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Abstract A generalization of the approach developed in the recent papers by
the authors (Mishuris et al) [1,2] is presented. It aims to provide a descrip-
tion of the Hele-Shaw cell in the presence of multiple small obstacles/moving
particles. We perform an asymptotic analysis of the dynamics of the mov-
ing boundary and the moving particles. For this, a modification of Maz’ya-
Movchan-Nieves uniform asymptotic formula [3] for the Green’s function of
the mixed boundary value problem for the Laplace equation in a multiply
connected domain is utilized. The paper contains extensive numerical analy-
sis, accounting for various physical mechanisms of particle movement in the
Hele-Shaw flow.

Keywords Hele-Shaw flow · point source/sink · moving obstacles · Green’s
function · Neumann function · mixed boundary value problem · asymptotic
analysis · numerical simulation

1 Introduction

We consider a slow viscous flow in a narrow space between two parallel plates
in presence of various fixed or moving obstacles. The model is a modification
of the well-known Hele-Shaw moving boundary value problem [4], [5] which in
turn is an analogous to a one-phase Stefan problem [6] and is a special case of
the Navier–Stokes problem (see, e.g., [5]).

It is supposed that the driving mechanism for the flow is a one-point
source/sink. The movement of particles in the flow depends not only on the
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source/sink intensity, but also on the friction between obstacles and plates, as
well as on the particle interaction.

The considered problem is motivated by applications encountered in in-
dustrial settings. Foremost is the often noted example of injection moulding,
where a high viscosity fluid is pumped through a strategically placed hole into
a mould of prescribed shape. During the injection process air must be allowed
to escape from the mould, and as such vents must be properly placed around
the mould at the locations which will be the last to be filled by the fluid. In the
simple case this reduces to studying the free moving boundary of a Hele-Shaw
cell containing stationary obstacles (see [7] for a more extensive description).

Meanwhile the field of microfluidics presents a more recent domain in which
the modeling of multiple moving inclusions within the Hele-Shaw cell may
prove useful. An interesting example was given in [8], where a Hele-Shaw cell
with fine patterns etched into the channel roof was utilized to control the
movement of water drops within a fluid flow. Such a system has potential
benefits when performing parallel experiments in molecular and cell biology,
where using two-dimensional arrays enables the investigator to, in effect, ob-
tain simplified data sets for multiple experiments simultaneously.

Additionally, the method utilized in this paper to represent inelastic colli-
sions means that the model may be used to examine problems where particles
coalesce (or ’clump’), such as the study of biological systems where agglutina-
tion occurs.

Finally it is the hope of the authors that this model may later assist in
the developing of a numerical tool capable of simulating the mass transport
mechanism for the fluid flow in a narrow channel. This type of problem is most
notably encountered in hydraulic fracturing technologies, with respect to the
slurry flow inside the fracture (see, e.g., [9], [10] and references therein).

Following [11] we reduce our problem to a mixed boundary value problem
for the Laplace equation in a multiply connected domain. Supposing existence
of moving particles in the flow we have to add extra equations describing this
movement (also accounting for the different friction properties of the particles).
Its geometric solution (parametrization of the moving front and trajectories of
the moving particles) is sought from equations given in terms of the Green’s
function for the above mixed boundary value problem. Our main theoretical
tool is an asymptotic analysis of the model based on the approximation of the
Green’s function.

The properties of Green’s functions for various differential operators sub-
ject to different boundary conditions are of great importance in finding the
solution to the above problems, and thus for many applications (see, e.g. [12],
[13]). There are only a few known results for the exact representation of Green’s
functions which correspond to the simplest boundary conditions and simple
geometry (see, e.g. [14], [15]). Therefore, elaborating on novel asymptotic and
approximate methods becomes crucial to the theory and application of Green’s
functions. The use of asymptotic methods for approximation of Green’s func-
tions goes back to the classical paper by J. Hadamard [16], where the method
of regular perturbation was performed. Recently, V. Maz’ya, A. Movchan and
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M. Nieves developed the methods of asymptotic approximation and obtained
several uniform asymptotic formulas for Green’s functions related to differ-
ent boundary value problems for a number of differential operators in the
case of singular perturbations of the domains. In [17] a number of uniform
asymptotic approximations of the Green’s function for mixed and Neumann
problems in domains with small holes/inclusions were obtained. A review of
Maz’ya-Movchan-Nieves results on asymptotic expansion of the Green’s func-
tion for elliptic problems in perforated domains is presented in [18]. Special
attention is paid to Green’s kernel for multiply connected domains in R3. For
domains in R2 with several small inclusions a uniform asymptotic formula for
the Green’s function in transmission problems of antiplane shear was given in
[19]. An extended exposition of methods and results for asymptotic approx-
imation of Green’s functions is presented in [3]. We use these results in the
study of the Hele-Shaw problem in domains with several small inclusions.

