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Abstract 

Southern blue whiting Micromesistus australis support a substantial commercial fishery in 

South America. There is growing evidence of a high level of demographic independence 

between stocks associated with the two main spawning grounds, one in the SW Atlantic 

(SWA) and one in the SE Pacific (SEP), but the potential genetic structuring of these stocks 

is unknown. In this study adults collected from sites throughout SWA and SEP waters were 

genotyped at hypervariable microsatellite markers to investigate genetic structuring between 

and within regions. Allele frequency-based analyses reported highly significant genetic 

differentiation between regions, indicating low levels of allo-recruitment. Ancillary data on 

migratory behaviours support natal homing as a prominent stock isolating mechanism. 

Genetic differentiation was also detected among samples from around the Falkland Islands: 

kinship analyses indicated that this was due to non-random genetic relatedness within 

samples. Despite a general pattern of genetic homogeneity among SEP samples, the 

northernmost sample exhibited significantly high mean relatedness. The data indicate the 
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occurrence of a further level of structuring within both regions that prevents complete 

mixing, specifically that schools may be hierarchically structured (from putative 

subpopulations down to kin-containing groups) and exhibit some degree of ontogenetic 

cohesion, which may also be a component of homing. The importance of homing and group 

cohesion as factors influencing resilience to, and recovery from, overexploitation is 

discussed. This study represents an important baseline for future genetic monitoring and 

assessment of M. australis. The need for such studies is emphasised by the observation of 

significantly lower levels of genetic variation among SWA samples, which may reflect 

genetic erosion, and the subsequent collapse of the SWA stock.  

Keywords: population genetics; homing; fisheries; food security; conservation; management; 

overexploitation; sustainability  

 

1. Introduction 

The worldwide depletion of fish communities (Myers & Worm 2005) with evidence of 

fishery induced economic (Botsford et al. 1997) and biological extinctions (Jackson et al. 

2001) highlights the importance of identifying biologically distinct components within 

marine fishes for both sustainable management and conservation of marine biodiversity 

(Ruzzante 2006). The ability to monitor dynamics of such components that may differ in life 

history and/or genetic composition within systems involving seasonal migration and potential 

spatial overlap is also beneficial as more easily exploited and/or less productive units may be 

susceptible to overharvesting, contributing to loss of diversity, adaptive potential (Iles & 

Sinclair 1982) and negative effects on recruitment potential and population/fishery viability 

(Ryman et al. 1995). Such threats may be particularly acute for schooling fish (Pitcher 1995; 

Hauser et al. 1998) examples of which include the two species in the genus Micromesistus: 



blue whiting M. poutassou (Risso 1826) which inhabits the North Atlantic Ocean and 

Mediterranean; and Southern blue whiting M. australis (Norman 1937) found in the southern 

hemisphere. The M. poutassou fishery is currently regarded as an example of mismatch 

between biological and management stocks that threatens sustainability (Reiss et al. 2009). 

Micromesistius australis sustains important southern hemisphere fisheries in New Zealand, 

Chilean, Argentinean, Falkland Islands and International waters (Niklitschek et al. 2010). The 

species is also considered a vital prey species for many predators in sub-Antarctic ecosystems 

(Paya 1992; Cherel et al. 1999; Nyegaard et al. 2004). The species is continuously distributed 

throughout the Falkland-Patagonia region and southern Chile, wherein two main spawning 

grounds and distinct migration circuits are known (Fig.1). In the Southwest Atlantic (SWA) 

spawning occurs southwest of the Falkland Islands from September to October (Shubnikov et 

al. 1969; Agnew 2002). After spawning adults migrate into feeding grounds along the 

Patagonian shelf NE of the Falklands (Agnew 2002) and in Antarctic waters of the Scotia Sea 

(Wöhler et al. 2001; Agnew et al. 2003). In the Southeast Pacific (SEP) spawning is reported 

to occur off the southern coast of Chile between Golfo de Penas and Peninsula de Tres 

montes (47S and 51S) (Céspedes et al. 1998). Acoustic surveys have shown dense 

aggregations of M. australis to migrate from SW Atlantic waters in June-July and move north 

along the Chilean coast towards the SEP spawning ground where spawning takes place in 

August. After spawning, SEP M australis move back to the Atlantic feeding grounds 

(Céspedes et al. 1998). While early life history stages are predicted to develop in the 

proximity of the spawning grounds (Agnew 2002; Balbontin et al. 2004; Arkhipkin et al. 

