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Abstract 

The objective of this work was to identify biomass feedstocks and optimum pyrolysis 

process conditions to produce a biochar capable of adsorbing metals from polluted 

groundwater. Taguchi experimental design was used to determine the effects of slow-

pyrolysis process conditions on char yield and zinc adsorption. Treatments were 

repeated using six candidate feedstocks (Lolium perenne, Lolium perenne fibre, 

Miscanthus x giganteus, salix viminalis, fraxinus excelsior and picea sitchensis) and the 

resultant chars were tested for metal adsorption performance. Chars produced from 

Lolium Perenne and its extracted fibre displayed the greatest zinc adsorption 

performance and removed 83.27 to 92.96 % respectively. Optimum process conditions 

in terms of both char yield and zinc adsorption performance were achieved from slow-

pyrolysis at 300°C for 2 hours using a feedstock with a particle size of less than 1 mm.  

 

Keywords: Remediation, Zinc, Taguchi-method, Bio-refinery, Grasses 
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1. Introduction 

Metal-polluted groundwater leaching from abandoned mine-sites poses an 

environmental and public health hazard for many places around the world. In the UK it 

is estimated that 170 tonnes of zinc per annum is discharged into the environment from 

mines in England and Wales each year (EA national picture SC030136/R2) and is 

associated with 9% of rivers failing European Water Framework Directive standards 

(2000/60/EC). There are very few treatment systems in place to treat this contaminated 

mine water. Slow-pyrolysis for char production has received renewed interest in recent 

years since the rise in popularity of ‘biochar’ as a soil conditioner, filtration medium, 

pollution remediate and also as potential method of mitigating carbon dioxide emissions 

(Ahmad et al., 2014). In this study we investigate the zinc adsorption of biochars 

produced from a range of abundant feedstocks and assess their potential for pyrolysis 

optimisation and practical application as adsorbents. 

 

Biochar is a type of porous carbon which has similarities with activated carbon, which 

is widely used in wastewater treatment for the removal of both organic and inorganic 

pollutants (Goher et al., 2015; Qiu & Huang, 2015). The removal of metal cations from 

dilute solutions has mainly been attributed to electrostatic exchange, co-precipitation, 

inner surface reactions and π-orbital metal bonding onto the electron-rich surface 

(Kołodyńska et al., 2012; Li et al., 2014). Activated carbons are produced at very high 

temperatures (typically 700 – 900 °C) which result in a highly ordered and graphitic 

type carbon structure. The carbon surface is then modified through mechanical, 

chemical and electrochemical processes (Shen, 2008). Porous carbons are good 

absorbers due to the large surface area, pore volume and a high surface reactivity but 
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their widespread use is restricted due to high production costs. Lessons can however be 

learned from the extensive research into activated carbon for the production and 

characterisation of biochar.  

 

Utilisation of design of experiment (DOE) methodologies such as the Taguchi method 

have been widely and successfully applied to engineering problems as a tool for 

identifying critical process parameters and optimising processes which are affected by 

multiple inter-related factors (Rao et al., 2008). The method comprises a simple 

statistical tool which creates an integrated multifactorial experimental design through a 

system of tabulated orthogonal arrays. Application of these matrices in experimental 

design maximises the number of main effects which can be estimated and minimises the 

total number of individual experiments required. The usefulness of this method for 

optimising pyrolysis processes has already been demonstrated on several specific 

conversion processes but to-date has not been applied to optimise slow-pyrolysis for 

multiple feedstocks (Chan et al., 2014; Chen et al., 2014a; Chen et al., 2011; Dang et 

al., 2013). In this study the Taguchi method was used to determine the effects of four 

basic factors on char yield and quality. Particular emphasis was placed on determination 

of how these effects varied between feedstocks. Six feedstocks were selected for 

pyrolysis trials: two grasses (Lolium perenne and Miscanthus x giganteus), two 

broadleaf tree species (Fraxinus excelsior and Salix viminialis) and one coniferous 

species Picea sitchensis. These species were selected as all are commercially available, 

proximally abundant and represented several different taxonomic groups. Treatment 

temperature, residence time, particle size, and pyrolysis gas atmosphere were the key 

factors included in the design. Treatment temperature range was selected to be within 
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the practical operational limits of most slow-pyrolysis reactors which are commercially 

available. Temperature levels of 300, 450, and 600 ºC were selected, as points at which 

degradation of main cell wall polymers will have occurred (Müller-Hagedorn & 

Bockhorn, 2007; Yang et al., 2007; Zhou et al., 2013).  

 

Feedstock parameters which affect slow-pyrolysis for char production include the 

relative proportion and composition of cell wall polymers, moisture content, the severity 

of pyrolysis conditions employed and the presence of inorganic/organic constituents 

which can catalyse certain reactions (Fahmi et al., 2007). The biochemical variations 

also relate to taxonomic division, for example differences between eudicots and 

monocots such as the poales (e.g. grasses/straws) have been observed to effect thermal 

degradation characteristics and pyrolysis products in previous research (Greenhalf et al., 

2013; Müller-Hagedorn & Bockhorn, 2007).  

 

Biomass materials fractionate differently during biomass pre-processing which makes 

particle size an important factor to include in experimental design (Bridgeman et al., 

2007; Demirbas, 2004), both to ensure that any observed differences are not simply the 

result of fractional differences but also to ensure this inherent variation is accounted for 

and included in the data.  

