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Abstract

One of the main obstacles facing current intelligent pattern recognition appli-

cations is that of dataset dimensionality. To enable these systems to be effective,

a redundancy-removing step is usually carried out beforehand. Rough Set Theory

(RST) has been used as such a dataset pre-processor with much success, however

it is reliant upon a crisp dataset; important information may be lost as a result of

quantization of the underlying numerical features. This paper proposes a feature

selection technique that employs a hybrid variant of rough sets, fuzzy-rough sets, to

avoid this information loss. The current work retains dataset semantics, allowing

for the creation of clear, readable fuzzy models. Experimental results, of applying

the present work to complex systems monitoring, show that fuzzy-rough selection

is more powerful than conventional entropy-based, PCA-based and random-based

methods.

Key words: feature selection; feature dependency; fuzzy-rough sets; reduct search;

rule induction; systems monitoring.

1 Introduction

The ever-increasing demand for dependable, trustworthy intelligent diagnostic

and monitoring systems, as well as knowledge-based systems in general, has
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focused much of the attention of researchers on the knowledge-acquisition bot-

tleneck. The task of gathering information and extracting general knowledge

from it is known to be the most difficult part of creating a knowledge-based

system. Complex application problems, such as reliable monitoring and diag-

nosis of industrial plants, are likely to present large numbers of features, many

of which will be redundant for the task at hand [1,2]. Additionally, inaccu-

rate and/or uncertain values cannot be ruled out. Such applications typically

require convincing explanations about the inference performed, therefore a

method to allow automated generation of knowledge models of clear seman-

tics is highly desirable.

The most common approach to developing expressive and human readable

representations of knowledge is the use of if-then production rules [3]. Yet,

real-life problem domains usually lack generic and systematic expert rules for

mapping feature patterns onto their underlying classes. The present work aims

to induce low-dimensionality rulesets from historical descriptions of domain

features which are often of high dimensionality. In particular, a recent fuzzy

rule induction algorithm (RIA), as first reported in [4], is taken to act as the

starting point for this. It should be noted, however, that the flexibility of the

system discussed here allows the incorporation of almost any rule induction

algorithm that uses descriptive set representation of features. The choice of the

current RIA is largely due to its recency and the simplicity in implementation.

Provided with sets of continuous feature values, the RIA is able to induce

classification rules to partition the feature patterns into underlying categories.

In order to speed up the RIA and reduce rule complexity, a preprocessing

step is required. This is particularly important for tasks where learned rule-

sets need regular updating to reflect the changes in the description of domain

features. This step reduces the dimensionality of potentially very large feature
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sets while minimising the loss of information needed for rule induction. It has

an advantageous side-effect in that it removes redundancy from the historical

data. This also helps simplify the design and implementation of the actual

pattern classifier itself, by determining what features should be made avail-

able to the system. In addition, the reduced input dimensionality increases

the processing speed of the classifier, leading to better response times. Most

significant, however, is the fact that fuzzy-rough feature selection (FRFS) pre-

serves the semantics of the surviving features after removing any redundant

ones. This is essential in satisfying the requirement of user readability of the

generated knowledge model, as well as ensuring the understandability of the

pattern classification process.

There exists a number of approaches relevant to the rule induction task at

hand, both from the point of view of applications and that of computational

methods. For example, the FAPACS (Fuzzy Automatic Pattern Analysis and

Classification System) algorithm documented in [5,6] is able to discover fuzzy

association rules in relational databases. It works by locating pairs of features

that satisfy an ‘interestingness’ measure that is defined in terms of an ad-

justed difference between the observed and expected values of relations. This

algorithm is capable of expressing linguistically both the regularities and the

exceptions discovered within the data. Modifications to the Fuzzy ID3 (itself

an augmentation of Quinlan’s original ID3 [7]) rule induction algorithm have

been documented [8] to better support fuzzy learning. In a similar attempt, [9]

has proposed modifications to decision trees to combine traditional symbolic

decision trees with approximate reasoning, offered by fuzzy representation.

This approach redefines the methodology for knowledge inference, resulting in

a method best suited to relatively stationary problems.

A common disadvantage of these techniques is their sensitivity to high dimen-

sionality. This may be remedied using conventional work such as Principal
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Components Analysis (PCA) [10,11]. Unfortunately, although efficient, PCA

irreversibly destroys the underlying semantics of the feature set. Further rea-

soning about the derivation from transformed principal features is almost al-

ways humanly impossible. Most semantics-preserving dimensionality reduction

(or feature selection) approaches tend to be domain specific, however, relying

on the use of well-known features of the particular application domains.

Over the past ten years, rough set theory (RST [12]) has become a topic of

great interest to researchers and has been applied to many domains. Given a

dataset with discretized feature values, it is possible to find a subset (termed

a reduct) of the original features using RST that are the most informative; all

other features can be removed from the dataset with minimal information loss.

RST offers an alternative approach that preserves the underlying semantics

of the data while allowing reasonable generality. It is, therefore, desirable

to develop this technique to provide the means of data reduction for crisp

and real-valued datasets which utilises the extent to which values are similar.

Indeed, this can be achieved through the use of fuzzy-rough sets.

Fuzzy-rough sets encapsulate the related but distinct concepts of vagueness

(for fuzzy sets [13]) and indiscernibility (for rough sets), both of which occur

as a result of uncertainty in knowledge [14]. This paper, based on the most

recent work as reported in [15,16], presents such a method which employs

fuzzy-rough sets to improve the handling of this uncertainty. The theoretical

domain independence of the approach allows it to be used with different rule

induction algorithms, in addition to the specific RIA adopted herein. In light

of this, the present work is developed in a highly modular manner. Note that

the approach given in [17] forms a kin to this work. However, unlike the present

research, it only reports on the result of a direct combination of crisp RST

(not fuzzy-rough set theory) and the fuzzy learning algorithm proposed in [18]
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that is rather sensitive to the training data in ensuring the coverage of learned

rules.