This article presents an essential extension of the method proposed in [1]
(for a single fixed obstacle in the Hele-Shaw flow) and in [2] (where an indi-
vidual particle is supposed to move in the flow). Our first aim here is to show
that the developed method continues to obtain comparably good results for
several (fixed or immobile) inclusions. We note that the density, size and shape
of the obstacles do not constrain our asymptotic analysis (though the compu-
tations in this paper are only dealing with circular objects; this choice has the
advantage of allowing us to present the discovered features in a more straight-
forward manner). The more novel challenge is for us to take into account the
various interactions (elastic, fully non-elastic and intermediate) between par-
ticles. We perform numerical simulations involving different scenarios of the
obstacles’ behavior, as well as conducting simulations with differing numbers
of inclusions (up to 540).

Our paper is organized as follows. The problem formulation is given in Sec.
2, with the final set of equations relative to our model collected under the title
Problem HSM.

A modification of the Maz’ya-Movchan-Nieves formula for the Green’s
function of a mixed boundary value problem for the Laplace equation is pre-
sented in Sec. 3. It accounts for the geometrical and physical assumptions of
the considered model. The components of the proposed uniform asymptotic
formula (3) are additionally presented in this chapter, while further discussion
of their nature and possible representations is relegated to the supplementary
material.

The final system of equations is presented in Subsec. 4.1, and a computa-
tional model is developed to solve the approximate system in Subsec. 4.2.

In Sec. 5 the accuracy of the computational model is examined, followed
by the providing of numerical simulations involving different scenarios for the
obstacles’ movement, examining the effect of particle inclusion on the fluid
flow.

We conclude in Sec. 6 with the discussion of the obtained results highlight-
ing the different features of the flow in presence of moving obstacles.
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2 Problem formulation

We consider a two-dimensional potential flow of viscous incompressible fluid
in the Hele-Shaw cell caused by a source/sink placed at the origin 0 with finite
number of rigid obstacles in the flow, which is supposed to be very slow. Each
obstacle is moving without rotation due to the pressure in the flow. Their
movement can be faster or slower depending on specific friction between an
obstacle and the plates of the Hele-Shaw cell.

Let us denote by Ω(t) 3 0 an open simply connected domain encircled by
the free boundary Γ (t) = ∂Ω(t) at each time instant t ≥ 0. We study the flow
at (in principle unknown) time interval I = [0, T ] which could be rather small
in the case of the sink (extraction of the fluid).

The obstacles are represented by fixed shape closed subdomains of Ω(t).
To avoid technical difficulties, we accept a circular shape of the the obstacles
of the radius εk and denote the (moving) center of obstacles by zk(t), i.e.
Fk(t) :=

{
z ∈ R2 : |z− zk(t)| ≤ εk

}
, k = 1, . . . ,M . The domain occupied by

the fluid is denoted ΩM (t) = Ω(t) \
M⋃
k=1

Fk.
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Fig. 1 Diagram of the initial configuration of the Hele-Shaw cell for an arbitrary
domain Ω. Here ω0 = dist{0, Γ (0)}.
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This formulation is demonstrated graphically in Fig. 1, as well as certain
natural assumptions which the parameters of the initial geometry must sat-
isfy1:

1. Particle distribution:
– The initial distribution of the particles/obstacles must not place them

too close to the boundary, with the minimum distance determined by
the radius of the particle. Stated explicitly: dist{δFk(0), δΩ(0)} = bk >
εk.

– Similarly the obstacles/particles must not come too close to the source/sink,
with the radius of the particle determining the minimum: dist{δFk(0),0} =
qk > εk.

– The inclusions must not overlap with each other, this can be stated as
M⋂
k=1

Fk = ∅. More explicitly we have, for all k, l = 1, . . . ,M , k 6= l, t ∈ I:

: dk,l = |zk(t)− zl(t)| > εk + εl
2. Domain size: The characteristic size of the initial domain Ω(0) is of order

100, with bounds on the minimum and maximum initial distance as follows:
0 < c ≤ min dist{0, Ω(0)} ≤ max dist{0, Ω(0)} ≤ 1, where c < bk + 2εk.

In furthering the analysis, it is convenient to re-scale the domains Fk by
introducing new variables

ξk =
1

εk
(x− zk) ,

i.e. to consider the following domains

F0(t) := B (O; 1) . (1)

From maximum regularity assertion for the free boundary in the Hele-Shaw
problem (see [20]) it follows that initial boundary has to satisfy the condition

∂Ω(0) ∈ C2,α, 0 < α < 1. (2)

Now we are at the position to formulate our problem (cf. [5], [11]) which
is a generalization of the models considred in [1], [2].

