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Abstract

Background: Lung cancer (LC) is one of the leading lethal cancers
worldwide, with an estimated 18.4% of all cancer deaths being attributed to
the disease. Despite developments in cancer diagnosis and treatment over
the previous thirty years, LC has seen little to no improvement in the overall
five year survival rate after initial diagnosis.
Methods: In this paper, we extended a recent study which profiled the
metabolites in sputum from patients with lung cancer and age-matched vol-
unteers smoking controls using flow infusion electrospray ion mass spectrom-
etry. We selected key metabolites for distinguishing between different classes
of lung cancer, and employed artificial neural networks and leave-one-out
cross-validation to evaluate the predictive power of the identified biomark-
ers.
Results: The neural network model showed excellent performance in clas-
sification between lung cancer and control groups with the area under the
receiver operating characteristic curve of 0.99. The sensitivity and speci-
ficity of for detecting cancer from controls were 96% and 94% respectively.
Furthermore, we have identified six putative metabolites that were able to
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discriminate between sputum samples derived from patients suffering small
cell lung cancer (SCLC) and non-small cell lung cancer. These metabolites
achieved excellent cross validation performance with a sensitivity of 80% and
specificity of 100% for predicting SCLC.
Conclusions: These results indicate that sputum metabolic profiling may
have potential for screening of lung cancer and lung cancer recurrence, and
may greatly improve effectiveness of clinical intervention.

Keywords:
lung cancer, small vs non-small cell lung cancer, sputum, metabolomics,
biomarkers, artificial neural networks

1. Introduction1

The year 2008 saw an estimated 12.7 million new cases of cancer, and2

7.6 million cancer-related deaths worldwide [1]. While the incidence and3

mortality rates of most cancers is decreasing in the developed world, they4

are rising in emerging economies such as China and India. Migrant studies5

have found that cancer rates in the descendent generation of migrants tends6

to shift toward the host country, suggesting that environmental risk factors7

such as smoking and weight are responsible for the global variance in cancer8

rates [2].9

1.1. Lung cancer10

Lung cancer is a major cause of death in the developed and developing11

worlds. It is the leading cause of cancer-related deaths in men, and second12

only to breast cancer in women. There was an estimated 1.6 million new13

cases of lung cancer and 1.4 million deaths in 2008. This accounts for 12.6%14

of all cancer incidence and a staggering 18.4% of all cancer-related deaths15

[2]. This can be attributed to its poor prognosis, with the five-year survival16

rate being a mere 15%. Despite recent advances in lung cancer treatment,17

survival rates are low when compared to other forms of cancer [3]. How-18

ever, improvements in surgical techniques and chemotherapy over the past19

twenty years has resulted in one-year lung cancer survival rates drastically20

improving. Despite this, the overall five-year lung cancer survival rates have21

remained stagnant at 6% for small cell lung cancer and 18% for non-small cell22

lung cancer. Unfortunately the vast majority (85%) of lung cancer cases are23
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diagnosed at advanced stages, heavily reducing the effectiveness of treatment24

[1].25

This can be attributed to the difficulty of effectively diagnosing cancer of26

the lung at stage early enough to make a real impact. One of the main diffi-27

culties is that symptoms of the conditions are often identical to less serious28

conditions. This makes the pre-clinical diagnosis of lung cancer particularly29

problematic as the observed symptoms are often confused with other respi-30

ratory conditions. Prognostic factors may help diagnose patients who show31

symptoms of a disease, or have an increased chance of recurrence or progres-32

sion to advanced disease which should support clinicians in the creation of33

appropriate treatment plans. The World Health Organisation (WHO) have34

set out ten key principles to be met by an effective screening procedure in35

order for it to be beneficial and cost effective [4]. Currently there are no lung36

cancer screening techniques of which meet all of the ten conditions laid out37

by the WHO.38

1.2. Metabolomic insights into lung cancer39

An emerging screening methodology to other traditional screening meth-40

ods is the utilisation of molecular biomarkers in biofluids. The ease of analy-41