The rest of this paper is structured as follows. The second section first sum-

marises the theoretical background of the basic ideas of RST that are relevant

to this work. Then, it describes the proposed fuzzy-rough set feature selection

method. To put the development in the context of rule induction, the RIA

algorithm adopted is outlined. Important design and implementation issues

involved are addressed throughout the discussion. To illustrate the operation

of both FRFS and the RIA, worked examples are included. A real problem

case of complex system monitoring is detailed in Section 3, along with the

modular design of the software system built for testing the approach. Section

4 shows the results of applying the present work to the problem case, sup-

ported by comparisons to the applications of entropy-based [7], PCA-based

and random selection to the same domain. Section 5 concludes the paper, and

proposes further work in this area.

2 Fuzzy-rough feature selection

This section details the theoretical work involved in this paper, including the

relevant ideas of RST and a crisp feature selection method directly using these

ideas, the description of the present work on fuzzy-rough set-based feature

selection, and the introduction of the RIA algorithm for fuzzy rule induction

from data.

2.1 Relevant ideas of RST

The theory of rough sets provides rigorous mathematical techniques for cre-

ating approximate descriptions of objects for data analysis, optimization and

recognition. A rough set itself is an approximation of a vague concept by a

pair of precise concepts, called lower and upper approximations [12]. The lower

approximation is a description of the domain objects which are known with

certainty to belong to the subset of interest, whereas the upper approximation
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is a description of the objects which possibly belong to the subset.

2.1.1 Basic concepts

Rough sets have been employed to remove redundant conditional features

from discrete-valued datasets, while retaining their information content. A

successful example of this is the Rough Set Feature Selection (RSFS) method

[17]. Central to RSFS is the concept of indiscernibility. Let I = (U, A) be an

information system, where U is a non-empty set of finite objects (the universe

of discourse); A is a non-empty finite set of features such that a : U → Va

∀a ∈ A, Va being the value set of feature a. In a decision system, A = {C∪D}

where C is the set of conditional features and D is the set of decision features.

With any P ⊆ A there is an associated equivalence relation IND(P ):

IND(P ) = {(x, y) ∈ U2 | ∀ a ∈ P, a(x) = a(y)} (1)

The partition of U, generated by IND(P) is denoted U/P and can be calculated

as follows:

U/P = ⊗{a ∈ P : U/IND({a})}, (2)

where

A⊗B = {X ∩ Y : ∀X ∈ A,∀Y ∈ B,X ∩ Y 6= Ø} (3)

If (x, y) ∈ IND(P ), then x and y are indiscernible by features from P . The

equivalence classes of the P -indiscernibility relation are denoted [x]P . Let X ⊆

U, the P-lower approximation of a set can now be defined as:

PX = {x | [x]P ⊆ X} (4)

Let P and Q be equivalence relations over U, then the positive region is defined

as:

POSP (Q) =
⋃

X∈U/Q

PX (5)

In terms of feature pattern based classification, the positive region contains

all objects of U that can be classified to classes of U/Q using the knowledge

in features P.
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2.1.2 Feature dependency and significance

An important issue concerned here, as with many data analysis tasks, is discov-

ering dependencies between features. Intuitively, a set of features Q depends

totally on a set of features P, denoted P ⇒ Q, if all feature values from Q are

uniquely determined by values of features from P. Dependency can be defined

in different ways (e.g. via conditional probabilities and information gains). In

RST, it is typically defined in the following way [12,17]:

For P,Q ⊆ A, Q depends on P in a degree k (0 ≤ k ≤ 1), denoted P ⇒k Q, if

k = γP (Q) =
|POSP (Q)|

|U|
(6)

where |S| stands for the cardinality of set S.

If k = 1 Q depends totally on P, if 0 < k < 1 Q depends partially (in a degree

k) on P, and if k = 0 Q does not depend on P.

By calculating the change in dependency when a feature is removed from

the set of considered conditional features, a measure of the significance of

the feature can be obtained. The higher the change in dependency, the more

significant the feature is. If the significance is 0, then the feature is dispensible.

More formally, given P,Q and a feature x ∈ P, the significance of feature x

upon Q is defined by

σP (Q, x) = γP (Q)− γP−{x}(Q) (7)

2.1.3 Feature reducts and reduct search

The reduction of features is achieved by comparing equivalence relations gen-

erated by sets of features. Features are removed from a given set so that the

reduced set provides the same quality of classification as the original. In the

context of decision systems, a reduct is formally defined as a subset R of the

conditional feature set C such that γR(D) = γC(D). A given dataset may have
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many feature reduct sets, and the collection of all reducts is denoted by

R = {X : X ⊆ C, γX(D) = γC(D)} (8)

The intersection of all the sets in R is called the core, the elements of which are

those features that cannot be eliminated without introducing contradictions

to the dataset.

In RSFS, a reduct with minimum cardinality is searched for; in other words

an attempt is made to locate a single element of the minimal reduct set Rmin

⊆ R :

Rmin = {X : X ∈ R, ∀Y ∈ R, |X| ≤ |Y |} (9)

A basic way of achieving this is to calculate the dependencies of all possible

subsets of C. Any subset X with γX(D) = 1 is a reduct; the smallest subset

with this property is a minimal reduct. However, for large datasets this method

is impractical and an alternative strategy is required.

