crop hybrids for bioeconomic expansion require yield projections to determine their potential for strategic land use planning in the face of global challenges. Our biomass growth simulation incorporates radiation interception and conversion efficiency. Models often use leaf area to predict interception which is demanding to determine accurately, so instead we use low-cost rapid light interception measurements using a simple laboratory-made line ceptometer and relate the dynamics of canopy closure to thermal time, and to measurements of biomass. We apply the model to project the European biomass potentials of new market-ready hybrids for 2020–2030. Field measurements are easier to collect, the calibration is seasonally dynamic and reduces influence of weather variation between field sites. The model obtained is conservative, being calibrated by crops of varying establishment and varying maturity on less productive (marginal) land. This results in conservative projections of miscanthus hybrids for 2020–2030 based on 10% land use conversion of the least (productive) grassland and arable for farm diversification, which show a European potential of 80.7–89.7 Mt year−1 biomass, with potential for 1.2–1.3 EJ year−1 energy and 36.3–40.3 Mt year−1 carbon capture, with seeded Miscanthus sacchariflorus × sinensis displaying highest yield potential. Simulated biomass projections must be viewed in light of the field measurements on less productive land with high soil water deficits. We are attempting to model the results from an ambitious and novel project combining new hybrids across Europe with agronomy which has not been perfected on less productive sites. Nevertheless, at the time of energy sourcing issues, seed-propagated miscanthus hybrids for the upscaled provision of bioenergy offer an alternative source of renewable energy. If European countries provide incentives for growers to invest, seeded hybrids can improve product availability and biomass yields over the current commercial miscanthus variety.


  • biomass, light absorption, light interception, miscanthus, sacchariflorus, seeded hybrid, simulation, sinensis