
Aberystwyth University

Feature Selection based on Rough Sets and Particle Swarm Optimization
Yang, Jie; Xia, W.; Wang, Xiangyang; Jensen, Richard; Teng, X.

Published in:
Pattern Recognition Letters

DOI:
10.1016/j.patrec.2006.09.003

Publication date:
2007

Citation for published version (APA):
Yang, J., Xia, W., Wang, X., Jensen, R., & Teng, X. (2007). Feature Selection based on Rough Sets and Particle
Swarm Optimization. Pattern Recognition Letters, 459-471. https://doi.org/10.1016/j.patrec.2006.09.003

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 26. Apr. 2024

https://doi.org/10.1016/j.patrec.2006.09.003
https://doi.org/10.1016/j.patrec.2006.09.003

 1

Feature Selection based on Rough Sets and Particle Swarm
Optimization

Xiangyang Wang a,*, Jie Yang a, Xiaolong Teng a, Weijun Xia b, Richard Jensen c

a Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai 200030,
China

b Institute of Automation, Shanghai Jiao Tong University, Shanghai 200030, China
c Department of Computer Science, The University of Wales, Aberystwyth

Abstract: We propose a new feature selection strategy based on rough sets and Particle Swarm

Optimization (PSO). Rough sets has been used as a feature selection method with much success,

but current hill-climbing rough set approaches to feature selection are inadequate at finding

optimal reductions as no perfect heuristic can guarantee optimality. On the other hand, complete

searches are not feasible for even medium-sized datasets. So, stochastic approaches provide a

promising feature selection mechanism. Like Genetic Algorithms, PSO is a new evolutionary

computation technique, in which each potential solution is seen as a particle with a certain velocity

flying through the problem space. The Particle Swarms find optimal regions of the complex search

space through the interaction of individuals in the population. PSO is attractive for feature

selection in that particle swarms will discover best feature combinations as they fly within the

subset space. Compared with GAs, PSO does not need complex operators such as crossover and

mutation, it requires only primitive and simple mathematical operators, and is computationally

inexpensive in terms of both memory and runtime. Experimentation is carried out, using UCI data,

which compares the proposed algorithm with a GA-based approach and other deterministic rough

set reduction algorithms. The results show that PSO is efficient for rough set-based feature

selection.

Keywords: Feature selection; Rough Sets; Reduct; Genetic Algorithms; Particle Swarm
Optimization

*Tel.: +86 21 62933739
E-mail: wangxiangyang@sjtu.edu.cn (Xiangyang Wang)

 2

1. Introduction

In many fields such as data mining, machine learning, pattern recognition and signal

processing, datasets containing huge numbers of features are often involved. In such cases,

feature selection will be necessary (Liu and Motoda, 1998; Guyon and Elisseeff, 2003).

Feature selection is the process of choosing a subset of features from the original set of

features forming patterns in a given dataset. The subset should be necessary and sufficient

to describe target concepts, retaining a suitably high accuracy in representing the original

features. The importance of feature selection is to reduce the problem size and resulting

search space for learning algorithms. In the design of pattern classifiers it can improve the

quality and speed of classification. (Kudo and Sklansky, 2000).

Due to the abundance of noisy, irrelevant or misleading features, the ability to handle

imprecise and inconsistent information in real world problems has become one of the most

important requirements for feature selection. Rough sets (Pawlak, 1982, 1991, 1997) can

handle uncertainty and vagueness, discovering patterns in inconsistent data. Rough sets

have been a useful feature selection method in pattern recognition (Chouchoulas and Shen,

2001). The rough set approach to feature selection is to select a subset of features (or

attributes), which can predict the decision concepts as well as the original feature set. The

optimal criterion for rough set feature selection is to find shortest or minimal reducts while

obtaining high quality classifiers based on the selected features (Swiniarski and Skowron,

2003).

There are many rough set algorithms for feature selection. The most basic solution to

finding minimal reducts is to generate all possible reducts and choose any with minimal

cardinality, which can be done by constructing a kind of discernibility function from the

 3

dataset and simplifying it (Bazan et al, 2000; Komorowski et al, 1999). Starzyk uses

strong equivalence to simplify discernibility functions (Starzyk et al., 1998; Janusz et al.,

2000). Obviously, this is an expensive solution to the problem and is only practical for

very simple datasets. It has been shown that finding minimal reducts or all reducts are both

NP-hard problems (Skowron, 1992). Therefore, heuristic approaches have to be

considered.