2009) adults from both SWA and SEP spawning grounds may overlap in the more southern 

feeding areas (Cespedes et al. 1998). The potential for such mixing initially contributed 

support for the hypothesis of a single population throughout the region (Lillo et al. 1999). 

Morphometric analysis also provided no support for stock segregation (reviewed by 



Arkhipkin et al. 2009), but more recent studies have provided compelling evidence of some 

degree of demographic independence between SWA and SEP stocks. Roa-Ureta (2009) 

reported significant differences in exploitation trajectories, growth patterns, size structure and 

age at first maturity. The otolith chemistry study of Arkhipkin et al. (2009) indicated that the 

majority (>80%) of individuals sampled at SWA and SEP spawning sites were locally 

spawned, while a later study combining otolith chemistry and parasite assemblage data 

indicated even lower proportions of non-regional-natives at such sites (Niklitschek et al. 

2010).    

Dispersal and gene flow, due to their respective influences on population structuring, are key 

processes affecting both short-term population dynamics and long-term evolutionary change. 

Dispersal mediates the abundance and exchange of individuals among subpopulations and the 

extent to which local populations may fluctuate independently. Gene flow, through dispersal 

and subsequent interbreeding, determines how populations are bound together as 

evolutionarily cohesive units. Despite supporting separation of stocks the differential 

proportions of dispersal indicated by the studies of Arkhipkin et al. (2009) and Niklitschek et 

al. (2010) highlights the uncertainty regarding the extent of demographic independence, in 

terms of both rates of dispersal and gene flow between SWA and SEP spawning stocks, as 

well as the potential existence of additional stock components. Addressing such knowledge 

gaps has been recognised as vital for sustainable management of the resource by local 

researchers (Paya et al. 2002; Wöhler et al. 2007).  

Genetic markers are the only tools that can describe gene flow, and can also be applied to 

describe ‘real time’ dispersal (Castric & Bernatchez 2004). Microsatellite markers have 

provided insight into population genetic structuring in M. poutassou (Ryan et al. 2005; Was 

et al. 2008), and so were used here to genotype M. australis adults collected from multiple 

sites throughout the SWA and SEP. While population genetic analyses have played a vital 



role in characterising patterns of connectivity and population structure in marine systems, a 

recognised weakness of standard analyses is that, particularly for large populations, they can 

struggle to detect contemporary demographic independence due to historical gene flow 

(Lowe & Allendorf 2010). Therefore, in this study, standard population genetic analyses 

(allele frequency based) were complemented with kinship-based analyses (allele sharing 

based) that have been shown to be effective at detecting contemporary recruitment processes 

in other marine systems (Iacchei et al. 2013; Christie et al. 2010). The data were then used to 

test the null hypothesis of panmixia throughout SEP-SWA for M. australis , and in doing so 

address several key questions: 

(i) Do genetic patterns support the differentiation of SEP and SWA stocks and provide 

information on the degree of isolation and isolating mechanism(s)?  

(ii) Is there evidence of further complexity within regions? 

(iii) What behavioural and/or environmental features may be shaping recruitment 

patterns? 

 

2. Materials and methods 

2.1 Sample collection and microsatellite genotyping  

Samples of adults were collected by pelagic trawls during September 2002 from areas of 

maximum M. australis abundance south of the Falkland Islands, across the Patagonian shelf 

and along the coast of Chile to 45
o
S (see Fig. 1). Three samples from Falkland Islands waters 

were collected: Falk-1 (East Falkland); Falk-2 from the main spawning ground south of West 

Falkland; Falk-3 from SW of West Falkland. Falkland samples were provided by the 

Falkland Islands Government Fisheries Department. Samples from Chilean waters were 

collected at 11 (Chile-1 - Chile-11) positions from the southern tip of the continent up to 



45
o
C, with each sample obtained from a single trawl by a commercial trawler. A further 

sample (Chile-12) comprised individuals from two trawls on the same day  by a fisheries 

research vessel at ~48
o
S. All samples are presumed to contain multiple age classes. 