 

In terms of pyrolysis process parameters: temperature, heating rate and residence time 

in the reactor are regarded as the key factors (Williams & Besler, 1996). Another factor 

which is often not given as much attention, is the gaseous atmosphere under which 

pyrolysis is performed. In most experimental pyrolysis rigs utilisation of N2 gas to 
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exclude O2 and/or provide an entrained flow is typical. However most commercial 

slow-pyrolysis reactor systems O2 concentration within the reactor is reduced 

principally by CO2 derived from either combustion of the priming fuel, used to 

introduce the initial heat load to the system, or from degradation of the feedstock itself 

depending on the system used. The influence of CO2 in high-temperature gasification of 

coal and in production of activated carbons has been extensively researched, but its 

influence on the physiochemical properties of biomass chars has not received similar 

rigor. Several studies have identified effects on char yield and surface properties under 

fast-pyrolysis conditions at temperatures between 550-850ºC (Guizani et al., 2014; 

Zhang et al., 2011) however the effects of CO2 atmosphere have not yet been 

investigated for slow-pyrolysis conditions, this is critical to interpreting results with 

respect to informing production at greater scale and ensuring analytical experimentation 

and monitoring is representative and applicable to commercial situations.  

 

Experiments reported in the literature often are divided by either a production or 

utilisation focus. In order to gain a comprehensive overview, both sets of factors need to 

be accounted for in experiments to ensure the origin of the observed variation can be 

accurately discerned as a feedstock effect, process effect, or combination of both. This 

knowledge is essential to process development and optimisation particularly in terms of 

production at greater scales. This work has attempted to include as many of the critical 

factors as possible to allow investigation of factor interactions and the potential to 

optimise pyrolysis processes for both product yield and quality. 
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2. Methods 

2.1 Design of experiment and analysis 

The study was developed using the Taguchi approach and Qualitek 4 DOE software 

(Nutek, USA). Selected process parameters and levels (Table 1) were incorporated into 

an L9 orthogonal array which identified nine separate treatment regimens which gave 

representative account of all process factor combinations (Table 2). These nine 

treatments were subsequently applied to each of the feedstocks. 

Subsequent data handling and analysis was performed using Microsoft Excel 

(Microsoft, USA) and SPSS (IBM, USA). 

 

2.2 Biomass feedstocks selected and preparation 

Fraxinus Excelsior (Fraxinus) and Picea sitchensis (Picea) feedstocks were obtained as 

chip from a commercial saw mill. Lolium perenne (Lolium) was mown and harvested 

from IBERS research plots, a sub sample was processed through a 10’’ screw-press to 

extract water and soluble carbohydrates, and the resultant fibre was dried and stored.  

Miscanthus x. giganteus and Salix viminalis (Salix) samples were also taken from 

research plots at Aberystwyth University. S. viminalis was obtained from 2 yr. growth 

from a short-rotation coppice bed and 1 yr. growth senesced M. x giganteus; both plots 

have been established for over 10 years. All biomass feedstocks were oven dried at 80 

ºC for 16 hrs and milled to <2mm. Milled material was subsequently fractionated using 

graded sieves to size ranges of <0.5 mm, 0.5-1 mm, and 1-2 mm. Ash content of 

samples was determined by ‘loss on ignition’ after incineration in a muffle furnace at 

550 °C for 5 h. 
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2.3 Char production 

Pyrolysis of samples was performed using a Carbolite vertical single-zone split-tube 

furnace (Verder International B.V). A custom-made pyrolysis reactor chamber was used 

to pyrolyse samples in batches. The reactor comprised of a 316 stainless steel cylinder 

110mm in diameter and 900mm in length with gas-tight plates fitted at each end. The 

primary end-plate included a gas inlet for cylinder/line connection and a sealed 

thermocouple insert for accurate measurement of internal reactor temperature. The 

secondary end plate included a pressure relief valve and gas outlet. The outlet pipe was 

connected to a separate condensation unit which was used to collect pyrolysis gas 

condensates prior to venting into a fume cabinet. A bubble trap was also fitted to the 

outlet pipe to provide a small amount of back-pressure, monitor gas flow exiting the 

reactor and also to prevent influx of air in the event of failure in the gas flow. This 

reactor chamber was inserted inside the tube furnace and sample trays were inserted and 

removed before/after each run. Samples were pyrolysed in the tube furnace using 

custom designed 316 stainless steel trays (80 x 180 x 1 mm) which were designed to 

give a uniform sample surface area to volume ratio of 1:1. Samples were loaded into 

pre-weighed trays so the feedstock material filled the full volume and was level with the 

top of the container tray. This was performed with each sample to ensure equal surface 

area to volume ratio for each sample pyrolysed. Sample trays were subsequently 

reweighed and inserted into the reactor chamber and contained 10 ± 1.7 g feedstock on a 

DM basis. The reactor was then sealed and the chamber purged with N2 or CO2 for a 

minimum of 5 minutes prior to initiation of the temperature program. During all 

experimental runs a continuous gas flow of 5L min-1 was maintained using a gas flow 

meter. Entrained gases were injected into the reactor chamber via the inlet valve on the 



  

9 

 

primary end-plate to provide a constant gas flow over the samples and to purge the 

chamber of residual air and pyrolysis product gases. Temperature parameters during 

experimental runs were controlled and regulated by a Eurotherm 301 standard and 3216 

programmable control unit. All samples were heated to the target temperature at a 

heating rate of 25 C min-1 held at the target temperature for the required treatment 

duration then allowed to cool-back to ambient before being removed from the furnace. 

