Screening for potential co-products in a Miscanthus sinensis mapping family by liquid chromatography with mass spectrometry detection

Awduron Sefydliadau
Math Erthygl
Iaith wreiddiolSaesneg
Tudalennau (o-i)186-196
Nifer y tudalennau10
CyfnodolynPhytochemistry
Cyfrol105
Dyddiad ar-lein cynnar31 Mai 2014
Dangosyddion eitem ddigidol (DOIs)
StatwsCyhoeddwyd - Medi 2014
Cysylltiadau
Cysylltiad parhaol
Gweld graff cysylltiadau
Fformatau enwi

Crynodeb

Society is demanding more green chemicals from sustainable sources. Miscanthus is a potential source of platform chemicals and bioethanol through fermentation. Miscanthus sinensis (M. sinensis) has been found to contain particularly high levels of soluble phenols (hydroxycinnamates and flavonoids) which may have application in the nutraceutical, cosmetic and pharmaceutical industries. Here, we describe the first study on the identification and quantification of phenols from the leaf tissue of a bi-parental M. sinensis mapping family. Parents and progeny showed complex profiles of phenols with highly related structures which complicated characterisation of individual phenotypes. Separation of semi-purified extracts by reverse-phase liquid chromatography, coupled with detection by diode array and ESI-MS/MS, enabled distinction of different profiles of phenols. Ten hydroxycinnamates (O-cinnamoylquinic acids) and several flavones (one mono-O-glycosyl flavone, eight mono-C-glycosyl flavones, two di-C-glycosyl flavones, five O-glycosyl-C-glycosyl flavones and nine 2″-O-glycosyl-C-glycosyl flavones) were identified and quantified in leaf tissue of two hundred progeny and maternal and paternal plants during the seedling stage. Progeny exhibiting high, moderate and low amounts of hydroxycinnamates and flavonoids and both parents were selected and screened at seven months’ growth to determine the abundance of these phenols at their highest biomass and compared with seedlings. Concentrations of phenols generally decreased as leaves matured. Several flavone-glycosides were identified. This technique can be used for rapid screening of plants in a mapping family to identify genotypes with high phenol content to add value in the biorefinery chain. This comparative study provides information on the content of potentially valuable compounds from readily renewable resources and possible biomarkers for identification in breeding programmes.

Allweddeiriau