The QuickReduct algorithm given in figure 1, borrowed from [15,17], at-

tempts to calculate a minimal reduct without exhaustively generating all pos-

sible subsets. It starts off with an empty set and adds in turn, one at a time,

those features that will result in the greatest increase in γP (Q), until this

produces its maximum possible value for the dataset (usually 1). However, it

has been proved that this method does not always generate a minimal reduct,

as γP (Q) is not a perfect heuristic [19]. It does result in a close-to-minimal

reduct, though, which is still useful in greatly reducing dataset dimensional-

ity. Note that an intuitive understanding of QuickReduct implies that, for

a dimensionality of n, (n2 +n)/2 evaluations of the dependency function may

be performed for the worst-case dataset. In fact, as feature selection can only

take place when n ≥ 2, the base case is n=2. Suppose that the set of condi-

tional features in this case is {a1, a2}, the QuickReduct algorithm makes

two initial dependency evaluations (for a1 and a2) and a final evaluation for
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{a1, a2} (in the worst case). Hence, the order of complexity of the algorithm

is 3 (or (n2 + n)/2) for n=2.

Suppose that for n = k the order of complexity of the algorithm is

(k2 + k)

2
(10)

For k + 1 features, {a1, ..., ak, ak+1}, QuickReduct makes k + 1 initial eval-

uations of the dependency function to determine the best feature (call this

ai). Once ai is chosen, for the remaining features there are (k2 + k)/2 more

evaluations in the worst case according to (10). Hence, the total number of

evaluations for n = k + 1 is:

k2+k
2

+ (k + 1) = k2+3k+2
2

= (k+1)2+(k+1)
2

As has been shown in [15], important information is lost due to the discretiza-

tion process required for RSFS. Additionally, there is no way of handling noisy

data. As an initial approach to addressing these issues, an attempt has been

made to combine rough and fuzzy methods for fuzzy rule induction [17]. Al-

though the method claims to be fuzzy-rough, there is no real hybridization

of the two theories. Instead, crisp rough sets are used for dimensionality re-

duction (after data discretization has been performed) followed by fuzzy rule

induction. The new approach proposed here uses the fuzzy sets employed later

in the rule induction phase to guide the reduct search; it uses hybrid fuzzy-

rough sets rather than crisp rough sets to compute the dependency degree.

2.2 The proposed method

The RSFS process described previously can only operate effectively with datasets

containing discrete values. As most datasets contain real-valued features, it is

necessary to perform a discretization step beforehand. This is typically im-

plemented by standard fuzzification techniques [17]. However, membership

degrees of feature values to fuzzy sets are not exploited in the process of di-

mensionality reduction. By using fuzzy-rough sets [14,20], it is possible to use

this information to better guide feature selection.
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2.2.1 Fuzzy equivalence classes

In the same way that crisp equivalence classes are central to rough sets, fuzzy

equivalence classes are central to the fuzzy-rough set approach [14]. For typical

RSFS applications, this means that the decision values and the conditional val-

ues may all be fuzzy. The concept of crisp equivalence classes can be extended

by the inclusion of a fuzzy similarity relation S on the universe, which deter-

mines the extent to which two elements are similar in S. The usual properties

of reflexivity (µS(x, x) = 1), symmetry (µS(x, y) = µS(y, x)) and transitivity

(µS(x, z) ≥ µS(x, y) ∧ µS(y, z)) hold.

Using the fuzzy similarity relation, the fuzzy equivalence class [x]S for objects

close to x can be defined:

µ[x]S(y) = µS(x, y) (11)

The following axioms should hold for a fuzzy equivalence class F [21]:

• ∃x, µF (x) = 1
• µF (x) ∧ µS(x, y) ≤ µF (y)
• µF (x) ∧ µF (y) ≤ µS(x, y)

The first axiom corresponds to the requirement that an equivalence class is

non-empty. The second axiom states that elements in y’s neighbourhood are

in the equivalence class of y. The final axiom states that any two elements

in F are related via S. Obviously, this definition degenerates to the normal

definition of equivalence classes when S is non-fuzzy.

The family of normal fuzzy sets produced by a fuzzy partitioning of the uni-

verse of discourse can play the role of fuzzy equivalence classes [14]. Consider

the crisp partitioning U/Q = {{1,3,6},{2,4,5}}. This contains two equivalence

classes ({1,3,6} and {2,4,5}) that can be thought of as degenerated fuzzy sets,

with those elements belonging to the class possessing a membership of one,

zero otherwise. For the first class, for instance, the objects 2, 4 and 5 have a

membership of zero. Extending this to the case of fuzzy equivalence classes is
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straightforward: objects can be allowed to assume membership values, with

respect to any given class, in the interval [0,1]. U/Q is not restricted to crisp

partitions only; fuzzy partitions are equally acceptable.

2.2.2 Fuzzy lower and upper approximations

From the literature, the fuzzy P -lower and P -upper approximations are de-

fined as [14]:

µPX(Fi) = infxmax{1− µFi
(x), µX(x)} ∀i (12)

µPX(Fi) = supxmin{µFi
(x), µX(x)} ∀i (13)

where Fi denotes a fuzzy equivalence class belonging to U/P . Note that al-

though the universe of discourse in feature reduction is finite, this is not the

case in general, hence the use of sup and inf . These definitions diverge a little

from the crisp upper and lower approximations, as the memberships of indi-

vidual objects to the approximations are not explicitly available. As a result

of this, the fuzzy lower and upper approximations are herein redefined as:

µPX(x) = sup
F∈U/P

min(µF (x), inf
y∈U

max{1− µF (y), µX(y)}) (14)

µPX(x) = sup
F∈U/P

min(µF (x), sup
y∈U

min{µF (y), µX(y)}) (15)

In implementation, not all y ∈ U are needed to be considered - only those

where µF (y) is non-zero, i.e. where object y is a fuzzy member of (fuzzy)

equivalence class F . The tuple < PX,PX > is called a fuzzy-rough set. It

can be seen that these definitions degenerate to traditional rough sets when

all equivalence classes are crisp. It is useful to think of the crisp lower approx-

imation as characterized by the following membership function:

µPX(x) =
{

1, x ∈ F, F ⊆ X
0, otherwise (16)

This states that an object x belongs to the P -lower approximation of X if it

belongs to an equivalence class that is a subset of X. Obviously, the behaviour

of the fuzzy lower approximation must be exactly that of the crisp definition
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for crisp situations. This is indeed the case as the fuzzy lower approximation

may be rewritten as

µPX(x) = sup
F∈U/P

min(µF (x), inf
y∈U
{µF (y)→ µX(y)}) (17)

where “→” stands for fuzzy implication (using the conventional min-max in-

terpretation). In the crisp case, µF (x) and µX(x) will take values from {0,1}.