Individual tissue samples (finclip) were preserved in absolute ethanol. Genomic DNA was 

extracted using a standard CTAB-chlorofrom/isoamylalcohol method (Winnepenninckx et al. 

1993). 

A number of primer pairs for previously developed microsatellite loci were tested for their 

utility as genetic markers in M. australis: four developed from blue whiting (MpouBW7, 

MpouBW8, MpouBW9, and MpouBW13 – Moran et al. (1999)); one developed from 

whiting (Merlangius merlangus) and shown to work in southern blue whiting (MmerUEA 

W01 – Rico et al. (1997), Ryan et al. (2002)); and seven developed from walleye pollock and 

shown to work in blue whiting (Tch3, Tch5, Tch8, Tch10, Tch11, Tch21, Tch22 – O’Reilly 

et al. (2000)). Only the four blue whiting loci and Tch10 were found to amplify consistently 

in the present samples. The loci were individually amplified by PCR in 10 ul reactions 

containing ~50ng of DNA, 3pmol of each primer (forward primer labelled with a Cy5 

fluoresent dye group), 0.1 U of Taq DNA polymerase (Bioline, UK), 1X supplied PCR 

Buffer, 2.0 mM MgCl2, and 0.2 mM dNTPs. The PCR thermoprofile involved an initial 

denaturation step (95 C for 3 min) followed by 35 cycles of 30 s at 95, 30s at 52 and 30s at 

72.  Single locus PCR products were separated on a Pharmacia ALFExpressII automated 

DNA sequencer and alleles scored using FRAGMENT MANAGER Software. Hansen et al. 

(2001) demonstrated that misclassification of 4% of genotypes could produce an apparent FST 

of 0.001 to 0.003 when true FST = 0. Given that low FST might be expected between samples a 

number of steps (following McKeown et al. 2015) were taken to maximise accuracy of 

genotyping: (i) PCR products of four individuals with known genotypes were run for every 

locus in every gel; (ii) all genotyping was performed independently by two experienced 



individuals with any mismatching genotypes being included in the repeat analysis (step iii); 

(iii) ~10% of all individuals were re-assayed (i.e. PCR, electrophoresis and genotyping) to 

assess/minimise rates of genotyping error. 

   

2.2 Statistical analysis  

Genetic variation within samples was characterised using numbers of alleles (NA), allelic 

richness (AR; El Mousadik & Petit 1996), observed heterozygosity (HO), and expected 

heterozygosity (HE), calculated using FSTAT 2.9.3 (Goudet, 1995). Genotype frequency 

conformance to Hardy-Weinberg equilibrium (HWE) expectations and genotypic linkage 

equilibrium between pairs of loci were tested using exact tests (10,000 batches, 5000 

iterations) in GENEPOP 3.3 (Raymond & Rousset 1995). Deviations from HWE were 

measured using FIS, calculated according to Weir & Cockerham (1984) and tested for 

significance by 10,000 permutations in FSTAT 2.9.3. As mentioned, the dataset was carefully 

assessed for human error, however, in order to evaluate the additional potential of technical 

artefacts the data was analysed with MICROCHECKER v. 2.2.3 (van Oosterhout et al. 

(2004). 

Mean pairwise relatedness within samples was calculated using the relatedness estimator, rqg, 

of Queller & Goodnight (1989) in GENALEX (Peakall & Smouse 2006) with associated 95% 

confidence intervals determined by 1000 bootstraps. Permutation of genotypes among all 

samples (999 times) was used to calculate the upper and lower 95% confidence intervals for 

the expected range of rqg under a panmictic model. The maximum likelihood method 

implemented in ML-RELATE (Kalinowski et al. 2006), was used to infer the relationships 

among pairs of individuals, specifically to categorise them as unrelated (U), half-sib (HS) 

,full-sib (FS) or parent-offspring (PO). Since every method of kinship analysis includes a 

level of uncertainty, COLONY (Jones & Wang 2010) was also used to identify HS/FS dyads 



Following suggestions by Wang (2012) the full likelihood model was used with run length 

and precision set to medium. Genotyping error rate was set to 0.005 for each locus and 

polygamy and polyandry assumed. Since COLONY associates a probability with each result, 

only those with a probability of > 0.99 were taken into account.  