In general, there are two kinds of rough set methods for feature selection, hill-climbing

(or greedy) methods and stochastic methods (Vafaie and Imam, 1994). The hill-climbing

approaches usually employ rough set attribute significance as heuristic knowledge. They

start off with an empty set or attribute core and then adopt forward selection or backward

elimination. Forward selection adds in turn, one at a time, the most significant attribute

from the candidate set, until the selected set is a reduct. Backward elimination is the

reverse, starting with the full attribute set and removing attributes incrementally. X. Hu

gives a reduction algorithm using the positive region-based attribute significance as the

guiding heuristic (X. Hu 1995a, 1995b). Wang develops a conditional information

entropy-based reduction algorithm, using conditional entropy-based attribute significance

(Wang, 2004, 2002). K. Hu computes the significance of an attribute making use of

heuristic ideas from discernibility matrices and proposes a heuristic reduction algorithm

(K. Hu et al., 2003). The positive region and conditional entropy-based methods choose a

minimal feature subset that fully describes all concepts in a given dataset. The

discernibility matrix-based method is to select a feature subset with high discriminatory

power, which guarantees the maximal between-class separability for the reduced data sets.

These methods consider the best candidate attribute, trying to find a minimal reduct.

 4

However, hill-climbing methods do not guarantee to find an optimal or minimal reduct. As

no perfect heuristic exists, there can be no guarantee of optimality. Using attribute

significance to discriminate between candidates may lead the search down a non-minimal

path. It is impossible to predict which combinations of attributes will lead to an optimal

reduct with the addition or deletion of single attributes.

Some researchers use stochastic methods for rough set feature selection (Bazan, 2000).

Wróblewski uses genetic algorithms to find minimal reducts (Wróblewski, 1995). He

combines a genetic algorithm with a greedy algorithm to generate short reducts. However,

it uses highly time-consuming operations and cannot assure that the resulting subset is

really a reduct. Bjorvand applies genetic algorithms to compute approximate reducts

(Bjorvand, 1997a, 1997b). He takes Wróblewski’s work as a foundation, but makes

several variations and practical improvements both in speed and the quality of

approximation. To obtain a good initial population for the GA, Bjorvand includes the

attribute core in all candidates. In addition to this, he uses domain knowledge to get the

average size of actual reducts and lets the number of features in the candidates be similar

to the number in the reducts. Also, he allows the user to assign a relative weight to each

attribute when creating the initial population. To avoid wasting much processing power in

a wrong search direction, he adopts a dynamic mutation rate that is proportional to the

redundancy in the population, preventing all individuals from becoming equal. Zhai

proposes an integrated feature extraction approach based on rough set theory and genetic

algorithms (Zhai, 2002). Rough sets are used to perform consistency checks, concept

formation and approximation. By calculating the lower and upper approximations,

training data is split into certain training data and possible training data. Then, a GA

 5

discovers best rules from the data sets. The fitness function is defined as the classification

quality of the extracted rules. Ultimately, the features or attributes within rules with

highest indices are selected. Jensen finds minimal rough set reducts using another

stochastic strategy, Ant Colony Optimization (ACO) (Jensen and Shen, 2003).

Hill-climbing methods are more efficient when dealing with little noise and a small

number of interacting features, but are not assured of optimality. Stochastic methods can

provide a more robust solution at the expense of increased computational effort (Vafaie

and Imam, 1994). For systems where the optimal or minimal subset is required (perhaps

due to the cost of feature measurement), stochastic feature selection must be used.

In this article we propose a new feature selection mechanism, investigating how

particle swarm optimization (PSO) can be applied to find optimal feature subsets or rough

set reducts. PSO is a new evolutionary computation technique proposed by Kennedy and

Eberhart (Kennedy and Eberhart, 1995a, 1995b). The particle swarm concept was

motivated from the simulation of social behavior. The original intent was to graphically

simulate the graceful but unpredictable movement of bird flocking. The PSO algorithm

mimics the behavior of flying birds and their means of information exchange to solve

optimization problems. Each potential solution is seen as a particle with a certain velocity,

and “flies” through the problem space. Each particle adjusts its flight according to its own

flying experience and its companions’ flying experience. The particle swarms find optimal

regions of complex search spaces through the interaction of individuals in a population of

particles. PSO has been successfully applied to a large number of difficult combinatorial

optimization problems; studies show that it often outperforms Genetic Algorithms

(Kennedy and Spears, 1998). PSO is particularly attractive for feature selection in that

 6

particle swarms will discover the best feature combinations as they fly within the problem

space. The performance of the proposed algorithm is evaluated using several UCI datasets.

It can be seen that PSO has a strong search capability in the problem space and can

discover optimal solutions quickly.