Problem HSM. Find 2M + 3 unknown real-valued functions
{w(s, t); G(z; ζ; t); z1(t), . . . , zM (t)}, where zk(t) = (zk,1(t), zk,2(t)),
k = 1, . . . ,M , and w(s, t) = (w1(s, t), w2(s, t)) : ∂ U× I → R2 satisfying2

(i) w(s, t) ∈ Γ (t) for all (s, t) ∈ ∂ U× I;
(ii) w(·, t) : ∂ U→ Γ (t) is a C2-diffeomorphism for each fixed t ∈ I;
(iii) w(0)(s) = w(s, 0) is a given C2-diffeomorphism of the unit circle ∂ U,

which describes the boundary Γ (0) of initial domain ΩM (0);

1 It is worth noting that the constants c, bk, dk,l and qk aren’t dependent on any individual
εk.

2 Unknown magnitudes w, G, z0 depend on time t from a right-sided neighborhood I of
t = 0. In fact, for our problem we need to determine the value of G(z; ζ; t) only at the point
ζ = O, but we keep the extra variable ζ for computational reasons.
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(iv) G(z; ζ; t) is Green’s function of the operator −4 subject to the mixed
boundary value problem, i.e. for each fixed t ∈ I

∆G(z; ζ; t) + δ(z− ζ) = 0, z, ζ ∈ ΩM (t);

G(z; ζ; t) = 0, z ∈ Γ (t), ζ ∈ ΩM (t);

∂G(z; ζ; t)

∂nz
= 0, z ∈ ∂Fk(t), ζ ∈ ΩN (t), k = 1, . . . ,M ;

(v) ∂tw(s, t) = −Qh
2

12µ · ∇G(w(s, t);O; t) for all (s, t) ∈ ∂ U× I;

(vi) d2zk(t)
dt2 +

κkπε
2
k

mk

dzk(t)
dt =

= Qεk
mk

2π∫
0

G(zk,1(t)+εk cos θ, zk,2(t)+εk sin θ; ζ; t)·n(k)(θ)dθ;

(vii) zk(0) = z
(0)
k , z′k(0) = z

(1)
k .

Here h is the width of the Hele-Shaw cell, µ is viscosity coefficient of fluid in
the cell, Q is the strength of the source/sink, κk are the friction coefficients for
the contact of k-th obstacle and the plates of the cell, mk = πε2kρk is the mass
of the k-th obstacle, n(k)(θ) is the internal normal vector on the boundary of
k-th obstacle, k = 1, . . . ,M .

The function w(s, t) = (w1(s, t), w2(s, t)) determines the parametrization
of the unknown free boundary ∂Ω(t). Meanwhile the movement of each obsta-
cle can be described in terms of the location of its variable center zk(t), which
is permissible as the inclusions are moving as rotation free rigid bodies. The
assumption of non-rotation is valid as the small size and circular shape of each
particle mean that the pressure function around its boundary can be assumed
constant, while the term for friction with the fluid will be negligible compared
to that between the particle and the plates of the cell. It is worth noting that
the lubricative force between particles is not modeled in this paper, as it is
not required to test the accuracy and limitations of the proposed system, how-
ever this can be added at a later time without requiring modification of the
underlying analytical formulation.

Existence of the solution to the above problem can be shown in a way
similar to that for existence of the solution for the flow in the Hele-Shaw cell
with air bubbles in the flow (see, e.g. [21] and references therein).

The aim of our study is to get an approximate solution to the problem
HSM, and to create a numerical system based upon it which describes the
different behaviour of small obstacles in the Hele-Shaw flow.

3 Uniform representation of Green’s function

The method of uniform asymptotic approximation of the Green’s function
related to different boundary value problems for a number of differential oper-
ators in singularly and regularly perturbed domains was created and developed
by V. Maz’ya, A. Movchan and M. Nieves and is summarized in the recent
book [3]. This method has additionally been used successfully to examine the
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effect of an individual obstacle or particle in the Hele-Shaw cell [1,2]. In our
analysis of Problem HSM slight modifications to the asymptotic formula for
Nε [19, (7.1)] are required, however as the method remains similar it won’t
be repeated here in full. The full details of the formulation and method are
explained more fully in the supplementary material.

Let Gε(x,y) be Green’s function of the Laplace operator −∆ with the zero
Neumann data on ∂Fk, k = 1, . . . ,M, and the zero Dirichlet data on Γ . The
function Gε(x,y) has the following asymptotic representation

Gε(x,y) = GΩ(x,y)+

M∑
k=1

{
N (k)

(
x− zk
εk

,
y − zk
εk

)
+

1

2π
log

∣∣∣∣x− y

εk

∣∣∣∣}+ (3)

+

M∑
k=1

εk

{
D(k)

(
x− zk
εk

)
· ∇xH(zk,y) +D(k)

(
y − zk
εk

)
· ∇yH(x, zk)

}
+rε(x,y),

where

|rε(x,y)| ≤ Const · ε2.

Here N (k) are solutions to the modified Neumann problems in the exterior

of cl ω
(k)
ε , D(k) are dipole vectors corresponding to inclusion ω

(k)
ε and H cor-

responds to the regular part of the Green’s function.

The uniform estimate for the remainder in the above mentioned [19, Thm
7.1] is proved in L∞-norm. It remains valid in our case for any multiply con-
nected domain ΩM (t) with sufficiently small interval I of time variable t.

