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Graphical abstract 

Micro/nanostructured Zn and Cu−Zn alloy films have been electrodeposited directly from ZnO/CuO 

precursors in ChCl/urea-based DES, the typical nucleation-growth mechanism and the 

micro/nanostructures-formation process are determined.  
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Highlights 

> Micro/nanostructured Zn films have been electrodeposited directly from ZnO precursor in deep 

eutectic solvent (DES).  

> The morphology of the Zn electrodeposits depends on the cathodic potential and temperature. 

> The electrodeposited Zn films exhibit homogeneous morphologies with controllable particle sizes 

and improved corrosion resistance. 

> Cu–Zn alloy films have also been electrodeposited directly from their metal oxides precursors in 

DES.  
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Abstract The electrodeposition of Zn and Cu−Zn alloy has been investigated in choline chloride 

(ChCl)/urea (1:2 molar ratio) based deep eutectic solvent (DES). Cyclic voltammetry study 

demonstrates that the reduction of Zn(II) to Zn is a diffusion-controlled quasi-reversible, one-step, two 

electrons transfer process. Chronoamperometric investigation indicates that the electrodeposition of Zn 

on a Cu electrode typically involves three-dimensional instantaneous nucleation with 

diffusion-controlled growth process. Micro/nanostructured Zn films can be obtained by controlling the 

electrodeposition potential and temperature. The electrodeposited Zn crystals preferentially orient 

parallel to the (101) plane. The Zn films electrodeposited under more positive potentials and low 

temperatures exhibit improved corrosion resistance in 3 wt% NaCl solution. In addition, Cu–Zn alloy 

films have also been electrodeposited directly from CuO–ZnO precursors in ChCl/urea-based DES. 

The XRD analysis indicates that the phase composition of the electrodeposited Cu–Zn alloy depends 

on the electrodeposition potential. 

Keywords: Electrodeposition; Nucleation-growth kinetics; Deep eutectic solvent; Metal oxides; 

Morphology 
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1. Introduction 

The electrodeposition of Zn and its alloys for the corrosion-resistant coatings and 

electrochemical applications such as electronics and batteries has received considerable 

attention in recent years [1–3]. Traditional Zn plating is performed mainly in sulfuric acidic 

aqueous baths where hydrometallurgical processes can occur [4,5]. Generally, Zn is extracted 

from zinc sulfide mineral ore. The ore is mined and beneficiated by flotation methods that 

produce zinc sulfide mineral concentrates. The wet concentrates are oxidized to metal oxides 

during high temperature roasting in air and then the metal oxides are leached with aqueous 

sulfuric acid. Finally, the Zn electrodeposits are produced from a zinc sulfate solution under 

current control [6,7]. However, the traditional Zn production is very sensitive to impurities and 

requires rigorous purification methods to obtain pure Zn [8]. Consequently, searching for new 

alternative eco-friendly electrolyte for electrodeposition of Zn and its alloys films at low 

temperature is needed. 

More recently, the direct electrochemical reduction of metal oxides/compounds to 

metals/alloys in molten salts has been extensively investigated due to its environmental 

compatibility and low energy consumption [9,10]. These previous innovative work suggest that 

the production of metallic/coating materials direct from their metal oxides precursors in liquid 

salt is a promising route. Low-temperature electrolytic production of iron film from iron oxide 

in alkaline solution has been investigated in our recent work [11], which shows an acceptable 

current efficiency and the electrochemical process can be controlled effectively. However, in 

comparison with aqueous solutions, room temperature ionic liquids (RTILs) have been 
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gradually considered as promising electrolyte candidates to instead of the traditional aqueous 

electrolytes for metals/alloys electrodeposition [12]. RTILs have remarkable characteristics 

such as high thermal and chemical stability, negligible vapor pressure, high ionic conductivity, 

wide electrochemical windows and good solubility for quite a lot of metal salts  [13,14]. The 

hydrogen evolution reactions and hydrogen embrittlement occurred in aqueous solutions can be 

therefore avoided by using ionic liquids as electrolytes. Electrodeposition of Zn in ionic liquids, 