Genetic structuring was investigated using the Bayesian clustering method implemented in 

STRUCTURE 2.3.4 (Pritchard et al. 2000). Briefly, the analysis identifies the most probable 

number of genetically distinct groups (K) represented by the data and estimates assignment 

probabilities (Q) for each individual (specifically their genomic components) to these groups. 

The analysis can be run without any prior information, however, incorporating prior 

information using the LOCPRIOR model that allows the clustering algorithm to assume that 

the probability of assignment varies among samples, has been shown to increase power while 

not biasing results (Hubisz et al. 2009). The analysis was performed with and without the 

LOCPRIOR model. When the LOCPRIOR model was used the priors consisted of sample 

membership and not geographical location. Analyses with and without LOCPRIOR were then 

performed with multiple parameter sets (i.e. with and without admixture, and with and 

without correlated allele frequencies).. Each run had a burn-in of 100,000 Markov Chain 

Monte Carlo samples followed by 1,000,000 MCMC repetitions. Simulations were run 10 

times for each proposed value of K (1-5) to assess convergence. Optimal models were 

assessed using L(K) following Pritchard et al. (2000) and where there was support for K >1, 

ΔK (Evanno et al. 2005) was also assessed. Genetic clustering was also assessed using BAPS 

6.0 (Corander et al. 2004) for models of K=1-5 (10 runs per K).  

Genetic differentiation was quantified by global and pairwise FST values, with associated 

significance evaluated by 10,000 permutations (exact FST estimator test (Goudet et al. 1996)), 

using FSTAT. Hierarchical analysis of molecular variance (AMOVA; Excoffier et al. 1992) 

was performed in ARLEQUIN to partition genetic variance among groups of samples (FCT) 



and among samples within groups (FSC) with significance levels of FCT and FSC tested using 

1000 permutations. To complement F–statistics global and pairwise exact G-tests were 

performed in GENEPOP (10,000 batches 5000 iterations). The simulation method 

implemented in POWSIM (Ryman & Palm 2006) was used to estimate the sample size 

dependent Type I and Type II error probabilities of the G-tests. Genetic relationships among 

samples were also assessed using a factorial correspondence analysis (FCA) in GENETIX 

(Belkhir et al. 2004). Randomisation procedures in FSTAT were used to detect significant 

differences in heterozygosity, AR, FIS, FST and relatedness among user defined groups of 

samples following 10,000 permutations.  

The assumption of selective neutrality of the microsatellite loci was assessed using the 

FDIST outlier identification test (Beaumont & Nichols 1996) implemented in LOSITAN 

(Antao et al. 2008) performed (i) globally (i.e. across groups of samples) and (ii) between 

pairs of samples. Simulations were run for 10 000 replications, 95% confidence intervals 

estimated using the options for neutral and forced mean FST and analyses replicated for 

infinite allele and stepwise mutation models. 

3. Results 

All loci produced unambiguous products that were readily scored with no incongruence 

between replicates indicating a very low degree of human genotyping error. There was a low 

level of missing data per sample (Table S1) and all individuals were genotyped for a 

minimum of four loci (i.e. maximum of one missing locus). The total number of alleles per 

locus ranged from 14 to 39 (average = 22.2). Global observed and expected heterozygosity 

per locus ranged from 0.748 to 0.900 (overall 0.806) and 0.760 to 0.956 (overall 0.827) 

respectively. Indices of genetic variability for each sample are reported in Table 1. Of 75 

locus/sample tests of HWE 17 yielded significant results (at critical P = 0.05) (Table S1), in 



all cases due to heterozygote deficits, of which 7 occurred among Falkland samples (4 for 

Falk-1, 1 for Falk-2, 2 for Falk-3).  Across all samples (n = 15) no locus exhibited more than 

5 significant departures from HWE suggesting no consistent effect of null alleles. 