In our case we accept the following notation for each instant of time t ∈ I.3

GΩ(x,y) = G(x,y; t) is Green’s function of the Laplace operator −∆ for the
simply connected domain Ω = Ω(t) with zero Dirichlet data on ∂Ω(t), which
is identical to that generating the representation presented in the case of one
obstacle in [1], [2].

GΩ(x;y) := G(x;y; t) = − 1

2π
log |g(x,y)| (4)

This is the Green’s function for the interior simply connected domain Ω(t).
Here g(x,y) = (g1(y,y), g2(x,y)) : Ω(t) → U is the normalized conformal
mapping of Ω(t) onto the unit disc U (g(x,y)

∣∣
x=y

= 0, and g′(x,y)
∣∣
x=y

> 0).

In our case y = O. If g0(x) : Ω(t)→ U is any (non-normalized) mapping, then

g(x,y) = e− arg g′0(y)
g0(x)− g0(y)

1− g0(y)g0(x)
.

3 Note, that in the case of one obstacle, this modified formula coincides with Maz’ya-
Movchan-Nieves formula [3, (2.72)], cf. also [2].
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In order to more easily express the final Neumann and Dirichlet functions
we introduce auxiliary variables related to scaling of small obstacles

ξk =
1

εk
(x− zk) , ηk =

1

εk
(y − zk) , k = 1, . . . ,M. (5)

In these notations N (k)(ξk, ηk), k = 1, . . . ,M , are the Neumann functions for
the exterior of the re-scaled obstacles Fk: The Neumann functionsN (k)(ξk, ηk),
k = 1, . . . ,M possess in our case explicit representations (see, e.g., [22, p. 68]):

N (k)(ξk, ηk) = − 1

4π
log |ξk − ηk|2− (6)

− 1

4π
log

[
(|ξk|2 − 1)(|ηk|2 − 1) + |ξk − ηk|2

|ξk|2|ηk|2

]
.

Meanwhile the Dirichlet functions, expressed for circular obstacles, are cal-
culated from integrals using formula [23, (4.397.6)]:

D(k)
1 (ξk) =

1

2

ξk,1
(ξk,1)2 + (ξk,2)2

, D(k)
2 (ξk) =

1

2

ξk,2
(ξk,1)2 + (ξk,2)2

, k = 1, . . . ,M.

(7)
In addition to the formulae for these functions solving Problem HSM

requires both the derivatives and integrals to be calculated. These calculations
are again placed in the appendix, and the results are expressed in Sect. 4.1.

4 Computational algorithm

With the asymptotic relationships required now derived, it is possible to ar-
ticulate the approximate solution to Problem HSM and create a numerical
model capable of performing simulations for multiple particles within the Hele-
Shaw cell. Additionally, the results of these simulations can be used to more
carefully examine the effect of initial particle distribution on both the evolution
of the fluid boundary and the dynamic behaviour of the particles themselves.

4.1 Final system of differential equations

It follows from the potential theory (see, e.g. [13, Ch. 8], cf. [19, Lemma 5.1]),
that for any compact subset D, D ⊂ ΩN (t)

(rε(x,y))
′
xj
≤ ε3, j = 1, 2, x,y ∈ D.

Thus, the Problem (HSM) can be asymptotically approximated by the follow-
ing system of equations

∂twj(w;0; z) = −Qh
2

12µ

(
∂xj

G(w;O) + Υj(w;0; z)
)

(8)
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d2zk,j
dt2

+
κπε2k
mk

dzk,j(t)

dt
=
Qε2k
mk

I
(k)
j −c sign

(
dzk,j(t)

dt

) ∣∣∣∣dzk,j(t)dt

∣∣∣∣2 , k = 1, . . . ,M,

(9)
where:

Υj =

M∑
k=1

(
K

(k)
j + ∂wjJ

(k)
1 (w;O) + ∂wjJ

(k)
2 (w;O)

)
, j = 1, 2 (10)

with initial conditions zk(0) = z
(0)
k , z′k(0) = z

(1)
k . Here w = (w1(s, t), w2(s, t))

is an unknown parametrization of the external boundary ∂D(t),
zk = (zk,1(t), zk,2(t)) are unknown position of the center of the moving ob-
stacles. The additional term in the right side of (9) represents the drag force,
where c is a constant computed as: c = 0.5hcxεkρ/mk, and cx stands for the
drag coefficient, while ρ denotes the fluid density.

Here, in the right hand-side of equations (8), (10) we use formulas derived
more fully in the supplementary material, namely

∂xjG
Ω(w1(s, t), w2(s, t); 0, 0) = (11)

= − 1

2π

(
g1(w1(s, t), w2(s, t); 0, 0)∂wjg1(w1(s, t), w2(s, t); 0, 0)+

+g2(w1(s, t), w2(s, t); 0, 0)∂wjg2(w1(s, t), w2(s, t); 0, 0)
)
.

K
(k)
j = − 1

2π

{
(wj − zk,j)(z2k,1 + z2k,2) + ε2kzk,j

[(w1 − zk,1)2 + (w2 − zk,2)2 − ε2k][z2k,1 + z2k,2 − ε2k] + ε2k(w2
1 + w2

2)
−

(12)

− wj − zk,j
(w1 − zk,1)2 + (w2 − zk,2)2

}
.