especially in AlCl3-based ionic liquids [15] and chlorozincate ionic liquids systems [16] has 

been investigated intensively. Recently, electrodeposition of Zn from ZnCl2 has also been 

investigated in choline chloride (ChCl) based deep eutectic solvents (DESs) [17–21]. The nature 

of the DESs plays a significant role in the electrochemical behavior of Zn
2+

 ions, and the 

structure of the double layer seems to affect the Zn nucleation and thus can influence the 

morphology of the Zn electrodeposits in DESs [19]. Abbott et al. [19] investigated the 

electrodeposition of Zn in ionic liquids based on ChCl with either urea or ethylene glycol (EG). 

The significant differences were found in the chronoamperometric and gravimetric data,  as well 

as in the morphology of the Zn deposit for both DESs. The different electrodeposition rates are 

probably attributed to the different chloride activities in the DESs, which changing the zinc 

concentration in the double layer and the electrodeposition mechanism of zinc. In addition, the 

influences of additives on the electrodeposition of Zn in DESs have also been investigated in 

the previous work [20,21]. Furthermore, Simons et al. [22] studied the dissolution and 

electrodeposition of Zn
2+

 in 1-ethyl-3-methylimidazolium dicyanamide ([EMIm]DCA). Liu et 

al. [23] illustrated the electrodeposition Zn films from zinc triflate (Zn(TfO)2) in 

1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate ([Py1,4]TfO) and 
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1-ethyl-3-methylimidazolium trifluoromethylsulfonate ([EMIm]TfO) ionic liquids. Zheng et al. 

[24] reported the electrodeposition of Zn coatings from ZnO in imidazolium chloride/urea ionic 

liquid, which showed that ZnO has considerable solubility in the ionic liquid.
 

DESs comprising ChCl with either urea or EG, have been successfully used as powerful 

and potential electrolytes for extracting metals from their corresponding metal oxides 

precursors, due to their highlighted advantages, such as biodegradable, relatively low cost, 

simple to prepare and relatively stable in air and moisture [25–31]. Moreover, the capability of 

DESs to selectively dissolve metal oxides is beneficial to the electrodeposition process. Only 

ZnO, Cu2O and PbO2 exhibit appreciable solubilities (ZnO: 0.123 M; Cu2O: 0.072 M; PbO2: 

0.045 M) in ChCl/urea-based DES at 333 K, whereas other metal oxides such as CaO, SiO2 and 

Al2O3 have negligible solubilities in the solvent [32,33]. In comparison with ZnCl2 precursor 

[17–21], ZnO has potential to be used directly as a new promising precursor for the 

electrodeposition of Zn film in DES without chloridization pretreatment. ChCl/urea-based DES 

has been investigated as a potential solvent for Zn recovery from waste oxide residues [34], and 

Zn can be electrodeposited directly from ZnO precursor in ChCl/urea-based ionic liquid [25,26]. 

However, the detailed nucleation-growth kinetics of Zn electrodeposition process in 

ChCl/urea-based DES and the influences of experimental parameter on the final morphology of 

Zn electrodeposits still need more investigation. 

In the present study, cyclic voltammetry (CV) and chronoamperometric measurements 

have been used to investigate the electrochemical reaction mechanism and the 

nucleation-growth process of Zn in ChCl/urea-based DES. The influences of electrodeposition 

potential and temperature on the morphology of Zn electrodeposits were examined. The 
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microstructure and the corrosion resistance of the obtained Zn films were investigated. In 

addition, Cu–Zn alloy films have also been electrodeposited from CuO–ZnO precursors in 

ChCl/urea-based DES. 

2. Experimental 

2.1. Electrolyte preparation 

ChCl [HOC2H4N(CH3)3Cl] (Aldrich 99%), urea [NH2CONH2] (Aldrich >99%), ZnO 

(Aldrich >99%) and CuO (Aldrich >99%) were used as received. In order to remove the water 

residue and trapped air, ChCl and urea were dried under vacuum at 333–363 K for at least 2 h. 