 

2.4 Thermogravimetric analysis (TGA) 

Experiments were carried out on untreated and pyrolysed material using a Perkin-Elmer 

Pyris-1 thermogravimetric analyser (Hodgson et al., 2011).  

 

2.5 Minewater used in adsorption experiments 

The effluent used in this investigation is collected from the former Bwlch mine at 

Cwmerfyn, 19 km east of Aberystwyth (British National Grid Reference SN 701 825). 

The drainage was collected at 4 intervals during the course of the experiment and stored 

in 50 litre potable water containers for subsequent use. Small variation was observed in 

the concentration of zinc in Bwlch mine-water used over the duration of the experiment 

mean zinc concentration was 18.5 ± 2.1 µg/mL. Results used in subsequent analyses 

were expressed in terms of percentage removal to account for this variation.  

 

2.6 Elemental analysis 

The major element concentration was determined by atomic absorption spectroscopy 

(AAS) using a Perkin-Elmer AAnalyst 400; trace element analysis was performed via 

ICP-MS using an Agilent 7700x. The concentration change between the untreated mine 
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water  and post-experiment water was used to calculate the influence of each char 

material.  A char mass of 1 gram (+/-0.01g) was introduced to 500mL  conical flasks 

and 500mL of Bwlch mine water was added to the  flasks, these were shaken and left 

for 24 hrs at room temperature. The  resulting water was filtered through Whatman No.1 

paper and a 60mL subsample was removed and stabilised with 3 drops of 50% HNO3. 

The removal percentage and capacity were calculated from difference between initial 

and final concentrations.  
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3. Results and discussion 

3.1 Characterisation of feedstocks  

Thermogravimetric analysis (TGA) was performed on each of the raw feedstocks and 

particle size-fractions and the mass loss and derivative curves are presented together for 

ease of comparison (Fig 1). The mass loss curves at 600 °C show a great degree of 

similarity in terms of resultant char yield, but the derivative curves highlight distinct 

differences between the thermal degradation of different feedstocks. Features and 

transitions evident from the derivative curve of biomass feedstocks are known to equate 

to compositional differences, principally the main cell wall polymers, hemicellulose, 

cellulose and lignin (Zhou et al., 2013). Derivative profiles of these feedstocks identify 

differences in pyrolytic degradation behaviour (Fig 1.). Distinct differences in ash 

content were identified between feedstocks: Lolium feedstocks contained significantly 

greater concentrations of ash in the dry matter (7-10%) than the other feedstocks tested. 

The extracted Lolium fibre contained less ash than untreated Lolium biomass but was 

still found to be significantly higher than all other feedstocks (Table 3). This difference 

in ash content was observed to inversely correlate with the temperature at which the 

maximum rate of volatilisation occurred (Tmax) during the TG analysis: where a higher 

feedstock ash content correlated linearly with reduced Tmax temperature (Fig 1) which 

suggests inorganic species present in the high-ash biomass is having a catalytic effect 

during pyrolysis and may also result in compositional differences in the resultant chars. 

 

Another noticeable difference was a transition peak that occurred at approximately 230 

°C during the degradation of the Lolium and to lesser extent, the Miscanthus chars 

which is absent from the DG profiles of other feedstocks (Fig 1), this mass-loss feature 
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is likely to relate to volatilisation of protein present within the biomass. It should be 

noted that the high-ash content of the grass biomass is related to the greater proportion 

of leaf to stem material which is the opposite with other feedstocks. Leaf material 

contains a greater quantity of protein and inorganic constituents due to requirements of 

photosynthetic function; however these constituents are reduced in the above-ground 

biomass during translocation of nutrients and leaf loss during senescence (Purdy et al., 

2015). Lolium biomass was harvested during the growing season whereas Miscanthus 

grass was harvested at the end of the growing season once senescence had taken place 

which meant less leaf material was present in the harvested biomass and therefore 

reduced levels of protein and inorganic constituents. During the Lolium fibre extraction 

process a proportion of the protein and inorganic species are removed along with the 

water soluble fraction of the biomass (Corton et al., 2014). These results highlight 

additional influences of feedstock species and composition which are independent of the 

treatment factors included in the Taguchi experimental design. As a consequence of the 

observed differences the relative effects of process parameters on char yield and zinc 

adsorption quality will be examined on a feedstock by feedstock basis. 

 

3.2 Char product characteristics 

On the basis of the overall means, there was little difference in total char yield and fixed 

carbon content of the resultant chars (Table 3). Increased treatment temperature and 

residence time resulted in reduction in total char yield but increase in fixed carbon 

content; this was consistent for all feedstocks tested. Treatment temperature had the 

greatest overall influence on char yield and explained 71.3-94.9% of the total variation 

(Table 4). Retention time had less influence on total char yield but its effect varied 
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between feedstocks by 0.44-19.58%. CO2 had little overall influence on char yield, but a 

small positive contribution was identified in pyrolysis of Picea and Fraxinus at 450-600 

ºC. Clear differences were observed in response to the treatments applied both within 

and between feedstocks as indicated by the standard deviations of the feedstock means 

(Table 3). This was particularly evident from the within-feedstock variation in fixed-

carbon content of the woody feedstocks (Table 3). The smaller particle size fractions 

(<1 mm) correlated with a lower total char yield and greater adsorption of zinc due to 

increased surface area. However, in the case of both char yield and zinc adsorption, 

little difference was evident between the 0.5-1.0 mm and 1.0-2.0 mm fractions (Levels 2 

and 3 respectively).  