sis of biofluids using mass spectrometry (MS) or nuclear magnetic resonance42

(NMR) makes metabolomics a well-suited methodology for the non-invasive43

detection of biomarkers in lung cancer. Current focus of metabolomics in lung44

cancer has been on the exploitation of serum, urine and tumour biopsies. For45

example, the analysis of serum using liquid chromatography (LC-MS) and46

gas chromatography (GC-MS) approaches have suggested a potential use for47

biomarkers of lung cancer. A small-scale pilot study sampling lung cancer pa-48

tients before and after surgical intervention, alongside patients without lung49

cancer has suggested ten candidate biomarkers for lung cancer, including50

sphingosine, oleic acid and serine [5].51

Sputum has been suggested as a potential biofluid source of biomarkers52

in lung cancer [3, 6]. Recent work has used Fourier Transform Infra-Red53

(FTIR) spectroscopy as a non-invasive method to detect lung cancer in spu-54

tum samples. This work concluded that FTIR was able to sufficiently dis-55

tinguish between lung cancer and control samples, and effectively act as a56

non-invasive, high-throughput and cost-effective method for screening spu-57

tum samples from high-risk patients. Furthermore, it further validated the58

use of sputum as an effective biofluid for lung cancer screening [7].59
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1.3. Artificial Neural Networks60

Artificial neural networks (ANNs) are a class of sophisticated computa-61

tional modelling structures that are inspired by biological neurological sys-62

tems, regarding how they are able to learn and process highly non-linear63

information [37]. The past three decades have seen ANNs being widely used64

for biomedical decision support systems [8, 9, 10, 11, 12].65

In general, an artificial neural network is formed of interconnected pro-66

cessing units, commonly referred to as neurons. Each neuron applies an ac-67

tivation function over the weighted sum of the incoming stimuli (or inputs),68

and generate an output signal, which could be the input signal for other neu-69

rons. Many different neural network architectures exist, in this paper we will70

focus on the popular feed-forward artificial neural network, in particular the71

multi-layer perceptron (MLP) [13], that usually consists of multiple layers72

of neurons - the input layer, one or more hidden layers and the final output73

layer, as illustrated in Figure 1.74

Normalised m/z intensity

Input layer

Hidden layer

Output layer

-3.71 -3.44 -2.97 … -3.25

LC+ LC-

Figure 1: Illustration of a three-layered feed-forward artificial neural network,
where each neuron in one layer has connections to the subsequent layer.

The design of network architectures involves setting the number of hidden75

layers, the number of neurons within each layer, the connections between76

them, and the type of activation function to use. The connection weights in77

the network could be adjusted through a learning algorithm that minimises78

the amount of error in the outputs compared to the true ones. Generalisation,79
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and to avoid overfitting the training data would be a central issue both in80

network design and training.81

2. Case Study82

We have recently developed this approach by employing flow-infusion83

electrospray-Mass Spectrometry (FIE-MS) to evaluate the potential of spon-84

taneous sputum as a source of non-invasive metabolomic biomarkers for LC85

status [14]. Spontaneous sputum was collected and processed from 34 pa-86

tients suspected of having LC, and 33 healthy controls. Of the 34 patients,87

23 were subsequently diagnosed with LC (LC+) at various stages of disease88

progression. The clinical characteristics of all samples taken are summarised89

in Table 1.90

Characteristics Lung cancer
(LC+)

Symptoms
(LC-)

Healthy con-
trols

Number 23 11 33
Age (mean ± SD) 66.6 ± 8.1 66.5 ± 14.3 55.3 ± 14.6
Gender (Male/Female) 11/12 10/1 20/13
Smoking (Current / Ex / Never) 10/10/3 3/0/8 15/18/0
Previous cancer (Yes/No) 3/20 N/A N/A
Final clinical diagnosis
(SCLC/NSCLC/Radiological)

5/17/1 N/A N/A

CO level (ppm) 4.2 ± 2.8 3.7 ± 1.3 N/A

Table 1: Summary of clinical characteristics of patients with Lung Cancer
(LC+), Symptoms (LC-) and Healthy Controls

In these preliminary analyses, discriminatory metabolites were identified91

using ANOVA and Random Forest and included Ganglioside GM1 which has92

previously been linked to lung cancer [15]. This suggested that the use of93

sputum as a non-invasive source of metabolite biomarkers may aid in the94

development of an at-risk population screening programme for lung cancer95

or enhanced clinical diagnostic pathways. We now demonstrate how further96

data-mining of the FIE-MS data has revealed further metabolite biomark-97

ers, and evaluate further the use of metabolomics to yield biomarkers for98

distinguishing lung cancer type.99

2.1. Ethics statement100

The MedLung observational study (UKCRN ID 4682) received loco-regional101

ethical approval from the Hywel Dda Health Board (05/WMW01/75). Writ-102
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ten informed consent was obtained from all participants at least 24 hours103