The eutectic solvent comprising 1:2 molar ratio of ChCl and urea (12CU) was stirred under 

argon atmosphere using a polytetrafluoroethylene (PTFE)-coated magnetic stir bar in a beaker 

at 353 K until a homogeneous, colorless ionic liquid formed. Then, powdered ZnO was added 

into the 12CU ionic liquid at different temperatures (313 to 353 K) and stirred until the 

ZnO-saturated electrolytes were achieved. The concentrations of the dissolved Zn species 

(mainly in the form of [ZnClO·urea]
–
) [32,33] in the ZnO-saturated 12CU ionic liquid at 313, 

333 and 353 K were determined to be approximately 0.006, 0.122 and 0.553 M, respectively. It 

is obvious that the solubility of ZnO in 12CU increases with increasing temperature.  

2.2. Electrochemical testing and electrodeposition 

All electrochemical experiments including CV, chronoamperometry and potentiodynamic 

polarization were performed by using a BioLogic HCP-803 electrochemical workstation. A 

cylindrical glass breaker (100 mL) was used as the electrolytic cell. Approximately 50 mL of 

the preformed ZnO-saturated 12CU ionic liquid was used as electrolyte for the electrochemical 

experiments. The electrochemical processes were carried out under an argon gas atmosphere 

javascript:void(0);
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during experiment. A three-electrode system was used for the electrochemical measurements 

and electrodeposition experiments. A platinum wire (1.6 mm in diameter) was used as counter 

electrode, a Cu electrode (0.5 mm in diameter) was employed as working electrode and a silver 

wire (0.5 mm in diameter) was served as reference electrode. All the electrodes were firstly 

mechanically polished and then immersed in 5% HCl for 1 min. Finally, the electrodes were 

rinsed with distilled water and dried before all measurements. The schematic illustration of the 

route for facile electrodeposition of Zn and Cu–Zn alloy films from ZnO and CuO precursors is 

shown in Fig. 1. The formed [MClO·urea]
– 

can react with Ch
+
 ions to form metals/alloys and 

[ChCl·O·urea]
2– 

at cathode. Then, the generated complex [ChCl·O·urea]
2–

 anion can diffuse 

through electrolyte to anode and lose electrons to produce gas [26]. The anode gas is mainly 

composed of O2, and small amounts of Cl2 may occur at anode if the applied potential is higher 

than the decomposition potential of the ionic liquid [35,36]. After electrodeposition 

experiments, the samples were cleaned with distilled water and acetone to completely remove 

the rest ionic liquid and subsequently dried under vacuum. 

Potentiodynamic polarization experiments were carried out in a 3 wt% NaCl aqueous 

solution, a platinum wire was used as counter electrode and a saturated calomel electrode (SCE) 

was served as reference electrode. The electrodeposited Zn film with an exposed area of 

approximately 0.2 cm
2
 was used as working electrode. Before the potentiodynamic sweep 

experiments, the working electrode was immersed into 3 wt% NaCl aqueous solution for about 

20 min to stabilize the open-circuit potential (OCP). The OCPs of the Zn films electrodeposited 

under different cathodic potentials and temperatures tend to stabilize in the potential range from 

–0.69 to –1.05 V, and the OCP of the Cu substrate is stabilized at around –0.21 V after 20 min 
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of immersion. For the polarization test, the potential was swept from –0.3 V below OCP to +0.2 

above OCP at a scan rate of 5 mV s
–1

. The corrosion potential (Ecorr) and corrosion current 

density (jcorr) were analyzed by Tafel extrapolation method. 

2.3. Film characterization 

The concentrations of the dissolved zinc species in the ZnO-saturated 12CU ionic liquid 

were analyzed by inductively coupled plasma spectroscopy (ICP, Perkin Elmer PE400). The 

surface morphology and elemental composition of the electrodeposited Zn and Cu–Zn alloy 

films were characterized using a JEOL JSM-6700F scanning electron microscope (SEM) 

accompanied with an energy dispersive X-ray spectrometer (EDS, Oxford INCA EDS system). 