Hence, it is clear that the only time µPX(x) will be zero is when at least one

object in its equivalence class F fully belongs to F but not to X. This is ex-

actly the same as the definition for the crisp lower approximation. Similarly,

the definition for the P -upper approximation can be established.

2.2.3 Fuzzy-rough reduction process

FRFS builds on the notion of the fuzzy lower approximation to enable re-

duction of datasets containing real-valued features. As will be shown, the

process becomes identical to the crisp approach when dealing with nominal

well-defined features.

The crisp positive region in traditional rough set theory is defined as the union

of the lower approximations. By the extension principle, the membership of

an object x ∈ U, belonging to the fuzzy positive region can be defined by

µPOSP (Q)(x) = sup
X∈U/Q

µPX(x) (18)

Object x will not belong to the positive region only if the equivalence class

it belongs to is not a constituent of the positive region. This is equivalent

to the crisp version where objects belong to the positive region only if their

underlying equivalence class does so.

Using the definition of the fuzzy positive region, the new dependency function

can be defined as follows:

γ′P (Q) =
|µPOSP (Q)(x)|

|U|
=

∑

x∈U µPOSP (Q)(x)

|U|
(19)

As with crisp rough sets, the dependency of Q on P is the proportion of

objects that are discernible out of the entire dataset. In the present approach,
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this corresponds to determining the fuzzy cardinality of µPOSP (Q)(x) divided

by the total number of objects in the universe.

The definition of dependency degree covers the crisp case as its specific in-

stance. This can be easily shown by recalling the definition of the crisp depen-

dency degree given in (6). If a function µPOSP (Q)(x) is defined which returns

1 if the object x belongs to the positive region, 0 otherwise, then the above

definition may be rewritten as:

γP (Q) =

∑

x∈U µPOSP (Q)(x)

|U|
(20)

which is identical to (19).

If the fuzzy-rough reduction process is to be useful, it must be able to deal

with multiple features, finding the dependency between various subsets of the

original feature set. For example, it may be necessary to be able to determine

the degree of dependency of the decision feature(s) with respect to P = {a, b}.

In the crisp case, U/P contains sets of objects grouped together that are

indiscernible according to both features a and b. In the fuzzy case, objects may

belong to many equivalence classes, so the cartesian product of U/IND({a})

and U/IND({b}) must be considered in determining U/P . In general,

U/P = ⊗{a ∈ P : U/IND({a})} (21)

Each set in U/P denotes an equivalence class. For example, if P = {a, b},

U/IND({a}) = {Na, Za} and U/IND({b}) = {Nb, Zb}, then

U/P = {Na ∩Nb, Na ∩ Zb, Za ∩Nb, Za ∩ Zb}

The extent to which an object belongs to such an equivalence class is therefore

calculated by using the conjunction of constituent fuzzy equivalence classes,

say Fi, i = 1, 2, ..., n: .2

µF1∩...∩Fn
(x) = min(µF1

(x), µF2
(x), ..., µFn

(x)) (22)

A problem may arise when this approach is compared to the crisp approach.

In conventional RSFS, a reduct is defined as a subset R of the features which
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have the same information content as the full feature set A. In terms of the

dependency function this means that the values γ(R) and γ(A) are identical

and equal to 1 if the dataset is consistent. However, in the fuzzy-rough ap-

proach this is not necessarily the case as the uncertainty encountered when

objects belong to many fuzzy equivalence classes results in a reduced total

dependency.

A possible way of combatting this would be to determine the degree of depen-

dency of a set of decision features D upon the full feature set and use this as

the denominator rather than |U| (for normalization), allowing γ ′ to reach 1.

With these issues in mind, a new QuickReduct algorithm has been devel-

oped as given in figure 2. It employs the new dependency function γ ′ to choose

which features to add to the current reduct candidate in the same way as the

original QuickReduct process. The algorithm terminates when the addition

of any remaining feature does not increase the dependency (such a criterion

could be used with the original QuickReduct algorithm). As with the orig-

inal algorithm, for a dimensionality of n, the worst case dataset will result in

(n2 +n)/2 evaluations of the dependency function. However, as FRFS is used

for dimensionality reduction prior to any involvement of the system which will

employ those features belonging to the resultant reduct, this operation has no

negative impact upon the run-time efficiency of the system.

Note that it is also possible to reverse the search process; that is, start with

the full set of features and incrementally remove the least informative features.

This process continues until no more features can be removed without reducing

the total number of discernible objects in the dataset.

2.2.4 A worked example

Using the fuzzy-rough QuickReduct algorithm, table 1 can be reduced in

size. First of all the lower approximations need to be determined. Consider the
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first feature in the dataset; setting P = {A} produces the fuzzy partitioning

U/P = {A1, A2, A3}. Additionally, setting Q = {Plan} produces the fuzzy

partitioning U/Q = {X,Y, Z}. To determine the fuzzy P -lower approximation

of Plan X (µPX(x)), each F ∈ U/P must be considered. For F = A1:

min(µA1(x), inf
y∈U

max{1− µA1(y), µX(y)}) = min(µA1(x), 0.6)

Similarly, for F = A2, min(µA2(x), 0.3) and F = A3, min(µA3(x), 0.0). To

calculate the extent to which an object x in the dataset belongs to the fuzzy P -

lower approximation ofX, the union of these values is calculated. For example,

object 0 belongs to PX with a membership of:

sup{min(µA1(0), 0.6), min(µA2(0), 0.3), min(µA3(0), 0.0)} = 0.3.