before sampling, at a previous clinical appointment, and all data was link104

anonymised before analysis.105

2.2. Mass spectrometry106

Frozen sputum samples were thawed before being exposed to 0.5 mL of107

dithiothreitol (DTT) to isolate sputum cells. Each sample was mixed using a108

vortex mixer for 15 minutes before being centrifuged at 1800g for 10 minutes109

before removing the supernatant. Sputum pellets were then analysed using110

Flow Infusion Electrospray Ion Mass spectrometry (FIE-MS).111

Signals identified under 50 m/z were removed, and the resulting FIE-MS112

data matrix contains 2,582 m/z values after binning. The data was further113

preprocessed by total ion count (TIC) normalisation (to ensure the intensity114

values for each spectrum sum up to one), followed by log10 transformation115

prior to further data analysis.116

2.3. Effect of clinical characteristics on the metabolic profiles117

To explore the possible effects of the clinical characteristics on the global118

metabolic profiles, we conducted the so called 50-50 MANOVA test, which is119

essentially a variant of classical MANOVA that can handle multiple highly120

correlated responses [16]. We found no significant effect of age, gender or121

the CO level on the preprocessed metabolomic data (with p-values of 0.4,122

0.08, and 0.8, respectively), whilst the effect of disease status (LC+/LC-123

/Control) is really strong (p-value = 1e-12). And perhaps not surprisingly,124

as tobacco smoking is an important risk factor for lung cancer, there is indeed125

a significant effect of the smoking pack numbers per year over the metabolic126

profiles for the patients of LC- and LC+ (p-value = 2e-5).127

2.4. Diagnostic modelling with artificial neural networks128

To find discriminatory m/z features, Welch’s unequal variance t-test have129

been performed using the pre-processed intensity values after log-transformation.130

Random forests have also been tried (results not shown), and the top ranked131

features identified for both methods are quite similar.132

Then an ANN was used as a diagnostic model for various binary classifi-133

cation problems, taking the selected m/z signals (the preprocessed intensity134

values after log-transform) as the inputs and estimating the probability for135

individual classes. The activation function was set to hyperbolic tangent for136

both hidden and output layer; and the number of hidden layers was set to137
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two for all problems based on our initial analysis. Regularisation techniques138

such as weight decay [17] have been employed to control the complexity of139

the model parameters in order to avoid overfitting the models to the training140

data.141

The predictive power of neural network classifiers was evaluated using142

Receiver Operating Characteristic (ROC) analysis and through leave-one out143

(LOO) cross-validation (CV) - the overall ROC curve and the area under the144

curve (AUC) from CV was obtained using the pooled test examples from CV.145

For each binary classification problem and within each round of training, a146

t-test would be performed on the training set, only the m/z signals with147

resulting p-values < 0.05 were selected as input features for ANN modelling.148

3. Results and Discussion149

Representative spectra of the samples from the LC+, LC- and healthy150

control sample groups are shown in Figure 2. FIE-MS profiles were analysed151

using principal component analysis (PCA) (Figure 4). One can observe no152

clear separation between clinically collected sample groups (LC+ and LC-)153

if all m/z signals were used for PCA.154

Welch t-tests provided 445 distinctive m/z values for LC+ versus healthy155

controls, and 90 significant m/z values for LC+ versus LC- from our pooled156

leave one out cross validation t-tests. PCA of both stratifications showed157

good discriminative ability when using the pooled features, as shown in Fig-158

ure 4. The number of neurons in each hidden layer was chosen through grid159

search [18]. The best-performing models and their diagnostic performance160

from LOOCV can be found in Table 2. And Figure 6 shows the resulting161

ROC curves.162

Classification Mean no.
of inputs

No. of
hidden
neurons

Sensitivity Specificity Positive Predictive Value Negative Predictive Value AUC

LC+ (vs Control) 1730.2 100, 50 96% 94% 92% 97% 0.99
LC+ (vs LC-) 71.9 40, 10 100% 91 % 96% 100% 1.00
SCLC (vs NSCLC) 77.8 50, 20 80% 100% 100% 94% 1.00

Table 2: Results of cross-validation prediction performance of our ANN mod-
els. The diagnostic performance (except for AUC) was obtained by using the
default probability cutoff value of 0.5 to determine the class labels.
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Figure 2: Typical FIE-MS spectra of sputum obtained from sputum obtained
from (a) a patient with lung cancer , (b) a patient with symptoms of lung
cancer and (c) a healthy control sample.
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Figure 3: PCA score plots of FIE-MS data using all normalised m/z intensity
values in negative ionisation mode, showing no clear separation between LC+
and LC- samples.