The microstructure of the electrodeposited Zn films was further investigated using a 

transmission electron microscopy (TEM, JEOL JSM-2010F). The phase composition of the Zn 

films was determined by X-ray diffraction (XRD) using a Rigaku D/Max-2550 diffractometer 

with Cu Kα radiation. 

3. Results and discussion 

3.1. CV analysis 

In order to investigate the electrochemical behavior of Zn, CV experiments using a Cu 

electrode as working electrode at different scan rates in 12CU–ZnO (0.1 M) were performed 

systematically, and the CV curves are shown in Fig. 2a. In 12CU–ZnO (0.1 M) system (see Fig. 

S1b in the supplementary material) at 333 K, the single cathodic current peak observed at about 

–1.12 V is attributed to the reduction of Zn
2+

 to the metal Zn, the anodic current peak occurred at 

approximately –0.65 V is due to the stripping of the electrodeposited Zn. The cathodic limit of pure 

12CU is about –1.2 V (see Fig. S1a). The cathodic and anodic peak current densities increase with 
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the increase of scan rate, and the cathodic and anodic peak potentials shift to more negative and 

positive sides, respectively. A good linear relationship was obtained between the cathodic 

current density (jp) and the square root of scan rate (ν
1/2

), as shown in Fig. 2b, indicating that the 

electrode reaction is mainly diffusion-controlled. The separation between the cathodic peak and 

half-peak potentials |Ep – Ep/2| increases with the increase of scan rate. At the lowest scan rate, the 

separation of 56 mV is still larger than the value for the reversible process (31 mV at 333 K). All of 

these results indicat that the reduction reaction of Zn(II) to Zn in 12CU may be a diffusion-controlled 

quasi-reversible and it involves a one-step two electrons transfer process[37].  

For a quasi-reversible charge transfer process, the diffusion coefficient of Zn(II) can be 

determined by the irreversible Randles-Sevick equation (1) [37], which is also applicable to the 

quasi-reversible systems [38,39],
 

1/2

1/2

p ( ) ( )n0.4958 Z II Zn II

n F
i nFAC D

RT

  
  

 

                 (1) 

where ip is the cathodic peak current, n is the number of exchanged electrons, F is the Faraday constant, 

A is the electrode area, ( )Zn IIC  is the Zn(II) species concentration, ( )Zn IID
 

is the diffusion 

coefficient of Zn(II) species, α is the tranfer coefficient, nα is the electron transfer number in the rate 

determining step, ν is the scan rate, R is the gas constant, T is the absolute temperature. The value α can 

be obtained from equation (2) [37]:  

|Ep – Ep/2| = 1.857RT/αnαF                         (2) 

where Ep and Ep/2 are the cathodic peak potential and half-peak potential, respectively. According to 

equation (2) and data obtained from Fig. 2a, the average tranfer coefficient can be calculated as 0.34. 

Substituting this and other parameters in equation (1), the diffusion coefficient of Zn(II) in 12CU is 

determined to be 1.65 × 10
–8

 cm
2
 s
–1

 at 333 K, which is smaller than that of Zn(II) in AlCl3-EMIC (2.6 
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× 10
–6

 cm
2
 s

–1
 [40]) and Bu3MeN-TFSI (1.6 × 10

–7
 cm

2
 s

–1
 [41]) ionic liquids. The relatively low 

mobility of Zn(II) species may be attributed to the high viscosity of the 12CU [42] and the formation of 

large, sterically hindered Zn-complex anions when ZnO is dissolved in the 12CU [29]. 

3.2. Chronoamperometric investigations and nucleation-growth mechanism of Zn electrodeposition 

In order to investigate the mechanism of the Zn nucleation-growth process in more detail, 

chronoamperometric experiments were conducted by negatively stepping the cathodic 

potentials that are sufficient to initiate nucleation-growth process. Typical current density–time 

transients recorded from the potential step experiments in 12CU–ZnO (0.1 M) at 333 K are 

shown in Fig. 3a. The initial regime of each transient is characterized by a sharp decrease in 

current density which may be caused by the double layer charging [43]. Then the current 

density increases which is attributed to the formation and growth of Zn nuclei, until a current 

density maximum, jm, is reached at time, tm. The jm increases while the tm shortens with an 