 

The effects of treatment factors on the char yield and zinc adsorption performance of the 

chars produced from each feedstock were examined separately and assessed by 

ANOVA to determine the significance and relative contribution of included factors. 

Tables 4 and 5 present the char yield and zinc adsorption data for each feedstock and the 

positive or negative influence of treatment conditions. The relative contributions of 

factors are also included and are expressed in percentage terms based on the total 

observed variation for all factors
2
. Optimum factor levels

1
 predicted to result in the char 

with the maximum calculated char yield or Zn adsorption capacities are also given 

(Tables 4-5).   

 

Zinc adsorption performance 

Following slow pyrolysis trials the zinc adsorption performance of the resultant chars 

was assessed and compared in terms of percentage removed from the mine-water 
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samples. The Lolium and Lolium fibre chars displayed significantly greater zinc 

adsorption than all other feedstocks by a considerable margin: 41-51% more than the 

Miscanthus chars and 54-64% more than Picea chars which had the poorest zinc 

adsorption of all the feedstocks tested (Table 3). Particle size had the greatest overall 

contribution to adsorption performance but no difference was observed between the 

particle size fractions below 1 mm. Chars produced from untreated Lolium biomass 

adsorbed 30–80% of the zinc from the Bwlch minewater. Greatest adsorption 

performance was achieved from pyrolysis at 300 °C for 4 hours with an initial particle 

size of less than 1 mm. Pyrolysis performed at temperatures above 300 °C had a 

negative effect on the adsorption performance of the Lolium char and residence time 

had a small positive contribution when held at temperature for over 4 hrs.  

 

Lolium fibre chars had the greatest performance overall and adsorbed 58.7 – 93.0 % of 

the zinc present in the mine-water which equated to a maximum zinc capacity of 9210 

µg Zn/g char. Chars with greatest adsorption were produced from the smallest size 

fraction (<0.5 mm) at 450 °C with a retention time of 6 hours. These results also suggest 

a relationship between the ash content and/or ash composition of the feedstock and its 

zinc adsorption performance which is independent of pyrolysis treatment.  

 

Miscanthus and Salix chars adsorbed zero to 35.7 and 30.7 % zinc respectively. Best 

performance was observed by chars produced at 600 °C for 6 hours using the smallest 

particle size fraction. Fraxinus and Picea chars adsorbed from zero to 54.8 and 16.1 % 

respectively, in both cases the best performance resulted from chars pyrolysed at 600 °C 

for 2-4 hours with a particle size below 1 mm. Little or no adsorption was observed 
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from these chars when pyrolysed below 600 °C. In the case of Fraxinus CO2 was 

identified as having a small but significant (P≤0.05) negative effect on adsorption of the 

resultant char, but this was the only time CO2 was identified as having any impact on 

adsorption quality and its effect was negligible.  

 

These results highlight the potential of Lolium and its processed fibre residue for 

adsorption applications. Furthermore, there is considerable scope to optimise slow-

pyrolysis process conditions to improve char adsorption properties without causing 

major detrimental effects to the total char yield.  

 

Optimisation of char yield and zinc adsorption to specific feedstock types  

Unlike the case with char yield, temperature was not consistent as the main contributing 

factor to the zinc adsorption capacity of the resulting chars, relative contribution of 

process factors differed distinctly between feedstocks (Table 5). The zinc adsorption 

capacity of the Fraxinus and Picea chars were most influenced by temperature and 

chars displayed very low zinc adsorption when produced at temperatures less than 600 

ºC, particularly in the case of Fraxinus. Retention time had much less of an overall 

effect on zinc adsorption of the produced chars, however an increase in residence time 

had different effects depending on feedstock: improved adsorption of Fraxinus chars 

but reduced adsorption of Picea.  

 

Particle size had little overall effect but the intermediate 1-2 mm particle size fraction 

gave the best adsorption for both Picea and Fraxinus as opposed to the <0.5 mm 

fraction which gave consistently better adsorption for all other feedstocks. Picea and 
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Fraxinus also displayed the greatest response to pyrolysis in CO2 rather than N2 which 

in both cases significantly reduced the zinc adsorption but resulted in a modest increase 

in total char yield. 

 

Miscanthus and Salix chars displayed better zinc adsorption when pyrolysed over 450 

ºC, however the residence time in the reactor had the greatest overall effect on their zinc 

adsorption; longer residence times and smaller particle sizes (<0.5 mm) resulted in the 

greatest adsorption. Salix chars did however display a modest increase in zinc 

adsorption in response to CO2, which had the opposite effect on Picea and Salix chars.   

 

Despite being derived from the same biomass origin, the untreated Lolium and its 

extracted fibre displayed very different responses to process factors. Zinc adsorption of 

Lolium chars decreased as pyrolysis temperatures increased and were little affected by 

residence time. Particle size had a significant overall contribution to zinc adsorption, 

however the difference was only really observed between <1 mm and 1-2 mm size 

fractions. The Lolium fibre was less affected by pyrolysis temperature, but adsorption 

increased with residence time duration. Particle size below <0.5 mm resulted in the 

greatest zinc adsorption although for particle size fractions between <0.5-1 mm there 

was not much difference between the raw Lolium and its extracted fibre.      

 

Implications for practical application 

The result show that feedstock is the most significant variable influencing low 

temperature pyrolysis of biomass and, although significant influences from production 

conditions are evident, these differ within individual feedstocks. These results highlight 
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the potential of Lolium and its processed fibre residue for adsorption applications. 