The rest of this paper is structured as follows. Section 2 describes the fundamentals of

rough set theory. The principles of PSO and PSO for Rough set-based Feature Selection

algorithm (PSORSFS) are presented in Section 3. The effectiveness of the method is

demonstrated, compared with other algorithms on UCI datasets and discussed in Section 4.

Finally, Section 5 concludes the article.

The algorithms used in the comparison include the positive region-based attribute

reduction algorithm (POSAR) (Jensen and Shen, 2003; Hu, 1995b; Wang, 2004),

conditional entropy-based attribute reduction (CEAR) (Wang, 2002, 2004), discernibility

matrix-based attribute reduction (DISMAR) (Hu, 2003) and GA-based attribute reduction

(GAAR) (Wroblewslki, 1995; Bazan, 1998, 2000). Due to paper length restrictions, we do

not describe such algorithms here, more details can be found in the related references.

2. Rough set preliminaries

Rough set theory (Pawlak, 1991, 1997) is a new mathematical approach to imprecision,

vagueness and uncertainty. In an information system, every object of the universe is

associated with some information. Objects characterized by the same information are

indiscernible with respect to the available information about them. Any set of

indiscernible objects is called an elementary set. Any union of elementary sets is referred

to as a crisp set- otherwise a set is rough (imprecise, vague). Vague concepts cannot be

characterized in terms of information about their elements. A rough set is the

 7

approximation of a vague concept by a pair of precise concepts, called lower and upper

approximations. The lower approximation is a description of the domain objects which are

known with certainty to belong to the subset of interest, whereas the upper approximation

is a description of the objects which possibly belong to the subset. Relative to a given set

of attributes, a set is rough if its lower and upper approximations are not equal.

The main advantage of rough set analysis is that it requires no additional knowledge

except for the supplied data. Rough sets perform feature selection using only the

granularity structure of the data (Jensen and Shen, 2003).

Let I=(U, A) be an information system, where U is the universe, a non-empty finite set

of objects. A is a non-empty finite set of attributes. For Aa ∈∀ determines a function

aa VUf →: . If AP ⊆ , there is an associated equivalence relation:

)}()(,|),{()(yfxfPaUUyxPIND aa =∈∀×∈= (1)

The partition of U, generated by IND(P) is denoted U/P. If)(),(PINDyx ∈ , then x and y

are indiscernible by attributes from P. The equivalence classes of the P-indiscernibility

relation are denoted Px][. The indiscernibility relation is the mathematical basis of rough

set theory.

Let UX ⊆ , the P-lower approximation XP and P-upper approximation XP of set

X can be defined as:

}][|{ XxUxXP P ⊆∈= (2)

}][|{ φ≠∩∈= XxUxXP P (3)

Let AQP ⊆, be equivalence relations over U, then the positive, negative and boundary

regions can be defined as:

 8

XPQPOS
QUXP /

)(
∈
∪= (4)

XPUQNEG
QUXP /

)(
∈
∪−= (5)

XPXPQBND
QUXQUXP //

)(
∈∈
∪−∪= (6)

The positive region of the partition U/Q with respect to P,)(QPOSP , is the set of all

objects of U that can be certainly classified to blocks of the partition U/Q by means of P. A

set is rough (imprecise) if it has a non-empty boundary region.

An important issue in data analysis is discovering dependencies between attributes.

Dependency can be defined in the following way. For AQP ⊆, , P depends totally on Q,

if and only if)()(QINDPIND ⊆ . That means that the partition generated by P is finer

than the partition generated by Q. We say that Q depends on P in a degree k� 10 ≤≤ k ��

denoted QP k� , if

U

QPOS
Qk P

P

)(
)(== γ (7)

If k=1, Q depends totally on P, if 0<k<1, Q depends partially on P, and if k=0 then Q does

not depend on P. In other words, Q depends totally (partially) on P, if all (some) objects of

the universe U can be certainly classified to blocks of the partition U/Q, employing P.

In a decision system the attribute set contains the condition attribute set C and decision

attribute set D, i.e. DCA ∪= . The degree of dependency between condition and decision

attributes,)(DCγ , is called the quality of approximation of classification, induced by the

set of decision attributes (Pawlak, 1997).