increase in the applied potential. The electrodeposition of metals onto foreign substrates 

generally involves some types of three-dimensional nucleation process accompanied 

diffusion-controlled hemispherical growth. Scharifker and Hills
 
proposed two limiting models 

[44], including the instantaneous nucleation and progressive nucleation, to identify the 

nucleation mechanism. For instantaneous nucleation, all the Zn nuclei are created 

simultaneously at the beginning of the potential step, whereas in the progressive nucleation, 

new crystals are gradually created throughout chronoamperometric experiment. In order to 

differentiate the two nucleation-growth models, the data taken from the chronoamperometric 

experiments are compared with those obtained using theoretical transients. The theoretical 
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transients for limiting cases of instantaneous and progressive nucleation can be calculated using 

equation (3) and (4), respectively.  

            
22 1

inst m m m1.9542 1 exp 1.2564j j t t t t


                 (3) 

            
22 1 2

prog m m m1.2254 1 exp 2.3367j j t t t t
    

 
         (4) 

The comparison of the experimental current density–time transients with the theoretical 

models obtained from equation (3) and (4) are shown in Fig. 3b. It is obvious that the 

electrodeposition of Zn corresponds to the three-dimensional instantaneous nucleation-growth 

process. Besides, The value of jm
2
tm are found to be independent of the cathodic 

electrodeposition potential, and the diffusion coefficient of Zn(II) for the instantaneous 

nucleation process can be calculated by using equation (5) [44,45]. 

                   jm
2
tm = 0.1629(nFc)

2
D                       (5) 

The average value of diffusion coefficient is 2.02 × 10
–8

 cm
2
 s

–1
, which is in good 

agreement with the result obtained from CV. 

3.3. Electrodeposition of Zn films and morphology observation 

Bulk electrodeposition of Zn films on Cu substrate can form adherent layers which possess 

striking brightness and silvery appearance. The surface morphologies of the Zn electrodeposits 

obtained at different cathodic potentials are shown in Fig. 4. It is obvious that the Zn 

electrodeposits obtained at –1.05 V appear to have uniform, dense and compact structure (Fig. 

4a). When the electrodeposition potential extends to more negative at –1.10 V, the 

homogeneous hexagonal-shape particles begin to form (Fig. 4b). The electrodeposition potential 

on the working electrode acts as the main driving force for the electrodeposition of Zn particles, 

which plays an important role in changing the nucleation-growth of Zn particles. The current 
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density increases with increasing the electrodeposition potential, and the increase in current 

density is beneficial to the nucleation rate during the electrodeposition process. However, a 

further negative shift of the potential to –1.15 V results in nodular electrodeposits with different 

sizes (Fig. 4c). The sharp and elongated of Zn nanoparticles is due to the increase of the 

electrodeposition rate. It seems that more negative potential on the working electrode induces 

more nucleation sites on the substrate, which is beneficial for the nucleation process. 

    The surface morphologies of the Zn electrodeposits obtained at different electrodeposition  

temperatures are shown in Fig. 5. The electrodeposits obtained at the low temperature are flat 

and compact (Fig. 5a). When the temperature changes from 313 to 353 K, the particle size of the 

electrodeposited Zn seems to apparently increase. The viscosity of 12CU ionic liquid decreases 

with the increase of the electrodeposition temperature, therefore, the current densities increase 

with the increase of the temperature. As a result, the reaction rate and the growth of nuclei 

during the electrodeposition process increase with increasing the temperature, which leads to 

the electrodeposited Zn particles grow up to form larger particles. At 353 K (Fig. 5c), the 

particles of the electrodeposits show non-uniform structure compared to the other 

electrodeposits obtained at lower temperatures. These results indicate that higher temperature 

can enhance the reaction rate and further accelerate the growth of nuclei, which contribute to 

the formation of large particles. The average current efficiency and energy consumption of this 

process are calculated to be approximately 89.7% and 3.14 kWh/kg, respectively [46]. 