3.1. Analysis of small-cell lung cancer and non-small cell lung cancer163

Determining the type of lung cancer that has developed in a patient164

is a key component of determining the correct treatment and management165

pathway. For lung cancer, two broad classes of classification exist: non-166
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Figure 4: PCA score plots of the FIE-MS data with (a) only 970 selected
m/z signals for LC+ and healthy controls, and (b) 125 selected m/z signal
for LC+ and LC-. Using m/z features taken from t-tests clearly differentiates
between relevant classes.

small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). Patients167

with NSCLC are usually classified as one of three main subtypes: adenocar-168

cinoma, squamous-cell carcinoma and large-cell carcinoma. Of these, ade-169

nocarcinoma is the most common and is characterised by overproduction of170

mucin. Squamous-cell carcinoma is the second most common form of lung171

cancer and typically occurs in the centre of the lungs. Large-cell carcinoma172

is less common and is characterised by cancerous cells that are large, with173

excess cytoplasm and large nuclei. The extent of NSCLCs is reported using174

the TNM format, which is important for prognosis and treatment planning.175

The TNM format ranges from Stage 0 to Stage IV, with the relevant stage176

determined through assessment of the primary tumour, involvement of re-177

gional lymph nodes, and the extent of distant metastasis against set criteria178

[19].179

Small-cell lung cancers are less common than NSCLC, with approximately180

10% of all lung cancers classified as SCLC. These lung cancers are charac-181

terised by their small cells, with minimal cytoplasm, and poorly-defined cell182

borders. Cancerous cells are usually rounded, oval and spindle-shaped. Typ-183

ically, patients with SCLC present when the disease has metastasised from184

the lungs and symptoms frequently this, such as issues with bone marrow185

and the liver because of metastasis. Small-cell lung cancers are staged differ-186

9

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/063321doi: bioRxiv preprint first posted online Jul. 12, 2016; 

http://dx.doi.org/10.1101/063321
http://creativecommons.org/licenses/by-nc-nd/4.0/


50 100 150 200
mass-to-charge ratio (m/z)

0.00

0.05

0.10

0.15

0.20

N
o
rm

a
lis

e
d
 I
n
te

n
si

ty

Putrescine (69.09 m/z)

Isobutyl decanoate (75.09 m/z)

Diethyl glutarate (187.09 m/z)

Cysteamine (190 m/z)

189.09 (189.09 m/z)

Cancer

Control

Figure 5: Mean FIE-MS spectra illustrating five key distinguishable metabo-
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Figure 6: Receiver operating characteristic curves obtained from ANN mod-
els using leave one out cross-validation for classifying: (a) LC+ against LC-,
and (b) LC against healthy controls.

ently to NSCLC. Although the TNM format can be used, it does not predict187

survival and other outcomes well. Typically, SCLC is staged as either lim-188
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ited or extensive disease, with the latter equivalent to Stage IV of the TNM189

staging format for NSCLC [19].190

A total of nine m/z values provided strong differentiation between SCLC191

and NSCLC with p-values less than 0.05 from Welch t-tests. Out of these192

9 m/z values, 6 were identified and brought forward for further analysis as193

potential biomarkers of NSCLC and SCLC. Their relative values and p-values194

are shown in Table 3. Furthermore, ranges of each metabolite shown as box-195

and-whisker plots can be found in Figure 7. These both indicate that the 6196

biomarker candidates show that the median levels of the 6 markers are higher197

in NSCLC samples to patients with SCLC.198

Metabolite m/z Normalised Intensity p-value
NSCLC SCLC

Phenylacetic acid 137.09 -3.31 ± 0.21 -2.85 ± 0.42 0.001
L-Fucose 165.09 -3.19 ± 0.12 -2.86 ± 0.30 0.001
Caprylic acid 145.18 -2.81 ± 0.44 -2.12 ± 0.31 0.001
Acetic acid 61.09 -2.96 ± 0.19 -2.56 ± 0.40 0.002
Propionic acid 75.09 -1.91 ± 0.18 -1.56 ± 0.34 0.003
Glycine 76.09 -3.17 ± 0.12 -2.91 ± 0.21 0.004

Table 3: Identified metabolites that are significantly different between pa-
tients with Non-Small Cell Lung Cancer (NSCLC) and Small Cell Lung Can-
cer (SCLC) using Welch t-tests.