∂x1
J
(k)
1 (w, O) =

ε2k
2

(
(w2 − zk,2)2 − (w1 − zk,1)2

((w1 − zk,1)2 + (w2 − zk,2)2)2
· ∂x1

H(zk;O)− (13)

− 2(w1 − zk,1)(w2 − zk,2)

((w1 − zk,1)2 + (w2 − zk,2)2)2
· ∂x2

H(zk;O)

)
,

and

∂x2
J
(k)
1 (w, O) =

ε2k
2

(
− 2(w1 − zk,1)(w2 − zk,2)

((w1 − zk,1)2 + (w2 − zk,2)2)2
· ∂x1

H(zk;O)− (14)

− (w2 − zk,2)2 − (w1 − zk,1)2

((w1 − zk,1)2 + (w2 − zk,2)2)2
· ∂x2

H(zk;O)

)
,

where the derivatives ∂xjH(zk;O) are:.

∂xjH(zk;O) =
1

2π

g1(zk;O)∂zk,j
g1(zk;O) + g2(zk;O)∂zk,j

g2(zk;O)

g21(zk;O) + g22(zk;O)
− (15)

− 1

2π

zk,j
z2k,1 + z2k,2

.
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At last

∂xjJ
(k)
2 (w, O) =

ε2k
2

zk,1
z2k,1 + z2k,1

· ∂wjF1(w; zk) +
ε2k
2

zk,2
z2k,1 + z2k,1

· ∂wjF2(w; zk).

(16)
where

Fj := ∂yjH(w; zk) =
1

2π

g1(w; zk)∂zk,j
g1(w; zk) + g2(w; zk)∂zk,j

g2(w; zk)

g21(w; zk) + g22(w; zk)
+

(17)

+
1

2π

wj − zk,j
(w1 − zk,1)2 + (w2 − zk,2)2

, j = 1, 2, k = 1, . . . ,M.

Finally, the right-hand side of remaining equations (9) is given by:

I
(k)
j =

g1(zk;O)∂zk,j
g1(zk;O) + g2(zk;O)∂zk,j

g2(zk;O)

g21(zk;O) + g22(zk;O)
+ 3

zk,j
z2k,1 + z2k,2

. (18)

4.2 Description of the scheme

The computational scheme to solve the problem is analogical to that presented
in [2]. It employs reduction of the system of governing equations (8)-(9) to
the dynamic system of the first order. To this end an additional dependent
variable, the velocity of particle, is introduced:

vk = z′k. (19)

Thus, for the boundary curve discretized by N points and for the M inclusions
inside the domain, one obtains a system composed of 2N + 4M ordinary dif-
ferential equations. The system is solved by the standard MatLab ODE tool:
ode45. The conformal mappings of the domain free boundary are performed
by the Schwarz-Christoffel toolbox [24,25], with the derivatives of the map-
ping calculated using subroutines based on spline approximation. When the
particles collisions are detected the computations are discontinued. New ini-
tial conditions are then defined assuming either; a perfectly elastic impact, or
a purely inelastic impact (which is achieved by ’fusing’ the original particles
together into a single, perfectly circular, particle with a larger radius and pre-
serving the objects mass). Next, the computational process is resumed with
the new initial conditions.

In all simulations, as the asymptotic approximation reduces in accuracy
near the source/sink, or near to the fluid boundary, three conditions are im-
posed to prevent the results being adversely affected. The first two conditions
are that, for any particle k, there must always be a minimum distance of εk to
the source/sink and to the fluid boundary. Additionally it will be required that
the minimum radial distance between the source/sink and the fluid boundary
always remains larger than 0.1.
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5 Numerical examples and discussions

5.1 Computational accuracy

In order to investigate the accuracy of computations we use two analytical
benchmarks. The first one is based on the classical solution by Polubarinova-
Kochina [5, p. 29]. It describes evolution of the fluid front in the domain
without inclusions (ε = 0) for both, the fluid sink and source. In [2] it was used
to define the accuracy of computations for such a limiting case. Unfortunately
there is no analytical solution for the problem with inclusions4. To circumvent
this deficiency we shall modify the basic system of equations by supplementing
relation (8) with an additional term:

∂twj(w;0; z) = −Qh
2

12µ

(
∂xj

G(w;O) + Υj(w;0; z)− Υj(w̃;0; z)
)
, (20)

where w̃(s, t) is a solution by Polubarinova-Kochina. In this way, w̃(s, t) be-
comes a solution of the system: (20), (9). Modification (20) can be interpreted
as the introduction of a special leak-off function (see [26]).

The second benchmark is built in exactly the same way on the assumption
that the reference solution, w̃(s, t), describes a circular shape. Its evolution
in time, defined by the radius R(t), can be easily determined from the fluid
balance.