3.4. XRD and Cross-sectional TEM analysis 

The XRD pattern of the Zn electrodeposits on Cu substrate obtained from 0.1 M ZnO in 

12CU at –1.10 V and 333 K for 40 min are shown in Fig. 6. The XRD analysis indicates that all 
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the peaks are associated with Zn and Cu (substrate), no other peaks are observed. It is 

evidenced that the electrodeposited film is composed of high purity Zn, which can be further 

confirmed by the EDS analysis (see Fig. S2). 

Fig. 7a is the SEM characterizations of the hexagonal-shape Zn films electrodeposited at 

–1.10 V and 333 K for 40 min, it can be observed that the particle size of the electrodeposits is 

approximately 200 nm. The average crystal size of the Zn phase was calculated using Scherrer 

equation [47] with TOPAS software based on the XRD data (Fig. 6), and the calculated value is 

approximately 25.7 nm, which indicating that the hexagonal-shape Zn particles are formed due 

to the agglomeration of Zn crystals [48]. Moreover, the texture coefficient was also calculated 

and the value of 2.01 matches the preferred growth in the (101) direction [49]. Fig. 7b–7d 

shows the cross-sectional TEM images of the electrodeposited Zn film on Cu substrate. As 

shown in Fig. 7b, the interface of the Zn film and Cu substrate can be clearly distinguished as 

labelled by a dashed line. The Cu substrate has a coarse particle structure, and no obvious gaps 

or pores are observed in the Zn film. Moreover, the average thickness of the electrodeposited 

Zn film is approximately 40 nm. It should be noted that the deposited Pt thin film was served as 

a protection layer for the Zn film when preparing the cross-sectional TEM sample. Fig. 7c 

shows the high revolution (HR)-TEM image of the Zn film/Cu substrate interface. The left part 

of Fig. 7c is confirmed to be Zn film by EDS and the right part is Cu substrate. The HR-TEM 

image of the Zn crystals exhibits ordered structure, from which it can be seen that the expanded 

plane fringe with 0.211 nm crystal plane spacing can be assigned to the Zn (101) plane. In 

addition, the indexed spot of the selected area electron diffraction (SAED) patterns in Fig. 7d 

also indicates the nanocrystal structure of the Zn film and the coarse grain structure of Cu 
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substrate [50]. The SAED patterns also confirm the hcp structure of the Zn electrodeposit on 

the Cu substrate. 

3.5. Corrosion behavior of the electrodeposited Zn films 

Fig. 8 reveals the typical potentiodynamic polarization curves of the Zn films 

electrodeposited under different conditions and the blank Cu substrate in 3 wt% NaCl aqueous 

solution at room temperature. The cathodic reaction in the polarization curves corresponds to 

the hydrogen evolution, and the anodic branch corresponds to the corrosion resistance. 

Corrosion potentials (Ecorr) and corrosion current densities (jcorr) derived from the polarization 

curves through Tafel extrapolation are summarized in Table 1. For the blank Cu substrate, a 

remarkable anodic reaction occurs when the applied potential moves to the anodic area, the 

polarization current increases with more positive anodic potential. The corrosion rate is 

proportional to the corrosion current density. Among the five electrodeposited Zn films, the Zn 

film electrodeposited at 353 K and –1.10 V exhibits the highest jcorr of about 50.19 μA cm
–2

, 

which is close to the Cu substrate. The poor corrosion resistance of the Zn film electrodeposited at 

353 K and –1.10 V may be due to its coarse particle structure of Zn (Fig. 5c). The Zn films 

electrodeposited at more positive potentials and low temperatures have lower values of jcorr 

(Table 1). The jcorr value of the Zn film electrodeposited at 333 K and –1.05 V is decreased to 

about 12.05 μA cm
–2

. The improved corrosion resistance may be attributed to the dense and 

compact structure of the Zn film (Fig. 4a) [51]. 