 

Associated with the zinc adsorption was a release of potassium into the mine water. 

This suggests that a proportion of the metals (especially alkali and alkaline earth) 

present in the biomass are, with partial degradation to the cell wall structure, liberated 

into a more liable and water-soluble fraction. It has been suggested that the inorganic 

ash constituents associated with biochar can facilitate metal removal due to the 

formation of insoluble phosphates and carbonates (Xu et al., 2014). To further 

investigate this, a bulk sample of lolium fibre biochar was produced and subjected to 

pre-washing with distilled water (data not presented). This reduced the amount of 

potassium released into the minewater by 51%, however a negligible influence on zinc 

adsorption was observed. The remaining potassium was liberated into the minewater 

and was assumed to be subject to exchange processes, which is supported by a balance 

in the equivalent concentrations. This shows that the water-soluble inorganic fraction, 

associated with the biochar does not play a role in metal adsorption. Although this 

inorganic fraction may not directly influence metal adsorption, its presence in the 

feedstock during pyrolysis may influence the biochar properties. The role of alkali and 

alkali-earth metals as a pyrolysis catalyst has long been understood in the production of 

activated carbon, where the metal ion becomes inserted into the graphene structure 

during pyrolysis. This influence has been shown to increase the carbons surface area, 

lowering Tmax temperature (enabling volatilisation of hemicelluloses and cellulose at 

lower temperatures) and increase the oxidation of the carbon surface (Bhat et al., 2010; 

Fahmi et al., 2007; Lukaszewicz, 1999). Further to this, the condensed liquid products 

such as volatile organic acids, alcohols, saturated fatty acids which are abundant in the 
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lolium feedstock may further catalyse the pyrolysis (Ross et al., 2010). These influences 

are evident from the TGA programs which show a distinct negative correlation between 

the ash content of the feedstocks and the temperature at which Tmax is reached and an 

additional transition peak that occurred at approximately 230 °C (Fig 1). This is further 

supported by differences observed between the untreated Lolium biomass and the 

extracted fibre: In the extracted fibre a great proportion of water-soluble carbohydrate 

and inorganics present in the raw biomass at harvest, are removed during processing. 

This pre-processing has resulted in the difference between the ash content of the raw 

biomass and the extracted fibre (Table 3) and consequently the difference between the 

two feedstocks during pyrolysis and the suggested optimum process parameters which 

were higher for the extracted fibre than for untreated Lolium biomass (Table 5).  

 

Selection of feedstocks such as Lolium and potentially other grassy feedstocks, such as 

cereal straws, which contain high concentrations of alkali or alkaline metals within the 

harvested biomass, may also be suitable feedstocks for adsorption applications. 

Alternatively, more conventional pyrolysis process parameters and feedstock types may 

be used to produce porous char which at high temperatures behaves more similar to a 

typical activated-carbon product. This was particularly the case with the mature 

hardwood species (Fraxinus) and also the softwood (Picea). 

      

In terms of practical production and use as an adsorbent Lolium would appear to be a 

good choice of feedstock both in terms of feedstock availability and also pyrolysis 

process requirements. Optimum conditions were among the lowest levels of all 

parameters tested which as a consequence resulted in the highest yield and lowest 
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energy input during the pyrolysis process (Table 6). One issue with practical utilisation 

of Lolium as a feedstock for this process is the moisture content of the harvested 

material which may be in excess of 60% immediately following harvest. Drying in the 

field can reduce this water content to be more comparable with that of harvested timber 

however the influence of these factors on economic feasibility and sustainability of 

biochar production from these feedstocks needs to be further investigated. Alternatives 

are presented by the grass bio-refinery concept where the grass fibre is obtained as a by-

product following extraction of valuable carbohydrates and proteins from the freshly 

harvested biomass (Charlton et al. 2009). In this case, subsequent pyrolysis and 

utilisation as an adsorbent material could present a viable addition to the material 

cascade of a grass-based bio-refinery.       

 

Conclusions 

Scope to optimise for adsorption quality without detrimental effect on product yield was 

identified. Temperature was the significant factor in determining char yield but not char 

quality: feedstocks responded differently to process conditions due to physiochemical 

differences in composition. Results suggested both inorganic and organic constituents of 

the biomass feedstocks act as catalysts with ability to both reduce process energy 

requirement and improve biochar quality. L. perenne char gave better performance at 

lower temperatures and retention times than all other feedstocks and adsorbed three 

times more zinc. Extracted fibre from biorefinery process further improved the process 

efficacy and product quality. 

 

 



  

20 

 

Acknowledgements 

The Authors wish to acknowledge collaborative research funding from DEFRA, The 

Coal Authority (UK), The Environment Agency (UK), Natural Resources Wales 

(Treatment of non-coal mine water, establishing new pilot trials using alternative 

technologies -WT0968) and the BEACON Biorefining Centre of Excellence, funded by 

the European Regional Development Fund through Welsh Government.  

 

References 

1. Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., 

Vithanage, M., Lee, S.S., Ok, Y.S. 2014. Biochar as a sorbent for contaminant 

management in soil and water: A review. Chemosphere, 99, 19-23. 

2. Bhat, V.V., Contescu, C.I., Gallego, N.C., Baker, F.S. 2010. Atypical hydrogen 

uptake on chemically-activated, ultramicroporous carbon. Carbon, 48(5), 1331-
1340. 