Note that the aforementioned manner of benchmark construction can be
applied for any known w(s, t) being a solution of the system:

∂twj(w;0; z) = −Qh
2

12µ
∂xj

G(w;O). (21)

In Fig.2 we present the evolution of the fluid free boundary for both bench-
mark cases. For the fluid sink variant a transition from curve 1 to curve 2 is
implemented (domain contraction), while for the fluid source a reverse direc-
tion of domain transformation takes place (domain expansion). The initial
positions of inclusions are marked schematically by two types of circles: solid
line for three inclusions, dashed line for eight inclusions. In our analysis we will
consider both, the immobile (fixed at initial positions) and moving inclusions.
For the fixed inclusions the governing system of equations reduces to (20),
where in the right hand side the predefined values of z are introduced. The
error of computations will be described by the relative error of radius vector
ρ(θ, t) defining the fluid boundary.

In the first test we investigate the influence of the number and size of
inclusions on the solution accuracy. To this end, the Polubarinova benchmark
is considered. The boundary curve is discretized by N = 140 points. The

4 An analytical solution in the case of a single circular inclusion is forthcoming (J.S. Mar-
shall: Analytical solutions for Hele-Shaw moving boundary flows in the presence of a circular
cylinder), but there are currently no published solutions for circular inclusions with which
to compare.
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computational errors at the final time, δρ(θ, tmax), are shown in Fig.3-Fig.4 for
the fluid sink and source respectively, for the case of immobile inclusions. Three
different values of ε (0.1, 0.01, 0.001) are used. For a reference we depict also
the error distribution for the case of no inclusions. The preliminary conclusion
from this test is that regardless of the number and sizes of inclusions slightly
better accuracy is obtained for the domain expansion. This observation is in
line with the trend reported in [2], where also a better stability of computations
for the fluid source variant was noted. It shows that a general tendency of
accuracy deterioration with growing ε is present. The results for ε = 0.001 are
in fact of the same quality as those for ε = 0, but even for ε = 0.01 the error
distribution indicates that its average value is very close to that for ε = 0.
There is not much difference in accuracy for different number of inclusions,
except for the case of ε = 0.1, where for the fluid sink one obtains distinctly
worse results. However, even then the maximal solution error is still below one
percent. Note that in such a case ε is no longer a small parameter.

For the second benchmark example, the circular domain, we obtained simi-
lar trends (for this reason we do not illustrate them), but the solution accuracy
was slightly better.

In the next test we shall consider to what degree the inclusions movement
affects the accuracy of computations. Let us analyze the Polubarinova bench-
mark in the fluid source configuration for eight inclusions. Again three values
of ε are considered: 0.1, 0.01, 0.001. For each of these variants we compare the
error of computations, δρ, obtained for moving and immobile inclusions. The
results of this comparison are depicted in Fig.5. It shows that the level of ac-
curacy is the same for both, moving and immobile inclusions. Only some slight
differences in error distribution can be observed. Again, the accuracy grada-
tion depends on the size of inclusions, giving the substantial deterioration only
for the biggest inclusion ε = 0.1.
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Fig. 2 Domain configuration for the benchmark examples: a) Polubarinova solution,
b) circular domain. Fluid source/sink is located at the origin. Depending on the
chosen variant, the domain expands from curve 2 to 1 or contracts from 1 to 2.
Radius vector ρ(θ, t) defines the boundary shape. Two configuration of inclusions
are shown: solid lines - three inclusions, dashed lines - eight inclusions.
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Fig. 3 The relative error of the radius vector ρ(θ, tmax) for the Polubarinova bench-
mark for: a) three immobile inclusions, b) eight immobile inclusions. The fluid sink
variant was analyzed. The boundary curve was discretized by N=140 points.
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Fig. 4 The relative error of the radius vector ρ(θ, tmax) for the Polubarinova bench-
mark for: a) three immobile inclusions, b) eight immobile inclusions. The fluid source
variant was analyzed. The boundary curve was discretized by N=140 points.

In the last test we investigate to what degree the density of discretization
of the fluid free boundary affects the accuracy of computations. This time
both benchmarks, the Polubarinova and circular domain solutions, are in use.
We consider the fluid sink variant for eight inclusions of different sizes (ε =
{0.1, 0.01, 0.001}). A number of simulations was performed for N varying from
20 to 140. For every value of N , the maximal and average errors of the radius
vector ρ(θ, tmax) were computed. The results are depicted in Fig.6, where
for comparison also the curves for ε = 0 are shown. Respective curves for
the maximal error are distinguished by the circular markers, while triangular
markers are used for the average errors. The make the graphs more legible, the



14 D. Peck et al.

−3 −2 −1 0 1 2 3

10
−6

10
−5

10
−4

 

 