MICROCHECKER found no evidence of scoring error due to stuttering, or large allele drop 

out but suggested the possible occurrence of null alleles in 7 locus/sample combinations (out 

of 75) (Table S1). These potential null allele occurrences were not associated with a specific 

locus. Furthermore, three of the potential cases of null alleles were found for Falk-1 sample 

suggesting biological rather than technical factors (see discussion). Employing the van 

Oosterhout algorithm did not change results of subsequent tests of differentiation (FST and G) 

and so results are reported for unedited data. There was no evidence of linkage disequilibrium 

between loci for any sample or across all samples. The three Falkland samples and sample 

Chile-1 exhibited mean kinship values that exceeded predictions of a panmictic model and 

were significantly higher than most of the other samples (Fig. 2). ML-relate analysis 

identified 3 full-sib dyads within samples (two full-sib dyads in the Falk_1 sample and 1 full-

sib dyad in the Falk_ 3 sample). These dyads were also supported by results from COLONY 

(all at P =1). One member from each dyad was excluded from subsequent analyses. Across, 

all 269745 comparisons between individual pairs ML-relate identified 5650 pairs as being 

unrelated but could not categorise the remaining pairs unambiguously as being unrelated or 

related highlighting the limited power of the data..    

Both BAPS and STRUCTURE (without LOCPRIOR) failed to detect more than one genetic 

group (probability = 1 for model of K = 1). However distinct genetic clusters were detected 

with STRUCTURE analysis using LOCPRIOR with identical patterns across the different 

parameter permutations. ΔK supported a model of K = 2 (Fig. S1) wherein there was a clear 

separation of SEP and SWA samples. However, L(K) indicated the optimum model to be K = 

3 wherein there was separation of SEP and SWA samples but the SWA samples were further 



split into two groups, with Falk-2 partitioned from Falk-1 and Falk-3. With the exception of 

those from Chile-4, individuals were strongly assigned to their groups as evident from their 

respective Q values (Fig.3). To further investigate clustering for Chile-4, the STRUCTURE 

analysis with LOCPRIOR was repeated for the SEP samples only and revealed no signs of 

substructuring (i.e. probability of 1 that K = 1). This clustering of Chile 4 with the other SEP 

samples is further observed in subsequent analyses.  Across all samples differentiation was 

highly significant (FST = 0.006, P < 0.0001; G-test P < 0.0001). AMOVA revealed significant 

(P < 0.00001) and similar proportions of variation due to differences between regional 

groupings (FCT = 0.00439) and among samples within regional groupings (FSC = 0.00472). 

FST and exact tests yielded concordant patterns and indicated that the within-region variation 

revealed by the AMOVA was largely due to differentiation among the SWA samples (global 

FST = 0.022, P < 0.001; global G-test P < 0.0001; all pairwise tests significant – Table 2), 

with much less differentiation among the SEP samples (global FST = 0.002, P = 0.011; global 

G-test P = 0.001; FST significant for 11 out of 66 pairwise comparisons; G-tests significant in 

16 out of 66 pairwise tests). Out of 39 pairwise comparisons between regions 35 displayed 

significant FST and 37 significant G-tests results. FCA results clearly illustrated the overall 

patterns described wherein there was aclear separation between SEP and SWA samples, as 

well as overall similarity among SEP samples and differentiation among SWA samples 

(Fig.4). POWSIM analysis indicated that the average sample size (n=49) conferred G-tests 

with a high level of statistical power. Specifically, the simulation indicated a high probability 

(P = 0.989) that true differentiation at the level of FST = 0.01 would be detected while Type I 

error probability was low (P = 0.058). Global and pairwise outlier analysis provided no 

support for divergent or balancing selection effects at any locus (Fig S2). Comparison of 

genetic variability between regions using randomisation tests reported significantly lower 



allelic richness (P = 0.0013) and heterozygosity (P = 0.037), but higher FST (P = 0.0202) and 

relatedness (P = 0.0227), for the SWA samples compared to SEP samples (Table S2).  