3.6. Electrodeposition of Cu–Zn alloy films 

3.6.1. Voltammetric study 

Typical CV curve of the 12CU ionic liquid dissolved with 0.1 M ZnO and 0.01 M CuO on a Cu 
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electrode at 333 K is shown in Fig. 9. There are three reduction peaks on the cathodic branch of the 

voltammogram. One small reduction peak at –0.15 V (labeled as c1) is attributed to the Cu(II) to Cu(I) 

reduction process, and the reduction peak at –0.50 V (c2) is assigned to the Cu(I) to Cu reduction 

process. The evident reduction peak at –1.15 V (c3) can be attributed to the Zn(II) to Zn reduction 

process. When the scan reversed, four oxidation peaks (a1, a2, a3 and a4) are observed in the potential 

range of –1.00 to 0.60 V. The oxidation peaks (a1 and a2, a4) at approximately 0.45, –0.2 and –0.75 V 

correspond to the stripping potential of pure Cu (a1 and a2) and Zn (a4), respectively, and the oxidation 

peak (a3) between a4 and a2 is mainly attributed to the stripping of Cu–Zn electrodeposits.  

3.6.2. Characterization of the Cu–Zn electrodeposits 

Fig. 10a shows the XRD patterns of the Cu–Zn alloy electrodeposited on a Cu substrate in 

the 12CU ionic liquid containing 0.1 M ZnO and 0.01 M CuO at different cathodic potentials 

and 333 K for 100 min. The XRD analysis shows that the dominate phases of the Cu–Zn film 

electrodeposited at –1.10 V are Cu5Zn8 and Cu (substrate), which further confirms that Cu–Zn 

codeposition can be achieved through the effectively control of electrodeposition potential. 

When the electrodeposition potential changes from –1.10 to –1.15 V, it is noticeable that the 

XRD pattern of the film obtained at –1.15 V is much different from that of the film 

electrodeposited at –1.10 V. Two new phases (CuZn5, Zn) are observed and the Cu5Zn8 phase is 

disappeared, which is mainly due to the Zn electrodeposition rate obviously increases with 

more negative potential. The obtained phases of the Cu–Zn films electrodeposited on a Fe 

substrate under the above conditions are the same as the electrodeposits on the Cu substrate (see 

Fig. S3), which indicates that the phase compositions of the Cu–Zn alloy cannot be affected by 

the metal substrates. The average crystal sizes of the Cu5Zn8, CuZn5 and Zn phases calculated 



 18 / 34 

 

according to Scherrer equation [47] with TOPAS software based on the XRD data (Fig. 10a) are 

40.0, 51.5 and 64.0 nm, respectively, which indicate that the Cu–Zn alloy particles are formed 

due to the agglomeration of Cu and Zn crystals [48]. The surface morphologies of Cu–Zn alloys 

electrodeposited in the 12CU ionic liquid containing 0.1 M ZnO and 0.01 M CuO at different 

cathodic potentials and 333 K for 100 min were further characterized and shown in Fig. 10b 

and 10c. The Cu–Zn deposit obtained at –1.10 V is composed of spherical clusters with some 

void space between the particles (Fig. 10b). With increasing the potential to –1.15 V, some 

polygonal structure of particles begin to form, and the electrodeposits are flat and compact (Fig. 

10c). 

4. Conclusions 

The electrodeposition of Zn and Cu–Zn alloy from ZnO/CuO precursors has been investigated in 

ChCl/urea-based DES. Electrochemical measurements showed that the Zn electrodeposition is a 

diffusion-controlled quasi-reversible, one-step, two electrons transfer process. The diffusion coefficient 

of Zn(II) was estimated to be 1.65 × 10
–8

 cm
2
 s
–1

 at 333 K. Three-dimensional instantaneous nucleation 

with diffusion-controlled growth process occurred during Zn electrodeposition and the diffusion 

coefficient of Zn(II) showed good agreement with the result of CV. Uniform, dense and compact Zn 

electrodeposits can form under more positive potentials and lower temperatures. Non-uniform and 

clustering Zn electrodeposits with different particle sizes can form under more negative potentials and 

higher temperatures. The average current efficiency and energy consumption of this process are 

calculated to be approximately 89.7% and 3.14 kWh/kg, respectively. Meanwhile, the electrodeposited 

