Characterisation and optimisation of foams for varicose vein sclerotherapy

Authors Organisations
Type Article
Original languageEnglish
Pages (from-to)77-85
Number of pages9
JournalBiorheology
Volume57
Issue number2-4
DOI
Publication statusPublished - 26 Feb 2021
Links

Links

Permanent link
Show download statistics
View graph of relations
Citation formats

Abstract

BACKGROUND
Foam sclerotherapy is the process of using an aqueous foam to deliver surfactant to a varicose vein to damage vein wall endothelial cells, causing the vein to spasm, collapse and ultimately be re-absorbed into the body. Aqueous foams are complex fluids that can exhibit a significant yield stress and high effective viscosity which depend on their composition, particularly the bubble size and liquid fraction.
OBJECTIVE
To characterise the properties of foams used for varicose vein sclerotherapy and determine their effectiveness in the displacement of blood during sclerotherapy.
METHODS
Foams are modelled as yield stress fluids and their flow profiles in a model vein are predicted. Values of the yield stress are determined from experimental data for three different foams using the Sauter mean of the bubble size distribution. Along with the measured liquid fraction of the foams, this information is collected into a Bingham number which entirely characterises the process of sclerotherapy.
RESULTS
Polydispersity in bubble size has a strong effect on the yield stress of a foam and the Sauter mean of the size distribution better captures the effects of a few large bubbles. Reducing the polydispersity increases the yield stress, and a higher yield stress results in a larger plug region moving along the vein, which is more effective in displacing blood. The width of the plug region is proportional to the Bingham number, which also has a quadratic dependence on the liquid fraction of the foam. Assuming typical values for the rate of injection of a foam, we predict that for a vein of diameter 5 mm, the most effective foams have low liquid fraction, a narrow size distribution, and a Bingham number B ≈ 4.5.
CONCLUSIONS
The Sauter mean radius provides the most appropriate measure of the bubble size for sclerotherapy and the Bingham number then provides a simple measure of the efficacy of foam sclerotherapy in a vein of a given size, and explains the ability of different foams to remove varicose veins. Foams containing small bubbles, with a narrow size distribution, and a low liquid fraction are beneficial for sclerotherapy.

Keywords

  • Foam, sclerotherapy, varicose veins, yield stress

Documents