Likewise, for Y and Z:

µPY (0) = 0.2 µPZ(0) = 0.3

The extent to which object 0 belongs to the fuzzy positive region can be

determined by considering the union of fuzzy P -lower approximations:

µPOSP (Q)(0) = sup
S∈U/Q

µPS(0) = 0.3

Similarly, for the remaining objects,
µPOSP (Q)(1) = 0.6 µPOSP (Q)(2) = 0.3
µPOSP (Q)(3) = 0.6 µPOSP (Q)(4) = 0.5
µPOSP (Q)(5) = 0.3 µPOSP (Q)(6) = 0.6
µPOSP (Q)(7) = 0.3 µPOSP (Q)(8) = 0.3

Using these values, the new degree of dependency of Q on P = {A} can be

calculated:

γ′P (Q) =

∑

x∈U µPOSP (Q)(x)

|0, 1, 2, 3, 4, 5, 6, 7, 8|
= 3.8/9

The fuzzy-rough QuickReduct algorithm uses this process to evaluate sub-

sets of features in an incremental fashion. The algorithm starts with an empty

set and considers the addition of each individual feature:

γ′{A}(Q) = 3.8/9

γ′{B}(Q) = 2.1/9

γ′{C}(Q) = 2.7/9

As feature A causes the greatest increase in dependency degree, it is added to
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the reduct candidate and the search progresses:

γ′{A,B}(Q) = 4.0/9,

γ′{A,C}(Q) = 5.7/9

Here, C is added to the reduct candidate as the dependency is increased. There

is only one feature addition to be checked at the next stage, namely

γ′{A,B,C}(Q) = 5.7/9

This causes no dependency increase, resulting in the algorithm terminating

and outputting the reduct {A,C}. Hence, the original dataset can be reduced

to these features with minimal information loss (according to the algorithm).

Fuzzy rule induction can now be performed on the resulting reduced dataset.

2.3 Fuzzy rule induction

To show the potential utility of fuzzy-rough feature selection, the FRFS method

is applied as a pre-processor to an existing fuzzy rule induction algorithm

(RIA). The algorithm used is a recent one as described in [4]. For self-containedness,

a brief overview of the RIA is provided here. For simplicity in outlining this

induction procedure the original dataset given in table 1 (see Section 2.2.4) is

reused. There are three features each with corresponding linguistic terms, e.g.

A has terms A1, A2 and A3. The decision feature Plan is also fuzzy, separated

into three linguistic decisions X, Y and Z.

The algorithm begins by organising the dataset objects into subgroups accord-

ing to their highest decision value. Within each subgroup, the fuzzy subsethood

[22,23] is calculated between the decisions of the subgroup and each feature

term. Fuzzy subsethood is defined as follows:

S(A,B) =
M(A ∩B)

M(A)
=

∑

u∈U min(µA(u), µB(u))
∑

u∈U µA(u)
(23)

From this the subsethood values listed in table 2 can be obtained. Where, for

instance, S(X,A1) = 1 is obtained by taking the subgroup of objects that

belong to the decision X, while
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M(X) = 0.8 + 0.6 + 0.7 = 2.1
M(X ∩ A1) = min(0.8, 1) + min(0.6, 0.8) + min(0.7, 1)

= 0.8 + 0.6 + 0.7 = 2.1
Thus S(X,A1) = 2.1/2.1 = 1

These subsethood values are an indication of the relatedness of the individual

terms of the conditional features (or values of the features) to the decisions.

A suitable level threshold, α ∈ [0,1], must be chosen beforehand in order to

determine whether terms are close enough or not. At most, one term is selected

per feature. For example, setting α = 0.9 means that the term with the highest

fuzzy subsethood value (or its negation) above this threshold will be chosen.

Applying this process to the first two decision values X and Y generates the

rules:

Rule 1: IF A is A1 THEN Plan is X

Rule 2: IF B is NOT B3 AND C is C2 THEN Plan is Y

A problem is encountered here when there are no suitably representative terms

for a decision (as is the case for decision Z). In this situation, a rule is produced

that classifies cases to the decision value if the other rules do not produce rea-

sonable classifications, in order to entail full coverage of the learned rules over

the entire problem domain. This requires another threshold value, β ∈ [0,1],

which determines whether a classification is reasonable or not. For decision Z,

the following rule is produced:

Rule 3: IF MF (Rule1) < β AND MF (Rule2) < β THEN Plan is Z

where MF(Rule i) = MF(condition part of Rule i) and MF means the mem-

bership function value.

The classification results when using these rules on the example dataset can

be found in table 3. It shows the membership degrees of the cases to each

classification for the classified plan and the underlying plan present in the

training dataset. Clearly, the resulting classifications are the same when the
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min t-norm is used.

This technique has been shown to produce highly competitive results [4] in

terms of both classification accuracy and number of rules generated. However,

as is the case for most rule induction algorithms, the resultant rules may be

unnecessarily complex due to the presence of redundant or misleading features.

Fuzzy-Rough Feature Selection may be used to significantly reduce dataset

dimensionality, removing redundant features that would otherwise increase

rule complexity and reducing the time for the induction process itself.

As has been demonstrated previously, the example dataset may be reduced

by the removal of feature B with little reduction in classification accuracy

(according to FRFS). Using this reduced dataset, the RIA generates the rules

given in figure 3. From this, it can be seen that rule 2 has been simplified due

to the redundancy of feature B. Although the extent of simplification is small

in this case, with larger datasets the effect can be expected to be greater.