Zn crystals preferentially orient parallel to the (101) plane. Furthermore, the Zn films obtained under 

more positive potentials and low temperatures exhibit improved corrosion resistance in 3 wt% NaCl 
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aqueous solution, which is mainly attributed to the flat, compact and fine particles in the film. In 

addition, the Cu–Zn alloy films have also been electrodeposited directly from their metal oxide 

precursors in 12CU electrolyte and the phase composition of the Cu-Zn alloy depends on the 

electrodeposition potential, which may have implications for the electrodeposition of other alloys films 

from oxides precursors in DESs system.  
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Table Caption 

Table 1 Corrosion characteristics of Zn films and Cu substrate summarized from potentiodynamic 

polarization tests in 3 wt% NaCl solution. 

Conditions Ecorr/mV jcorr/μA cm
–2

 

333 K, –1.05 V –806 12.05 

333 K, –1.10 V –977 28.92 

333 K, –1.15 V –1127 46.80 

313 K, –1.10 V –688 14.43 

353 K, –1.10 V –1085 50.19 

Cu substrate –216 63.54 
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Figure Captions 

Fig. 1. Schematic illustration of the electrodeposition of Zn and Cu–Zn alloy films from metal 

oxides (MOs, i.e., ZnO and CuO) precursors in 12CU ionic liquid. 

Fig. 2. (a) CV curves of a Cu electrode in 12CU–ZnO (0.1 M) at 333 K with different scan rates. 

The scan rates were 5, 10, 15, 20 and 25 mV s
–1

, respectively. (b) Relationship between 

cathodic peak current density (jp) and square root of scan rate (ν
1/2

) calculated from (a). 

Fig. 3. (a) Current density–time transients of chronoamperometric experiments on a Cu electrode 

in 12CU–ZnO (0.1 M) at different cathodic potentials from –1.05 to –1.15 V at 333 K. (b) 

Comparison of the dimensionless experimental curves derived from the current density–time transients 

shown in (a) with the theoretical models for instantaneous and progressive nucleations. 

Fig. 4. SEM images of the Zn electrodeposits obtained from 12CU–ZnO (0.1 M) at 333 K on a 

Cu substrate at different cathodic potentials: (a) –1.05 V, (b) –1.10 V, (c) –1.15 V for 100 min.  

Fig. 5. SEM images of the Zn electrodeposits obtained from 12CU–ZnO (0.1 M) at –1.10 V on 

a Cu substrate at different temperatures: (a) 313 K, (b) 333 K, (c) 353 K for 100 min. 

Fig. 6. XRD pattern of the Zn electrodeposits obtained from 12CU–ZnO (0.1 M) on a Cu 

substrate at –1.10 V and 333 K for 40 min. 

Fig. 7. (a) SEM image of the Zn electrodeposits obtained on a Cu substrate at –1.10 V and 333 K 

for 40 min. (b) TEM image of the cross-sectional of the electrodeposited Zn film on a Cu 

substrate corresponding to (a). (c) HR-TEM image of the electrodeposited Zn film/Cu substrate 

recorded from (b). (d) The selected area electron diffraction (SAED) pattern of the Zn 

electrodeposits corresponding to (c), and the (102), (101), (100) and (002) planes for Zn are 



 29 / 34 

 

labelled in the figure.  

Fig. 8. Typical potentiodynamic polarization curves of the Zn films electrodeposited under 

different conditions and the blank Cu substrate in 3 wt% NaCl aqueous solution at room 

temperature. 

Fig. 9. CV curve of a Cu electrode in 12CU ionic liquid containing 0.1 M ZnO and 0.01 M CuO 

at 333 K with a scan rate of 10 mV s
–1

. 

Fig. 10. (a) XRD patterns of the Cu–Zn alloy electrodeposited on a Cu substrate in the 12CU ionic 

liquid containing 0.1 M ZnO and 0.01 M CuO at different cathodic potentials and 333 K for 100 min. 

(b) and (c) SEM images of the Cu–Zn electrodeposits obtained on a Cu substrate in the 12CU ionic 

liquid containing 0.1 M ZnO and 0.01 M CuO at 333 K for 100 min, (b) –1.10 V, (c) –1.15 V. 
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