ε = 10−3

ε = 10−3

ε = 10−2

ε = 10−2

ε = 10−1

ε = 10−1

θ

δρ

Fig. 5 The relative error of the radius vector ρ(θ, tmax) for 8 fixed and moving
inclusions of different sizes. The Polubarinova benchmark for the fluid source con-
figuration was used. The boundary curve was discretized by N = 140 nodes. The
results denoted by markers only refer to the moving inclusions.
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Fig. 6 The relative errors of the radius vector for the sink variant of the problem
related to the number of the boundary nodes N : δmax - the maximal error (circular
markers), δav - the average error (triangular markers). Respective graphs refer to: a)
the Polubarinova benchmark, b) the circular domain benchmark.

results for ε = {0.01, 0.001} are denoted by markers only. For the Polubarinova
benchmark there is a clear trend of accuracy increase with growing N . The
results for ε = {0.01, 0.001} are almost identical as those for no-inclusions case.
Appreciable deterioration of accuracy is obtained for ε = 0, however even here
the errors stabilize at the level 10−3. Quite different situation is observed for
the circular domain benchmark. Here, a counterintuitive tendency of error
increase with growing number of boundary nodes is clear. It can be explain by
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the fact that for a regular shape and the spline approximation of the derivatives
along the boundary (which in the case of a circle is an accurate one) a small
number of points is sufficient to produce very good results. An increase in
N leads here to the cumulation of the computational errors. For this reason,
such a trend is much less distinct for ε = 0, where it is the presence of very
large inclusions which introduces the greatest errors. Note that the results for
ε = {0, 0.001, 0.01} obtained when taking N = 140 are of the same accuracy
level as for the Polubarinova benchmark.

5.2 Collision strategies and particle interactions

In any fluid containing multiple particles and an explicit boundary there exist
a multitude of forces which aren’t directly accounted for within the present
model. Rotational forces, such as the Saffman and Magnus forces, needn’t be
considered here as the model assumes that the particles are non-rotating. Fur-
ther effects such as the virtual mass and Basset forces on particle movement
are likely to be small compared to the friction term from their contact with
the cell wall (see [27] for more information on related forces).

The primary situation in which forces arise for which additional algorithms
are required is the case of particle collision. In principle use of the Green’s func-
tion should prevent particle overlap, however as an asymptotic approximation
is used this possibility isn’t eliminated within the final system of equations
directly. Complicating matters further is the fact that, for particle collisions
within a fluid, the lubricative force prevents both perfectly elastic and inelas-
tic collisions, and it also decelerates particles near to the boundary (see [28]).
Determining the exact effect of this force on the final dynamics of the system
however is beyond the scope of this paper.

To compensate for this two separate steps are taken. The first is to increase
the friction coefficient of particles which become close to the boundary, which
can be easily achieved and prevents any objects leaving the fluid domain. The
second is that, in the case of particle collisions, both the perfectly elastic and
inelastic cases will be modeled. While this will not produce the most accurate
representation of the dynamics of particle interaction within the fluid these
two cases provide the opposing ends of the spectrum, and as such if both can
be modeled then the more accurate case involving the lubricative force can
added later through the use of additional algorithms. Further these cases are
very computationally efficient, and will ensure the model does not become
overly cumbersome.

Simulations in the case of two particles with various properties, obtained
for both elastic and inelastic collisions, are shown in Fig. 8, while the setup is
displayed in Fig. 7. The post-collision particle movement is determined from
the conservation of momentum combined with; conservation of energy in the
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respectively, and the marker ’x’ indicates the position of the fluid sink.
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Fig. 8 The deviation of the final boundary, relative to the case without inclusions,
when two particles collide. Here the lines indicate elastic collisions, while markers
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elastic case, and the conservation of mass and volume for inelastic events. The
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initial fluid boundary is taken from the solution to the first order Polubarinova-
Kochina system in the case of a sink, with the final time taken as t = 0.7. Here
Qh2/24πµ = 1, ρ = 2.8, κ = 0.01 and initially ε = {0.1, 0.05}.

In the conducted tests, the presence of a small number of particle collisions
lead to only a minimal increase in the computation time, and the decrease in
accuracy was negligible compared to that induced by other parameters. Addi-
tionally it is clear from results concerning the relative boundary deformation
between cases (Fig. 8) that the difference between perfectly elastic and inelas-
tic collisions is relatively small compared with the total change in boundary
deformation. The fact that the collision type has only a minor influence on the
deformation of the free boundary only improves the case for these efficient ap-
proximations over the more intensive option of computing the lubricative force.

5.3 Particle position and parameters

With the abilities of the model established, we can now use it to examine the
effect of particle inclusion on the fluid flow within the Hele-Shaw cell. The flow
can be best understood as traveling in the shortest possible straight line to
the boundary (sink) from the source (boundary). Particles placed in the path
of this line will redirect the flow around it. Therefore positioning objects near
to the source/sink will disrupt the largest portion of the domain, as the pro-
portion of the flow disturbed is greatest, and the fluid on the opposite side of
the source/sink will extend/drain faster to compensate. Conversely obstacles
near the boundary will produce very localized effects, although these effects
will be far larger in magnitude.