The results using the FRFS-reduced dataset are provided in table 4. The dif-

ferences between the classifications of the reduced and unreduced approaches

have been highlighted (cases 4 and 7). In case 4, only the membership de-

gree for Y has changed. This value has increased from 0.7 to 0.8, resulting

in an ambiguous classification. Again, for case 7, the membership degree for

Y is the only value to have changed; this time it more closely resembles the

classification present in the training dataset.

3 A realistic application

In order to evaluate the utility of the FRFS approach and to illustrate its

domain-independence, a challenging test dataset was chosen, namely the Wa-

ter Treatment Plant Database [24]. The dataset itself is a set of historical data

charted over 521 days, with 38 different input features measured daily. Each

day is classified into one of thirteen categories depending on the operational
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status of the plant. However, these can be collapsed into just two or three

categories (i.e. Normal and Faulty, or OK, Good and Faulty) for plant moni-

toring purposes as many classifications reflect similar performance. Because of

the efficiency of the actual plant the measurements were taken from, all faults

appear for short periods (usually single days) and are dealt with immediately.

This does not allow for a lot of training examples of faults, which is a clear

drawback if a monitoring system is to be produced. Note that this dataset

has been utilised in many previous studies, including that reported in [17] (to

illustrate the effectiveness of applying crisp RSFS as a pre-processing step to

rule induction).

The thirty eight conditional features account for the following five aspects of

the water treatment plant’s operation (see figure 4):

(1) Input to plant (9 features)

(2) Input to primary settler (6 features)

(3) Input to secondary settler (7 features)

(4) Output from plant (7 features)

(5) Overall plant performance (9 features)

It is likely that not all of the 38 input features are required to determine the

status of the plant, hence the dimensionality reduction step. However, choosing

the most informative features is a difficult task as there will be many depen-

dencies between subsets of features. There is also a monetary cost involved in

monitoring these inputs, so it is desirable to reduce this number.

Note that the original monitoring system (figure 5) developed in [17] consisted

of several modules; it is this modular structure that allows the new FRFS

technique to replace the existing crisp method. Originally, a precategorization

step preceded feature selection where feature values were quantized. To reduce
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potential loss of information, the original use of just the dominant symbolic la-

bels of the discretized fuzzy terms is now replaced by a fuzzification procedure.

This leaves the underlying feature values unchanged but generates a series of

fuzzy sets for each feature. These sets are generated entirely from the data

while exploiting the statistical data attached to the dataset (in keeping with

the rough set ideology in that the dependence of learning upon information

provided outside of the training dataset is minimized). This module may be

replaced by alternative fuzzifiers, or expert-defined fuzzification if available.

Based on these fuzzy sets and the original real-valued dataset, FRFS calculates

a reduct and reduces the dataset accordingly. Finally, fuzzy rule induction is

performed on the reduced dataset using the modelling algorithm given in

[4]. Note that this algorithm is not optimal, nor is the fuzzification. Yet the

comparisons given below are fair due to their common background. Alternative

fuzzy modelling techniques can be employed for this if available.

4 Experimental results

This section first provides the results for the FRFS-based approach compared

with the unreduced approach. Next, a comparative experimental study is car-

ried out between various dimensionality reduction methods; namely FRFS,

entropy-based feature selection, PCA and a random reduction technique.

The experiments were carried out over a tolerance range (with regard to the

employment of the RIA). As mentioned earlier, a suitable value for the thresh-

old α must be chosen before rule induction can take place. However, the se-

lection of α tends to be an application-specific task. A good choice for this

threshold that provides a balance between a resultant ruleset’s complexity

and accuracy can be found by experiment. It should be noted here that due to

the fuzzy rule induction method chosen, all approaches generate exactly the
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same number of rules (as the number of classes of interest), but the arities in

different rulesets differ.

4.1 Comparison with the use of unreduced features

First of all, it is important to show that, at least, the use of features selected

does not significantly reduce the classification accuracy as compared to the

use of the full set of original features. For the 2-class problem, the fuzzy-rough

set-based feature selector returns 10 features out of the original 38.

Figure 6 compares the classification accuracies of the reduced and unreduced

datasets on both the training and testing data. As can be seen, the FRFS

results are almost always better than the unreduced accuracies over the toler-

ance range. The best results for FRFS were obtained when α is in the range

0.86 to 0.90, producing a classification accuracy of 83.3% on the training set

and 83.9% for the test data. Compare this with the optimum for the unre-

duced approach, which gave an accuracy of 78.5% for the training data and

83.9% for the test data.

By using the FRFS-based approach, rule complexity is greatly reduced. Fig-

ure 7 charts the average rule complexity over the tolerance range for the two

approaches. Over the range of α values, FRFS produces significantly less com-

plex rules while having a higher resultant classification accuracy. The average

rule arity of the FRFS optimum is 1.5 (α ∈ (0.86, 0.9)) which is less than that

of the unreduced optimum, 6.0.

The 3-class dataset is a more challenging problem, reflected in the overall lower

classification accuracies produced. The fuzzy-rough method chooses 11 out of

the original 38 features. The results of both approaches can be seen in figure 8.

Again, it can be seen that FRFS outperforms the unreduced approach on the

whole. The best classification accuracy obtained for FRFS was 70.0% using the
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training data, 71.8% for the test data (α = 0.81). For the unreduced approach,

the best accuracy obtained was 64.4% using the training data, 64.1% for the

test data (α = 0.88).

Figure 9 compares the resulting rule complexity of the two approaches. It

is evident that rules induced using FRFS as a preprocessor are simpler, with

little loss in classification accuracy. In fact, the simple rules produced regularly

outperform the more complex ones generated by the unreduced approach. The

average rule arity of the FRFS optimum is 4.0 which is less than that of the

unreduced optimum, 8.33.

These results show that FRFS is useful not only in removing redundant fea-

ture measures but also in dealing with the noise associated with such measure-

ments. To demonstrate that the resulting rules are comprehensible, two sets of

rules produced by the induction mechanism are given in figure 10. The rules

produced are reasonably short and understandable. However, when semantics-

destroying dimensionality reduction techniques are applied, such readability

is lost.

