Generalized Mechanochemical Synthesis of Biomass-Derived Sustainable Carbons for High Performance CO2 Storage
Standard
Generalized Mechanochemical Synthesis of Biomass-Derived Sustainable Carbons for High Performance CO2 Storage. / Balahmar, Norah; Mitchell, Andrew C.; Mokaya, Robert.
In: Advanced Energy Materials, Vol. 5, No. 22, 1500867, 18.11.2015.Research output: Contribution to journal › Article › peer-review
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Generalized Mechanochemical Synthesis of Biomass-Derived Sustainable Carbons for High Performance CO2 Storage
AU - Balahmar, Norah
AU - Mitchell, Andrew C.
AU - Mokaya, Robert
PY - 2015/11/18
Y1 - 2015/11/18
N2 - Novel mechanochemical activation generates biomass‐derived carbons with unprecedented CO2 storage capacity due to higher porosity than analogous conventionally activated carbons but similar pore size. The mechanochemical activation, or so‐called compactivation, process involves compression, at 740 MPa, of mixtures of activating agent (KOH) and biomass hydrochar into pellets/disks prior to thermal activation. Despite the increase in surface area and pore volume of between 25% and 75% compared to conventionally activated carbons, virtually all of the porosity of the biomass (sawdust and lignin) derived mechanochemically activated carbons is from small micropores (5.8–6.5 Å), which results in a dramatic increase in CO2 storage capacity at 25 °C and low pressure (≤1 bar). The ambient temperature CO2 uptake for a carbon derived from sawdust at 600 °C and a KOH/carbon ratio of 2, rises from 1.3 to 2.0 mmol g−1 at 0.15 bar, and from 4.3 to 5.8 mmol g−1 at 1 bar, which is the highest ever reported for carbonaceous materials. The mechanochemically activated carbons have a superior CO2 working capacity for pressure swing adsorption and vacuum swing adsorption processes and, due to a high packing density, they exhibit excellent volumetric CO2 uptake that is higher than for any material reported to date.
AB - Novel mechanochemical activation generates biomass‐derived carbons with unprecedented CO2 storage capacity due to higher porosity than analogous conventionally activated carbons but similar pore size. The mechanochemical activation, or so‐called compactivation, process involves compression, at 740 MPa, of mixtures of activating agent (KOH) and biomass hydrochar into pellets/disks prior to thermal activation. Despite the increase in surface area and pore volume of between 25% and 75% compared to conventionally activated carbons, virtually all of the porosity of the biomass (sawdust and lignin) derived mechanochemically activated carbons is from small micropores (5.8–6.5 Å), which results in a dramatic increase in CO2 storage capacity at 25 °C and low pressure (≤1 bar). The ambient temperature CO2 uptake for a carbon derived from sawdust at 600 °C and a KOH/carbon ratio of 2, rises from 1.3 to 2.0 mmol g−1 at 0.15 bar, and from 4.3 to 5.8 mmol g−1 at 1 bar, which is the highest ever reported for carbonaceous materials. The mechanochemically activated carbons have a superior CO2 working capacity for pressure swing adsorption and vacuum swing adsorption processes and, due to a high packing density, they exhibit excellent volumetric CO2 uptake that is higher than for any material reported to date.
KW - activated carbon
KW - biomass CO2-storage
KW - mechanochemical activation
U2 - 10.1002/aenm.201500867
DO - 10.1002/aenm.201500867
M3 - Article
VL - 5
JO - Advanced Energy Materials
JF - Advanced Energy Materials
SN - 1614-6832
IS - 22
M1 - 1500867
ER -