PCA analysis (Figure 8a) showed good separation capabilities between199

NSCLC and SCLC samples, 6 metabolites were selected as input features200

to build a second ANN. Due to the small sample size, leave-one-out cross201

validation was performed to estimate the generalisation performance of the202

model. Our MLP model was able to distinguish between NSCLC and SCLC203

with a sensitivity of 80% and a specificity of 100% for predicting SCLC from204

cross-validation (see Table 2 and Figure 8b).205

4. Biomarker analysis206

Metabolic profiling recognised and provided identifications of 6 candidate207

metabolites that offered superb predictive values. Amongst the targeted208

metabolites are examples which have already been linked to lung cancer.209

The enzyme glycine decarboxylase (GLDC) is involved in the degradation of210
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Figure 7: Box-and-whisker plots of the candidate metabolite biomarkers for
discrimination between NSCLC and SCLC. The y axis represents the nor-
malised intensity of each metabolite. Horizontal lines in the middle portion of
the box illustrates the median, bottom and top boundaries of boxes represent
the lower and upper quartile, whiskers depict the 5th and 95th percentiles
and plus signs depicts the outliers.

glycine which is coupled to the generation of methylgroups which can be used211

in (for example) purine biosynthesis. GLDC expression was increased in cells212

isolated from NSCLC tumours with concomitent decreases in glycine [20].213

These authors showed that GLDC expression could serve as a biomarker,214

we now provide evidence that relative decreases in glycine is a feature of215

NSCLC in sputum. This biofluid represents a less invasive and potentially216

cost-effective means of clinically assessing patient LC status.217

Fucose (6-deoxy-L-galactose) is N- and O-linked to a range of glycolipids218

and glyocpeptides produced by mammalian cells. Increases in fucoslylated219
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Figure 8: PCA score plot of the 6 identified metabolites for (a) NSCLC and
SCLC, and (b) the ROC curve obtained from ANN LOOCV.

proteins, for example, a-fetoprotein are used in the diagnosis of hepatocel-220

lular carcinoma [21]. Fucosylation is dependent on the availability of the221

substrate guanosine 5’-diphospho-fucose (GDP-Fucose) and associated gly-222

cosyltransferases to transfer the fucose motif on to the protein / lipid. Fucose223

is a precursor to GDP-Fucose production [22] so that increases in fucoslyation224

could lead to a relative depletion in fucose as noted in our study. Increased225

fucosylation has been previously linked to NSCLC biopies [23] but ours is the226

first suggestion that decreases in fucose pools in sputum could be clinically227

suitable marker.228

Other key metabolites were volatile short chain fatty s acetic (C2), pro-229

pionic (C3) and caprylic [octanoic ] (C8), These could be derived as a result230

of lipid peroxidation [24] but irrespective of their means of generation would231

provide further support for efforts that are attempting to sample breath as232

an non-invasive method for lung cancer detection [24, 25, 26].233

A somewhat surprising observation was the detection of phenylacetic .234

This is classically associated with phenylketonuria (PKU); an inherited dis-235

order of amino metabolism. PKU arises from a deficiency of the liver enzyme236

phenylalanine-4-hydroxylase which production of tyrosine from phenylala-237

nine. If this enzyme is non-functional a range of alternative metabolites are238

produced, including phenylacetic [27]. However, beyond PKU, phenylacetate239

accumulates in patients with chronic kidney disease and during renal failure240

where it can inhibit nitric oxide generation [28] and macrophage intracellular241
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killing of bacteria [29]. Further, disease-associated phenylacetate accumula-242

tion can contribute to an inflammatory responses [30]. To our knowledge,243

phenylacetate has not been associated with cancer; indeed quite the opposite244

it has a history of being tested for its anti-tumour properties [31]. However,245

it may be that NSCLC has particularly phenotypic / biochemical features246

which lead to altered phenylalanine metabolism leading to the accumulation247

of phenylacetate to contribute to inflammatory events and a reduced ability248

to deal with the lung microbiome. This is currently under investigation in249

our group.250

5. Conclusions251

A metabolomics approach based on FIE-MS coupled with univariate252

Welch t-test based feature selection and artificial neural networks provides253

an efficient methodology for metabolomic-based profiling of sputum to dif-254

ferentiate between non-small cell and small-cell lung cancer. This paper has255

identified 6 candidate metabolites markers, including L-fucose, phenylacetic ,256

caprylic , acetic, propionic acid, and glycine, which were found to have good257

discriminatory abilities and low p-values. Excellent sensitivity and specificity258

was also shown using these markers through leave-one-out cross validation,259

which further indicates the promise of metabolomic analysis of sputum for260

non-invasive screening for LC. Further analysis involving a larger number of261

samples is required to determine both the precision and applicability of this262

approach in guiding the diagnosis and treatment of LC and respective forms.263
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