4.2 Comparison with entropy-based feature selection

To support the study of the performance of FRFS for use as a pre-processor to

rule induction, a conventional entropy-based technique is used for comparison.

This approach utilizes the entropy heuristic employed by machine learning

techniques such as C4.5 [7]. Those features that provide the most gain in

information are selected. A summary of the results of this comparison can be

seen in table 5.

For both the 2-class and 3-class datasets, FRFS selects three fewer features

than the entropy-based method. FRFS has a higher training accuracy and the

same testing accuracy for the 2-class data using less features. However, for the

3-class data, the entropy-based method produces a very slightly higher testing
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accuracy. Again, it should be noted that this is obtained with three additional

features over the FRFS approach.

4.3 Comparison with PCA and random reduction

The above comparison ensured that little information loss is incurred due to

FRFS. The question now is whether any other feature sets of a dimensionality

10 (for the 2-class dataset) and 11 (for the 3-class dataset) would perform

similarly. To avoid a biased answer to this, without resorting to exhaustive

computation, 70 sets of random reducts were chosen of size 10 for the 2-

class dataset, and a further 70 of size 11 for the 3-class dataset to see what

classification results might be achieved. The classification accuracies for each

tolerance value are averaged.

The effect of using a different dimensionality reduction technique, namely

PCA, is also investigated. To ensure that the comparisons are fair, only the

first 10 principal components are chosen for the 2-class dataset (likewise, the

first 11 for the 3-class dataset). As PCA irreversibly destroys the underlying

dataset semantics, the resulting rules are not human-comprehensible but may

still provide useful automatic classifications of new data.

The results of FRFS, PCA and random approaches can be seen in figure 11

for the 2-class dataset. On the whole, FRFS produces a higher classification

accuracy than both PCA-based and random-based methods over the toler-

ance range. FRFS results in the highest individual classification accuracy for

training and testing data (see table 6).

For the 3-class dataset, the results of FRFS, PCA and random selection can

be seen in figure 12. The individual best accuracies can be seen in table 7.

Again, FRFS produces the highest classification accuracy (71.8%), and is al-

most always the best over the tolerance range. Although PCA produces a
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comparatively high accuracy of 70.2%, this is at the expense of incomprehen-

sible rules.

5 Conclusion

Automated generation of feature pattern-based if-then rules is essential to the

success of many intelligent pattern classifiers, especially when their inference

results are expected to be directly human-comprehensible. This paper has

presented such an approach which integrates a recent fuzzy rule induction

algorithm with a fuzzy-rough method for feature selection. Unlike semantics-

destroying approaches such as PCA, this approach maintains the underlying

semantics of the feature set, thereby ensuring that the resulting models are

interpretable and the inference explainable. Not only are the rules simplified by

the use of FRFS, but the resulting classification accuracies are in fact improved.

The method alleviates important problems encountered by traditional RSFS

such as dealing with noise and real-valued features.

In all experimental studies there has been no attempt to optimize the fuzzifi-

cations or the classifiers employed. It can be expected that the results obtained

with optimization would be even better than those already observed. The gen-

erality of this approach should enable it to be applied to other domains. The

ruleset generated by the RIA was not processed by any post-processing tools

so as to allow its behaviour and capabilities to be revealed fully. By enhanc-

ing the induced ruleset through post-processing, performance should improve.

Additionally, other fuzzy rule induction algorithms may be used. The cur-

rent RIA may be easily replaced due to the modularity of the system. Similar

work has been carried out using Lozowski’s algorithm [15,18] which, being

exhaustive in nature, benefits greatly from a feature selection pre-processing

stage.

Work is being carried out on a fuzzified dependency function [25]. Ordinarily,
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the dependency function returns values for sets of features in the range [0,1];

the fuzzy dependency function will return qualitative fuzzy labels for use in

the new QuickReduct algorithm. With this mechanism in place, several

features may be chosen at one time according to their labels, speeding up

the feature selection process. Additionally, research is being carried out into

the potential utility of fuzzy reducts, which would allow features to have a

varying possibility of becoming a member of the resultant reduct. Further work

also includes broadening the comparative studies to include comparisons with

other feature selection and dimensionality reduction techniques. In particular,

studies using the Isomap algorithm [27], a recent successful dimensionality

reduction technique, should be beneficial.
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QuickReduct(C,D).
C, the set of all conditional features;
D, the set of decision features.

(1) R← {}
(2) do

(3) T ← R
(4) ∀x ∈ (C −R)
(5) if γR∪{x}(D) > γT (D)
(6) T ← R ∪ {x}
(7) R← T
(8) until γR(D) = γC(D)
(9) return R

Fig. 1. The QuickReduct Algorithm.

Case A B C Plan
A1 A2 A3 B1 B2 B3 C1 C2 X Y Z

1 0.3 0.7 0.0 0.2 0.7 0.1 0.3 0.7 0.1 0.9 0.0
2 1.0 0.0 0.0 1.0 0.0 0.0 0.7 0.3 0.8 0.2 0.0
3 0.0 0.3 0.7 0.0 0.7 0.3 0.6 0.4 0.0 0.2 0.8
4 0.8 0.2 0.0 0.0 0.7 0.3 0.2 0.8 0.6 0.3 0.1
5 0.5 0.5 0.0 1.0 0.0 0.0 0.0 1.0 0.6 0.8 0.0
6 0.0 0.2 0.8 0.0 1.0 0.0 0.0 1.0 0.0 0.7 0.3
7 1.0 0.0 0.0 0.7 0.3 0.0 0.2 0.8 0.7 0.4 0.0
8 0.1 0.8 0.1 0.0 0.9 0.1 0.7 0.3 0.0 0.0 1.0
9 0.3 0.7 0.0 0.9 0.1 0.0 1.0 0.0 0.0 0.0 1.0

Table 1
Example dataset



FRQuickReduct(C,D).
C, the set of all conditional features;
D, the set of decision features.