The goal of attribute reduction is to remove redundant attributes so that the reduced set

provides the same quality of classification as the original. A reduct is defined as a subset R

 9

of the conditional attribute set C such that)()(DD CR γγ = . A given decision table may

have many attribute reducts, the set of all reducts is defined as:

)}()(,),()(|{Re DDRBDDCRd CBCR γγγγ ≠⊂∀=⊆= (8)

In rough set attribute reduction, a reduct with minimal cardinality is searched for. An

attempt is made to locate a single element of the minimal reduct set dd ReRe min ⊆ :

},Re|Re{Re min RRdRdRd ′≤∈′∨∈= (9)

The intersection of all reducts is called the core, the elements of which are those

attributes that cannot be eliminated. The core is defined as:

dCCore Re)(∩= (10)

3. PSO for Feature Selection

3.1 The principle of PSO

Particle swarm optimization (PSO) is an evolutionary computation technique

developed by Kennedy and Eberhart in 1995 (Kennedy and Eberhart, 1995a, 1995b). The

original intent was to graphically simulate the graceful but unpredictable movements of a

flock of birds. Initial simulations were modified to form the original version of PSO. Later,

Shi introduced inertia weight into the particle swarm optimizer to produce the standard

PSO (Shi and Eberhart, 1998a, 2001).

PSO is initialized with a population of random solutions, called ‘particles’. Each

particle is treated as a point in an S-dimensional space. The ith particle is represented as

),...,,(21 iSiii xxxX = . The best previous position (pbest, the position giving the best fitness

value) of any particle is recorded and represented as),...,,(21 iSiii pppP = . The index of

 10

the best particle among all the particles in the population is represented by the symbol

‘gbest’. The rate of the position change (velocity) for particle i is represented as

),...,,(21 iSiii vvvV = . The particles are manipulated according to the following equation:

)(*()*)(*()** 21 idgdidididid xpRandcxprandcvwv −+−+= (11)

ididid vxx += (12)

Where Sd ,...,2,1= , w is the inertia weight, it is a positive linear function of time

changing according to the generation iteration. Suitable selection of the inertia weight

provides a balance between global and local exploration, and results in fewer iterations on

average to find a sufficiently optimal solution. The acceleration constants c1 and c2 in

equation (11) represent the weighting of the stochastic acceleration terms that pull each

particle toward pbest and gbest positions. Low values allow particles to roam far from

target regions before being tugged back, while high values result in abrupt movement

toward, or past, target regions. rand() and Rand() are two random functions in the range

[0,1].

Particles’ velocities on each dimension are limited to a maximum velocity, Vmax. It

determines how large steps through the solution space each particle is allowed to take. If

Vmax is too small, particles may not explore sufficiently beyond locally good regions.

They could become trapped in local optima. On the other hand, if Vmax is too high

particles might fly past good solutions.

The first part of equation (11) provides the “flying particles” with a degree of memory

capability allowing the exploration of new search space areas. The second part is the

“cognition” part, which represents the private thinking of the particle itself. The third part

is the “social” part, which represents the collaboration among the particles. Equation (11)

 11

is used to calculate the particle’s new velocity according to its previous velocity and the

distances of its current position from its own best experience (position) and the group’s

best experience. Then the particle flies toward a new position according to equation (12).

The performance of each particle is measured according to a pre-defined fitness function.

(a) (b)

Figure 1: (a) PSO process. (b) PSO-based Feature Selection. The principle of updating velocity.
Individual particles (1 and 2) are accelerated toward the location of the best solution, gbest, and the
location of their own personal best, pbest, in the two dimension problem space (feature number
and classification quality)

We give the pseudo code of the PSO algorithm here, with a graphic demonstration of

PSO given in figure 1.

Algorithm PSO

Input:

m: the swarm size; 1c , 2c : positive acceleration constants; w: inertia weight

MaxV: maximum velocity of particles

MaxGen: maximum generation

MaxFit: maximum fitness value

Output:

 12

Pgbest: Global best position

Begin

Swarms }{ , idid vx =Generate(m); /* Initialize a population of particles with random

positions and velocities on S dimensions*/

Pbest(i)=0; Sdmi ,...,1,,...,1 ==

Gbest=0; Iter=0;

While(Iter<MaxGen and Gbest<MaxFit)

 { For(every particle i)

 { Fitness(i)=Evaluate(i);

 IF(Fitness(i)>Pbest(i))

 {Pbest(i)=Fitness(i); idid xp = ; Sd ,...,1= }

 IF(Fitness(i)>Gbest)

 {Gbest=Fitness(i); gbest=i;}

 }

For(every particle i)

 { For(every d){

)(*()*)(*()** 21 idgdidididid xpRandcxprandcvwv −+−+=

 IF(MaxVvid >) { MaxVvid = ;}

 IF(MaxVvid −<) { MaxVvid −= ;}

ididid vxx +=

 }

 }

 13

Iter=Iter+1;