3. Bridgeman, T., Darvell, L., Jones, J., Williams, P., Fahmi, R., Bridgwater, A., 
Barraclough, T., Shield, I., Yates, N., Thain, S. 2007. Influence of particle size 

on the analytical and chemical properties of two energy crops. Fuel, 86(1), 60-
72. 

4. Chan, Y.H., Dang, K.V., Yusup, S., Lim, M.T., Zain, A.M., Uemura, Y. 2014. 
Studies on catalytic pyrolysis of empty fruit bunch (EFB) using Taguchi's L9 

Orthogonal Array. Journal of the Energy Institute, 87(3), 227-234. 
5. Charlton, A., Elias, R., Fish, S., Fowler, P. and Gallagher, J., 2009. The biorefining 

opportunities in Wales: Understanding the scope for building a sustainable, 

biorenewable economy using plant biomass. Chemical Engineering Research 

and Design, 87(9), 1147-1161. 

6. Chen, G.-L., Chen, G.-B., Li, Y.-H., Wu, W.-T. 2014a. A study of thermal pyrolysis 

for castor meal using the Taguchi method. Energy, 71, 62-70. 

7. Chen, Y.-C., Pan, Y.-N., Hsieh, K.-H. 2011. Process optimization of fast pyrolysis 

reactor for converting forestry wastes into bio-oil with the Taguchi method. 

Procedia Environmental Sciences, 10, 1719-1725. 

8. Corton, J., Toop, T., Walker, J., Donnison, I.S. and Fraser, M.D., 2014. Press fluid 

pre-treatment optimisation of the integrated generation of solid fuel and biogas 

from biomass (IFBB) process approach. Bioresource technology, 169, 537-542. 
9. Dang, K.V., Yusup, S., Yoshimitsu, U., Nuruddin, M.F. 2013. Catalytic Pyrolysis of 

Rice Husk via Semi-Batch Reactor Using L9 Taguchi Orthogonal Array. 
Advanced Materials Research, 787, 184-189. 

10. Demirbas, A. 2004. Effects of temperature and particle size on bio-char yield from 
pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 

72(2), 243-248. 
11. Fahmi, R., Bridgwater, A.V., Darvell, L.I., Jones, J.M., Yates, N., Thain, S., 

Donnison, I.S. 2007. The effect of alkali metals on combustion and pyrolysis of 



  

21 

 

Lolium and Festuca grasses, switchgrass and Salix. Fuel, 86(10-11), 1560-1569. 

12. Goher, M.E., Hassan, A.M., Abdel-Moniem, I.A., Fahmy, A.H., Abdo, M.H., El-
sayed, S.M. 2015. Removal of aluminum, iron and manganese ions from 

industrial wastes using granular activated carbon and Amberlite IR-120H. The 

Egyptian Journal of Aquatic Research, 41(2), 155-164. 

13. Greenhalf, C., Nowakowski, D., Harms, A., Titiloye, J., Bridgwater, A. 2013. A 
comparative study of straw, perennial grasses and hardwoods in terms of fast 

pyrolysis products. Fuel, 108, 216-230. 
14. Guizani, C., Escudero Sanz, F.J., Salvador, S. 2014. Effects of CO2 on biomass fast 

pyrolysis: Reaction rate, gas yields and char reactive properties. Fuel, 116, 310-

320. 

15. Hodgson, E.M., Nowakowski, D., Shield, I., Riche, A., Bridgwater, A.V., Clifton-

Brown, J.C., Donnison, I.S. 2011. Variation in Miscanthus chemical 

composition and implications for conversion by pyrolysis and thermo-chemical 

bio-refining for fuels and chemicals. Bioresource technology, 102(3), 3411-

3418. 

16. Kołodyńska, D., Wnętrzak, R., Leahy, J.J., Hayes, M.H.B., Kwapiński, W., Hubicki, 

Z. 2012. Kinetic and adsorptive characterization of biochar in metal ions 

removal. Chemical Engineering Journal, 197(0), 295-305. 

17. Müller-Hagedorn, M., Bockhorn, H. 2007. Pyrolytic behaviour of different 
biomasses (angiosperms) (maize plants, straws, and wood) in low temperature 

pyrolysis. Journal of Analytical and Applied Pyrolysis, 79(1-2), 136-146. 
18. Li, M., Liu, Q., Lou, Z., Wang, Y., Zhang, Y., Qian, G. 2014. Method To 

Characterize Acid–Base Behavior of Biochar: Site Modeling and Theoretical 
Simulation. ACS Sustainable Chemistry & Engineering, 2(11), 2501-2509. 

19. Lukaszewicz, J.P. 1999. Carbon-film-based humidity sensor containing sodium or 
potassium. Recovery effect. Sensors and Actuators B: Chemical, 60(2–3), 184-

190. 
20. Purdy, S.J., Cunniff, J., Maddison, A.L., Jones, L.E., Barraclough, T., Castle, M., 

Davey, C.L., Jones, C.M., Shield, I., Gallagher, J. and Donnison, I., 2015. 

Seasonal carbohydrate dynamics and climatic regulation of senescence in the 

perennial grass, Miscanthus. BioEnergy Research, 8(1), 28-41. 

21. Qiu, M., Huang, C. 2015. Removal of dyes from aqueous solution by activated 

carbon from sewage sludge of the municipal wastewater treatment plant. 

Desalination and Water Treatment, 53(13), 3641-3648. 