4. Discussion 

Population genetic analyses (Bayesian clustering; FCA, pairwise FST and G tests, AMOVA) 

reported concordant patterns of structuring, with the salient feature being the significant 

differentiation between the Falkland Islands (SWA) and Chilean (SEP) samples, as well as 

among SWA samples. Although structuring was not detected by the BAPS and 

STRUCTURE (without LOCPRIOR) analyses, the associated FST values indicate that 

underlying structuring was beyond the resolution threshold of these analyses (Latch et al. 

2006). In contrast, STRUCTURE analyses incorporating the LOCPRIOR model robustly 

partitioned individuals in fitting with the reported enhanced resolution for with LOCPRIOR 

(Hubisz et al. 2009). The differing optimal models reported by ΔK (K = 2 separating SEP and 

SWA) and L(K) (K = 3 further splitting SWA samples) also reflect the reported tendency for 

ΔK to preferentially identify the first level of hierarchical structuring (Waples & Gaggiotti 

2006).  In addition kinship analyses estimated significantly higher mean intra-sample 

relatedness for the three Falkland samples and the Chile-1 sample. Furthermore, a number of 

full-sib dyads (technically first order relatives as putative parents/offspring were not 

separated in the analysis) were identified within the Falkland samples, providing further 

evidence for non-random mixing of individuals. Collectively, the data confirm that despite 

considerable dispersal potential M. australis does not maintain a single homogenous 

population and clearly rejects the hypothesis of panmixia in this region.  

The genetic partitioning of Falkland and non-Falkland samples readily aligns with the 

evidence from non-genetic based studies of restricted connectivity on ecological time scales 

between SEP and SWA stocks (Arkhipkin et al. 2009; Roa-Ureta 2009; Niklitschek et al. 



2010). Based on analysis of otolith core microchemistry, formed during the larval and 

juvenile stages, Arkhipkin et al. (2009) estimated that approximately 20% of individuals at 

SEP and SWA spawning sites were non-natives (i.e. were born in the other region). Similar 

proportions of inter-region migrants were estimated from otolith core microchemistry by 

Niklitschek et al. (2010), however they suggest that such non-native proportions are inflated 

due to lack of marker resolution and obtained complete assignment to region when otolith 

core data and parasite assemblage data were combined. Deriving quantitative estimates of 

contemporary dispersal and gene flow from genetic data in abundant species like M. australis 

can be problematic (Whitlock & McCauley 1999; Palsboll et al. 2007; Hellberg 2009), 

however, as gene flow is measured as the product of effective population size and migration 

rate, significant genetic differentiation, even if numerically small, implies a very small 

proportion of migrants in the recipient population (Palumbi 2003; Hellberg 2006; Hauser & 

Carvalho 2008). While this study and those of Arkhipkin et al. (2009) and Niklitschek et al. 

(2010) represent limited temporal snapshots of M. australis dispersal, genetic patterns retain 

signatures of gene flow over multiple generations, and so significant genetic differentiation 

between SEP and SWA samples indicates levels of inter-population recruitment so low that 

the respective populations/stocks are essentially self-recruiting on timescales of interest to 

fishery managers (Hauser & Carvalho 2008). 

The identification of isolating mechanisms is a crucial facet of the analysis of demographic 

independence, with a central topic in fisheries genetics being the relative roles of 

environmental forcing or behaviour (Heath et al. 2008). The potential for active dispersal by 

adult M. australis emphasises the potential importance of homing behaviours in shaping 

population connectivity. Homing, where adults repeatedly return to spawning grounds 

irrespective of whether they were hatched there has been widely reported in a number of 

species (e.g. Lundy et al. 2000) and may not promote population differentiation if there is 



opportunistic and non-philopatric recruitment of adults (Heath et al. 2008). As an example, 

McKeown et al., (2015) report high connectivity between SWA and SEP spawning stocks of 

the Patagonian Grenadier (Macruronus magellanicus) by non-natal homing. In contrast natal 

homing, where adults return to and spawn at the site they were born, is predicted to promote 

population differentiation. The detection of significant genetic differentiation along with 

evidence of natal region spawning fidelity indicated by ontogenetic studies, are jointly 

compatible with natal homing as a governing factor limiting regional stock allo-recruitment 

in M. australis. Recognition of such a slow-changing stock isolating mechanism is important 

as it may lead to resistance to mixing, expansion and colonization of new habitats (Secor 

2005; Svendang et al. 2007), as illustrated by the slow and unpredictable recovery of many 

northern hemisphere cod stocks (Svendang 2003, Bundy & Fanning 2005; Svdenag & 

Svenson 2006). 