As a result of the fluid flow behaving in this manner the shape of the do-
main, size of the inclusions and movement of the particles over time will play a
crucial role in determining the effect of particle placement on the fluid bound-
ary evolution. Particles with a low (or zero) initial velocity, or a sufficiently
high friction coefficient, will remain almost stationary relative to the move-
ment of the fluid. In such situations the large magnitude localized effects are
often only present over short time periods. Similarly a small inclusion size will
only disrupt a small portion of the fluid flow, and as such the overall effects
will be minimal.

These differing effects on the boundary can be displayed using simple sys-
tem in which a variety of particles are placed within an initial domain defined
by the Polubarinova solution. Note that differing configurations of particles
will be utilized. A diagram showing the setup is provided in Fig. 9, while the
relative deviation of the boundary from the case without inclusions is provided
in Fig. 10. It is worth stating that, in the case with M particles, inclusions
k = 1, ..,M will be taken. Additionally the particles are given an initial veloc-
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ity of zero, as this will best demonstrate the effects on the boundary in absence
of additional factors, with the remaining material parameters kept identical
to those used in the previous subsection.

The localized effects for particles near the boundary, and wider domain
effects for particles near the source, are both clearly present in Fig. 10a. Addi-
tionally it can be seen in Fig. 10b that these effects compound as the number
of particles increases. These results perfectly match the previous description
in terms of the fluid flowing between the source and the boundary. Further the
results are well within the expected level of accuracy for this problem variant
(see Fig. 4, ε = 10−1).

5.4 Simulations with many particles

While there is no theoretical maximum for the number of particles which can
be simulated the computation time will obviously become a limiting factor. In
practice the particle numbers which can be reasonably computed is far more
dependent on the distance between each particle and; adjacent particles, the
source/sink and the boundary. As a result, with proper initial distribution,
simulations involving hundreds of particles can be easily completed within a
reasonable computation time (typically 1.5− 4.5 hours).
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Fig. 9 Diagram simulation for initially stationary particles in a ’Line’ formation.
Here the black dotted line shows the final boundary position, the light blue coloured
area provides the initial fluid position and the marker ’x’ indicates the position of the
fluid source. The coloured circles indicate the initial particle positions, with particles:
(1,2) heavy blue, (3,4) red, (5,6) black and (7,8) green.
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Fig. 10 Comparison of the relative radial distance to the fluid boundary, δρ, mea-
sured at the final time, when there are (a) two particles (b) M particles within the
fluid at different radial distances to the boundary in the case of a fluid source.

Four demonstrative examples are considered, with systems containing ei-
ther 120 or 540 particles in an ordered or semi-random distribution. The or-
dered system was defined by distributing particles into 8 rings around the
source, within a fluid domain defined by a unit circle. Semi-random distribu-
tions where meanwhile created by splitting the initial domain into separate
rings, and choosing particle angles and radial positions within each ring using
MatLab’s random number function, rejecting particle positions which lead to
overlaps. The initial volume fraction of particles within the fluid was kept con-
stant between cases, such that ε = 10−2 for 540 particles. A diagram showing
the initial distributions is shown in Fig. 11, while the resulting boundary de-
formation over a time period of t = 0.1 is shown in Fig. 12.

It is clear from Fig. 12 that the deformation of the boundary in the case
with many particles is far more complicated than those previously examined,
with systems containing particles with a similar distribution and identical
volume fractions resulting in notably different changes to the fluid boundary.
That the systems with particles in an ordered distribution had a more periodic
and predictable effect on the boundary deformation is not surprising, however
the fact that simulations involving large numbers of particles lead to a far
smoother boundary deformation in both cases, and can easily be conducted
using this model, provides a method by which internal effects can be more
readily studied.

6 Outline and discussion

An asymptotic approximation of the fluid flow within a Hele-Shaw cell con-
taining multiple free-moving particles has been been obtained, which models
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Fig. 11 Diagram showing the initial position of the boundary (blue fill), the initial
distribution of the (a,b) M = 120 (c,d) M = 540 particles, and the expected final
boundary position is denoted by a black dashed line. Here the particle distributions
are (a,c) ordered or (b,d) generated semi-randomly.

both the movement of the fluid boundary and the inclusions. A model based
on this system of equations has been created in a MatLab environment, which
is capable of dealing with situations involving hundreds of particles and any
potential collisions between them. The accuracy of the final model was as-
sessed for various numbers and sizes of inclusions.

A brief examination into the effect of the particle inclusion on the fluid flow,
primarily through the resulting boundary distortion, was conducted. The key
finding was the dual nature of the effect of initial particle distribution on the
fluid boundary, with particles close to the boundary causing very localized
effects, while those near to the source/sink affect the wider domain.
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Fig. 12 The relative deformation of the boundary between the cases with M =
120, 540 particles and the case without inclusions. Here (a) is for particles in an
ordered distribution, while (b) is for a semi-random distribution.

We now have a credible tool with which to simulate the fluid flow in a
narrow channel subject to the presence of multiple different inclusions and
obstacles. This has clear applicability, namely with regards to investigating the
effective properties of the fluid when it contains a large number of particles.
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