(1) R← {}, γ ′best ← 0, γ′prev ← 0
(2) do

(3) T ← R
(4) γ ′prev ← γ′best
(5) ∀x ∈ (C −R)
(6) if γ ′R∪{x}(D) > γ ′T (D)
(7) T ← R ∪ {x}
(8) γ ′best ← γ′T (D)
(9) R← T
(10) until γ ′best = γ′prev

(11) return R

Fig. 2. The fuzzy-rough QuickReduct algorithm.

Plan Linguistic term
A1 A2 A3 B1 B2 B3 C1 C2

X 1 0.1 0 0.71 0.43 0.14 0.52 0.76
Y 0.33 0.58 0.29 0.42 0.58 0.04 0.13 0.92
Z 0.14 0.64 0.29 0.32 0.61 0.14 0.82 0.25

Table 2
Subsethood values between conditional feature terms and the decision terms



Case Classified Actual
X Y Z X Y Z

1 0.3 0.7 0.0 0.1 0.9 0.0
2 1.0 0.3 0.0 0.8 0.2 0.0
3 0.0 0.4 1.0 0.0 0.2 0.8
4 0.8 0.7 0.0 0.6 0.3 0.1
5 0.5 1.0 0.0 0.6 0.8 0.0
6 0.0 1.0 0.0 0.0 0.7 0.3
7 1.0 0.8 0.0 0.7 0.4 0.0
8 0.1 0.3 1.0 0.0 0.0 1.0
9 0.3 0.0 1.0 0.0 0.0 1.0

Table 3
Classified plan with all features and the actual plan

Rule 1: IF A is A1 THEN Plan is X
Rule 2: IF C is C2 THEN Plan is Y
Rule 3: IF MF (Rule1) < β AND MF (Rule2) < β THEN Plan is Z

Fig. 3. Generated rules using the reduced dataset.



Case Classified Actual
X Y Z X Y Z

1 0.3 0.7 0.0 0.1 0.9 0.0
2 1.0 0.3 0.0 0.8 0.2 0.0
3 0.0 0.4 1.0 0.0 0.2 0.8
4 0.8 0.8 0.0 0.6 0.3 0.1
5 0.5 1.0 0.0 0.6 0.8 0.0
6 0.0 1.0 0.0 0.0 0.7 0.3
7 1.0 0.3 0.0 0.7 0.4 0.0
8 0.1 0.3 1.0 0.0 0.0 1.0
9 0.3 0.0 1.0 0.0 0.0 1.0

Table 4
Classified plan with reduced features and the actual plan

Primary Settler Secondary Settler

Secondary Settler Gauges (7)

Overall Performance Gauges (9)

Output Gauges (7)Primary Settler Gauges (6)Input Gauges (9)

Fig. 4. Water treatment plant, with number of measurements shown at different
points in the system.

Approach No. of Selected No. of Training Testing
Classes Features Features Accuracy Accuracy

FRFS 2 {0,2,6,10,12,15,22,24,26,37} 10 83.3% 83.9%
Entropy 2 {1,5,6,7,9,12,15,16,20,22,29,30,33} 13 80.7% 83.9%
FRFS 3 {2,3,6,10,12,15,17,22,27,29,37} 11 70.0% 71.8%
Entropy 3 {6,8,10,12,17,21,23,25,26,27,29,30,34,36} 14 70.0% 72.5%

Table 5
Comparison of FRFS and entropy-based feature selection
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Fig. 5. Modular decomposition of the implemented system.
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Fig. 7. Average rule arities for the 2-class dataset.
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AND PH-S IS NOT High THEN Situation IS Good

IF PH-E IS NOT High AND SSV-E IS Low AND SSV-P IS NOT Medium
AND PH-D IS NOT High AND DQO-D IS NOT Medium

IF SED-S IS Medium THEN Situation IS Normal

Rules from FRFS-reduced data

Rules from unreduced data

DQO-D IS NOT High AND SED-S IS Medium THEN
IF PH-E IS NOT High AND SSV-E IS Low AND SSV-P IS Low AND

IF ZN-E IS NOT High AND SS-E IS NOT High AND SED-E IS NOT High

IF ZN-E IS Low AND PH-E IS NOT High AND SSV-E IS NOT High AND

Situation IS Faulty

AND SSV-D IS NOT High AND DBO-S IS Low AND
SS-S IS NOT High AND SED-S IS Low THEN
Situation IS Normal

PH-P IS NOT High AND SSV-P IS NOT High AND
PH-D IS NOT High AND DBO-D IS NOT Medium AND
SSV-D IS NOT High AND SS-S IS NOT High THEN
Situation IS Good

IF SSV-E IS NOT High AND SSV-P IS Low AND DQO-D IS NOT High
AND SSV-D IS NOT High AND SED-D IS NOT High
AND DBO-S IS Low AND SS-S IS NOT High AND

 Situation IS Faulty
SSV-S IS NOT High AND SED-S IS Low THEN

Fig. 10. A selection of generated rulesets.
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PCA and random-reduction methods.



Approach Training Testing
Accuracy Accuracy

FRFS 83.3% 83.9%
Random 66.4% 68.1%
PCA 76.7% 70.3%

Table 6
Best individual classification accuracies (2-class dataset) for FRFS, PCA and ran-
dom approaches.
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Fig. 12. Training and testing accuracies for the 3-class dataset: comparison with
PCA and random-reduction methods.

Approach Training Testing
Accuracy Accuracy

FRFS 70.0% 71.8%
Random 55.7% 54.3%
PCA 67.7% 70.2%

Table 7
Best resultant classification accuracies (3-class dataset) for FRFS, PCA and random
approaches