Levels of genetic differentiation among the Falkland Islands samples, as measured by FST, 

were high and comparable to inter-regional comparisons. As such the microgeographical 

differentiation among the Falkland samples fits with a pattern of chaotic genetic patchiness 

that has been widely reported among marine taxa (Selkoe et al. 2010; Toonen & Grosberg 

2011).  While otolith data provides ancillary information supporting restricted gene flow 

between both regions, direct interpretation of the microgeographic differentiation in the 

context of gene flow is complicated due to both the nature of such summary statistics 

(reviewed by Lowe & Allendorf 2010; Hart & Marko 2010)) and the potential for temporal 

genetic fluctuations among highly fecund marine taxa (Eldon & Wakeley 2009; Toonen & 

Grosberg 2011) such as M. australis.   

For all three Falkland samples, as well as for sample Chile-1, mean relatedness estimates 

were significantly higher than values reported for most other samples, and in all cases 

exceeded values expected under a model of random mixing. This indicates that the 



differentiation among Falkland samples, and for Chile-1 from most other SEP samples, is 

driven by non-random genetic relatedness among individuals in those samples. Moreover, 

among two of the Falkland samples a number of dyads exhibiting first-order level 

relationships were identified. This is a striking feature as previous studies that have looked at 

kin relationships among adults, rather than among cohorts of recruits, have found no evidence 

of kin aggregation in marine species (Avise & Shapiro 1986; Kolm et al. 2005; Buston et al. 

2007; Palm et al. 2008; Andrews et al. 2010; Berry et al. 2012; but see Iacchei et al. 2013 for 

a study documenting kin among sedentary adults of Panulirus interruptus). Collectively these 

results indicate that schools may exhibit non-random genetic relatedness, including kin 

associations, and individuals stay together within schools over extended periods.  

The non-random genetic relatedness among individuals within samples could be generated by 

recruitment pulses of related individuals wherein larvae released together stay together (larval 

cohesion), with such cohesion then persisting throughout the ontogeny of fish.  Such 

recruitment pulses could be associated with extreme reproductive success among individuals 

(sweepstakes recruitment, Hedgecock 1994). The batch spawning (spawning frequency of 4 

days during peak season) and high fecundity (35,000 to 245,000 eggs per batch) of M 

australis (Macchi et al. 2005) are both features conducive to recruitment pulses/skews, that 

have also been linked to heterozygote deficits like that reported for the Falk-1 sample 

(Harvey et al. 2016). Kinship analysis have reported high levels of relatedness within cohorts 

of larval recruits in a number of fish taxa (Planes et al. 2002; Pujolar et al. 2006; Selkoe et al. 

2006; Buston et al. 2009; Bernardi et al. 2012; Selwyn et al. 2016), compatible with both 

larval cohesion and sweepstakes recruitment effects. Environmental heterogeneity may also 

contribute to such recruitment fluctuations (Banks et al. 2007) and it is perhaps notable that 

the Atlantic spawning grounds are known to vary in size and location depending on the 

intensity of the Falkland current (Arkhipkin et al. 2009). Alternatively, the high levels of 



kinship could reflect temporally stable self-recruitment and ontogenetic cohesion. In the same 

marine region McKeown et al. (2015) described a self- recruiting SWA sub-stock of 

Patagonian hoki and proposed both behavioural and environmental factors maintaining 

genetic integrity. The large number of dyads that could not be unanimously classified to a 

single relationship category (i.e. unrelated or related) indicates that the available data has 

insufficient power to infer the exact kin patterns within samples. Hence, distinguishing 

between the alternative scenarios will require more sensitive genetic assays as well as 

analysis of age-segregated samples (Burford et al. 2011), however the results indicate the 

occurrence of a further level of structuring within both regions that prevents complete 

mixing.  