22. Rao, R.S., Kumar, C.G., Prakasham, R.S., Hobbs, P.J. 2008. The Taguchi 

methodology as a statistical tool for biotechnological applications: a critical 

appraisal. Biotechnology journal, 3(4), 510-523. 

 

23. Ross, A.B., Biller, P., Kubacki, M.L., Li, H., Lea-Langton, A., Jones, J.M. 2010. 
Hydrothermal processing of microalgae using alkali and organic acids. Fuel, 

89(9), 2234-2243. 
24. Shen. 2008. Surface Chemical Functional Groups Modification of Porous Carbon. 

Recent Patent on Chemical Engineering, 1, 27-40. 
25. Williams, P.T., Besler, S. 1996. The influence of temperature and heating rate on 

the slow pyrolysis of biomass. Renewable energy, 7(3), 233-250. 
26. Xu, X., Cao, X., Zhao, L., Zhou, H., Luo, Q. 2014. Interaction of organic and 

inorganic fractions of biochar with Pb(ii) ion: further elucidation of mechanisms 



  

22 

 

for Pb(ii) removal by biochar. RSC Advances, 4(85), 44930-44937. 

27. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. 2007. Characteristics of 
hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788. 

28. Zhang, H., Xiao, R., Wang, D., He, G., Shao, S., Zhang, J., Zhong, Z. 2011. 
Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and 

H2 atmospheres. Bioresource Technology, 102(5), 4258-4264. 
29. Zhou, H., Long, Y., Meng, A., Li, Q., Zhang, Y. 2013. The pyrolysis simulation of 

five biomass species by hemi-cellulose, cellulose and lignin based on 
thermogravimetric curves. Thermochimica Acta, 566, 36-43. 

 

 

 

Figure 1. Comparison of percentage mass loss and derivative curves of feedstocks used 

in slow pyrolysis experiments as determined by thermogravimetric analyses. 

Table 1. Factors and levels included in Taguchi experimental design 

Table 2. L9 orthogonal array used in the study  

Table 3. Effect of source feedstock on char yield, composition and zinc adsorption   

Table 4. Effect of slow-pyrolysis process parameters on char product yield of resultant 

chars produced from selected feedstocks including optimum factor levels 

Table 5. Effect of slow-pyrolysis process parameters on zinc adsorption performance of 

resultant chars produced from selected feedstocks including optimum factor 

levels.    

Table 6. Summary of optimum conditions and predicted char yield and zinc adsorption 

performance.  
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Table 1. Factors and levels included in Taguchi experimental design 

Factor  Level 1 Level 2 Level 3 

Temperature (ºC) 300 450 600 
Residence time (min-1) 120 240 360 

Particle size (micron) <500 500-1000 1000-2000 

Gas atmosphere N2 CO2 - 
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Table 2. L9 orthogonal array used in the study  

Treatment 

No. 

Temperature Residence 

time 

Particle 

size 

Gas 

atmosphere 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 1 

4 2 1 2 1 

5 2 2 3 1 

6 2 3 1 2 

7 3 1 3 2 

8 3 2 1 1 

9 3 3 2 1 
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Table 3. Effect of source feedstock on char yield, composition and zinc adsorption   

 

Feedstock Char Yield Volatiles Fixed Carbon Ash Zn removed 

  %DM +/- %DMAF +/- %DMAF +/- %DM +/- % +/- 

Lolium 23.54 2.78 28.18 7.15 71.82 7.15 11.91 4.66 59.83 14.98 

Lolium fibre 24.57 3.72 28.25 7.44 71.75 7.44 8.45 3.26 69.20 11.95 

Miscanthus 23.85 2.93 24.78 13.77 74.41 14.98 1.55 0.20 18.24 12.47 

Salix 26.30 6.36 21.37 8.13 78.63 8.13 1.12 1.21 9.68 9.81 

Fraxinus 29.60 7.81 20.68 13.62 75.22 13.77 0.70 0.17 13.76 22.94 

Picea 24.97 5.76 25.59 14.98 79.38 13.48 0.32 0.20 5.40 6.23 

Total 25.47 5.40 24.81 10.85 75.20 10.83 4.01 1.62 29.35 13.06 

 

Data reported are mean values which include all treatment factors, within feedstock 

variation is represented by standard deviations. 
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Table 4. Effect of slow-pyrolysis process parameters on char product yield of resultant 

chars produced from selected feedstocks including optimum factor levels.    