There has been extensive research into the nature of schooling, with documented cases of 

associations among fish persisting through time (Tamdrari et al. 2012). However, an 

important question is whether such cohesions are maintained during migrations or whether 

schools visit specific locations with precise timing for feeding or spawning. As the Falkland 

and Chile-1 samples represent the geographically closest to spawning areas the genetic 

patterns may reflect re-associations of individuals homing to spawning sites, i.e. individuals 

from different genetic groups may mix randomly in other areas. At the regional level 

Niklitschek et al. (2010) interpreted parasite data as supporting limited mixing between SEP 

and SWA individuals, but both these authors and Arkhipkin et al (2009) highlight the 

importance of assessing mixing in key fishery areas such as Tierra del Fuego and Staten 

island shelfs. The dynamics of mixing among various regional and intra-regional stock 

components has important implications for mixed stock fishery management, in particular 

concerning the detection of early warning signs of overexploitation (Mackinson et al. 1997; 

Hauser et al. 1998).   



In summary, the data support a high level of self-recruitment and demographic independence 

for the SEP and SWA stocks, and identify natal-region-homing as a possible stock isolating 

mechanism. The data also indicate that within regions, schools may be hierarchically 

structured (from putative subpopulations down to groups containing related individuals) and 

exhibit some degree of permanence, which may also be a component of homing effects. The 

hierarchical structuring of M. australis may predispose the species to genetic erosion if entire 

schools are harvested (Fraser et al. 2005) but may also buffer species against genetic erosion 

if schools are only partially depleted (Hauser et al. 1998). Homing may also promote 

recovery at local levels (Tamdrari et al. 2012), but not at regional levels meaning that natural 

recovery of depleted regional stocks will be unpredictable, and on a timescale unacceptable to 

fishers and resource managers (Svendang et al. 2007). Homing behaviour and cohesion are 

thus important features influencing resilience to, and recovery from, overexploitation that 

will need to be characterised. Such research would benefit from improved understanding of 

species ecology, and additional genetic and ontogenetic marker analysis of short interval 

time-series samples of spawning and feeding grounds. Schooling fish are particularly 

vulnerable to exploitation as modern fishing technologies are able to detect schools at large 

range and so catchability (the proportion of the stock caught per unit effort) may increase as 

abundance declines (Mackinson et al. 1997) meaning that stocks may collapse even if effort 

is reduced (Pitcher & Parrish 1993). Genetic data here indicated a lower level of genetic 

variation among the SWA samples. As the analysed samples were collected shortly before the 

SWA stock collapsed between 2004 and 2007 (Laptikhovsky et al. 2013) the lower variation 

may reflect genetic erosion. Interestingly, another study analysing samples collected after the 

collapse reported no genetic structuring (Galleguillos et al. 2009). Although there are a 

number of technical differences with our study, one potential biological reason for the 

different results could be that the collapse of the SWA stock meant that SWA fish were 



largely unrepresented/unsampled. Therefore, the lack of detected structure by Galleguillos et 

al. (2009) could simply reflect the reduced abundance of the SWA population. This study 

thus provides an important baseline for vital future genetic monitoring and assessment of M. 

australis. 
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Figure 1. (A) Overview of approximate locations of spawning and feeding grounds and sampled area (in box) . (B) Specific locations of sample sites. 3 
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 12 

Figure 2. Mean within-sample pairwise relatedness, rqg, and 95% confidence intervals determined by bootstrap resampling.  Red bars are the 95% upper and 13 

lower expected values for a null distribution generated from 999 permutations of data among all samples, and enclose the values expected within a 14 

panmictic system.  15 
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 18 

Figure 3. Plot of assignment probability (Q- values) of individuals to three genetic groups (resolved within the model of K =3) each represented by a 19 

different colour.  20 

 21 

Figure 4. Factorial correspondence analysis among samples and percentage of total variation explained by each of the two axes. 22 
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