Feedstock Factor Mean Level 1 Level 2 Level 3 Opt
1 

% 

Cont
2 

Lolium Temperature 23.54 3.17 -1.23 -1.94 1 74.60 

Retention time 23.54 -0.24 0.08 0.16 3 0.44 

Particle size 23.54 -1.84 1.03 0.82 2 24.92 

Pyrolysis in CO2 23.52 0.06 -0.06  1 0.03 

Lolium fibre Temperature 24.57 4.32 -1.55 -2.77 1 78.13 

Retention time 24.57 0.16 0.34 -0.50 2 1.07 

Particle size 24.57 -2.24 1.24 1.00 2 20.64 

  Pyrolysis in CO2 24.63 -0.17 0.17  2 0.17 

Miscanthus Temperature 26.30 6.95 -2.16 -4.79 1 73.23 

 Retention time 26.30 -0.58 3.43 -2.85 2 19.49 

 Particle size 26.30 -0.33 1.90 -1.57 2 5.99 

 Pyrolysis in CO2 26.57 -0.82 0.82  2 1.29 

Salix Temperature 23.85 3.68 -1.05 -2.63 1 94.86 

Retention time 23.85 0.32 -0.14 -0.17 1 0.67 

Particle size 23.85 -0.60 -0.18 0.78 3 4.40 

Pyrolysis in CO2 23.88 -0.09 0.09  2 0.07 

Fraxinus Temperature 24.97 6.20 -2.32 -3.88 1 68.83 

Retention time 24.97 -1.14 2.33 -1.19 2 9.49 

Particle size 24.97 -0.45 2.38 -1.93 2 11.20 

  Pyrolysis in CO2 25.67 -2.12 2.12  2 10.48 

Picea Temperature 29.60 8.74 -2.76 -5.97 1 76.55 

Retention time 29.60 -0.80 2.68 -1.89 2 7.28 

Particle size 29.60 -1.42 2.95 -1.53 2 8.35 

  Pyrolysis in CO2 30.42 -2.47 2.47  2 7.83 

Mean Temperature 25.47 5.51 -1.85 -3.66 1 83.91 

Retention time 25.47 -0.38 1.45 -1.07 2 6.06 

Particle size 25.47 -1.15 1.55 -0.41 2 6.92 

  Pyrolysis in CO2 25.78 -0.94 0.94  2 3.11 

 

Relative effects of pyrolysis process parameters are given for each feedstock tested. 

Variance from the mean in response to treatment levels is presented in the same units 

for each factor. Optimum conditions1 from the ANOVA are given along with the 

relative contribution of factors2 in percentage terms.  
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Table 5. Effect of slow-pyrolysis process parameters on zinc adsorption performance of 

resultant chars produced from selected feedstocks including optimum factor levels.    

Feedstock Factor Mean Level 1 Level 2 Level 3 Opt
1 

% 

Cont
2 

Lolium Temperature 59.83 11.11 -2.34 -8.77 1 37.12 

Retention time 59.83 -5.69 4.22 1.47 2 9.45 

Particle size 59.83 7.19 6.77 -13.97 1 52.75 

Pyrolysis in CO2  59.37 1.38 -1.38  1 0.68 

Lolium fibre Temperature 69.20 -3.15 2.00 1.15 2 4.15 

Retention time 69.20 -6.70 0.02 6.67 3 24.34 

Particle size 69.20 13.10 -7.26 -5.84 1 70.31 

  Pyrolysis in CO2 69.70 -1.49 1.49  2 1.21 

Miscanthus Temperature 18.24 -5.88 2.18 3.70 3 12.86 

 Retention time 18.24 -10.58 2.19 8.39 3 45.40 

 Particle size 18.24 9.19 -0.16 -9.03 1 40.27 

 Pyrolysis in CO2 17.66 1.74 -1.74  1 1.47 

Salix Temperature 9.68 -4.51 1.97 2.54 3 13.44 

Retention time 9.68 -6.20 -2.38 8.58 3 51.61 

Particle size 9.68 6.41 -3.37 -3.04 1 26.99 

Pyrolysis in CO2 10.68 -3.01 3.01  2 7.95 

Fraxinus Temperature 13.76 -13.48 -12.19 25.67 3 72.44 

Retention time 13.76 -9.68 5.19 4.49 2 10.31 

Particle size 13.76 3.82 5.28 -9.10 2 9.19 

  Pyrolysis in CO2 11.29 7.42 -7.42  1 8.07 

Picea Temperature 5.40 -3.89 -0.74 4.63 3 64.41 

Retention time 5.40 1.59 -0.04 -1.55 1 8.53 

Particle size 5.40 -0.04 1.60 -1.56 2 8.69 

  Pyrolysis in CO2 4.63 2.30 -2.30  1 18.38 

Mean Temperature 29.35 -3.30 -1.52 4.82 3 18.46 

Retention time 29.35 -6.21 1.53 4.68 3 31.83 

Particle size 29.35 6.61 0.48 -7.09 1 47.75 

  Pyrolysis in CO2 28.89 1.39 -1.39  1 1.96 

 

Relative effects of pyrolysis process parameters are given for each feedstock tested. 

Variance from the mean in response to treatment levels is presented in the same units 

for each factor. Optimum conditions1 from the ANOVA are given along with the 

relative contribution of factors2 in percentage terms.  
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Table 6. Summary of optimum conditions and predicted char yield and zinc adsorption 

performance.  
 

 

 

 

 

 
  

Feedstock Temp. 
Residence 

Time 

Particle 

size 

Energy 

Used 
Char yield Zn removed 

Calculated 

Zn capacity 

 ºC Hr-1 mm-1 kW % % µg/gchar 

Lolium 300 2 <0.5 1.015 27.74 83.27 7380 

Lolium fibre  450 6 <0.5 3.510 20.51 92.96 9210 

Miscanthus 600 6 <0.5 5.348 21.39 40.69 3530 

Salix 600 6 <0.5 5.348 20.64 31.21 3040 
Fraxinus 600 4 0.5-1 4.000 22.18 54.83 5390 

Picea 600 2 0.5-1 2.707 20.85 14.76 530 
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Highlights 

Taguchi design was used to optimise pyrolysis process conditions for multiple 

feedstocks 

Temperature had greatest influence on char yield but not adsorption performance 

Catalytic effect of feedstock components reduced energy input and improved adsorption 

Grass fibre char removed 92.96 % Zn from groundwater after pyrolysis for 2 hours at 

300°C 

 

 

 