 }/*rand() and Rand() are two random functions in the range [0,1]*/

Return P_{gbest}

End

3.2 PSO and Rough set-based Feature Selection (PSORSFS)

We can use the idea of PSO for the optimal feature selection problem. Consider a large

feature space full of feature subsets. Each feature subset can be seen as a point or position

in such a space. If there are N total features, then there will be 2N kinds of subset, different

from each other in the length and features contained in each subset. The optimal position is

the subset with least length and highest classification quality. Now we put a particle swarm

into this feature space, each particle takes one position. The particles fly in this space, their

goal is to fly to the best position. Over time, they change their position, communicate with

each other, and search around the local best and global best position. Eventually, they

should converge on good, possibly optimal, positions. It is this exploration ability of

particle swarms that should better equip it to perform feature selection and discover

optimal subsets.

To apply the PSO idea to feature selection, some matters must first be considered.

Representation of position

We represent the particle's position as binary bit strings of length N, where N is the

total number of attributes. Every bit represents an attribute, the value 1̀' means the

corresponding attribute is selected while 0̀' not selected. Each position is an attribute

subset.

 14

Representation of Velocity

The velocity of each particle is represented as a positive integer, varying between 1

and Vmax. It implies how many of the particle’s bits (features) should be changed, at a

particular moment in time, to be the same as that of the global best position, i.e. the

velocity of the particle flying toward the best position. The number of different bits

between two particles relates to the difference between their positions. See Fig.1(b) for the

principle of velocity updating.

For example, Pgbest=[1 0 1 1 1 0 1 0 0 1], iP =[0 1 0 0 1 1 0 1 0 1]. The difference

between gbest and the particle’s current position is Pgbest-Pi=[1 –1 1 1 0 –1 1 –1 0 0]. A

value of 1 indicates that compared with the best position, this bit (feature) should be

selected but is not, which will decrease classification quality and lead to a lower fitness

value. Assume that the number of 1’s is a. On the other hand, a value of -1 indicates that,

compared with the best position, this bit should not be selected, but is selected. Redundant

features will make the length of the subset longer and lead to a lower fitness value. The

number of -1’s is b. We use the value of (a-b) to express the distance between two

positions; (a-b) may be positive or negative. Such variation makes particles exhibit an

exploration ability within the solution space. In this example, (a-b)=4-3=1, so ig PP − =1.

Position Update Strategies

After updating the velocity, a particle’s position will be updated by the new velocity.

Assume that the new velocity is V; the number of different bits between the current

particle and gbest is gx . Two cases exist when updating the position:

1) V<= gx . In this case, the particle’s velocity is less than, or equal to, the position

 15

difference between the particle and gbest. V bits of the particle are randomly changed,

different from that of gbest. The particle then moves toward the global best while still

exploring the search space, instead of simply being same as gbest.

2) V> gx . In this case, the particle’s velocity overruns the position difference between the

particle and gbest. In addition to changing all the different bits to be same as that of

gbest, we should further randomly (‘random’ implies ‘exploration ability’) change

(V- gx) bits outside the different bits between the particle and gbest. So after the

particle reaches the global best position, it keeps on moving some distance toward

other directions, enabling further search.

Velocity Limitation (Maximum Velocity, Vmax)

The maximum velocity Vmax serves as a constraint to control the global exploration

ability of a particle swarm. A larger Vmax facilitates global exploration, while a smaller

Vmax encourages local exploitation. When Vmax is too low, particles have more

difficulty escaping from locally optimal regions. If Vmax is too high, particles might fly

past good solutions (Kennedy, 1997).

In our experimentation, we initially limited the particles’ velocity in the region [1, N].

However, it was noticed that after several generations the swarms converged to a good but

non-optimal solution, and in the following generations the gbest remained stationary. This

indicates that the velocity is too high and particles often ‘fly past’ the optimal solution.

We set Vmax= (1/3)*N and limit the velocity within the range [1, (1/3)*N], which

prevents an overly-large velocity. A particle can be near to an optimal solution, but a high

velocity may make it move far away. By limiting the maximum velocity, particles cannot

fly too far away from the optimal solution. Once finding a global best position, other

 16

particles will adjust their velocities and positions, searching around the best position. After

many tests, we found that an appropriate maximum velocity value is (1/3)*N. If V<1, then

V=1. If V>(1/3)*N, V=(1/3)*N. PSO can often find the optimal solution quickly under

such a limit.

Fitness Function

We define the fitness function in equation (13):

C

RC
DFitness R

−
+= *)(* βγα (13)

Where)(DRγ is the classification quality of condition attribute set R relative to

decision D, |R| is the ‘1’ number of a position or the length of selected feature subset. |C| is

the total number of features. α and β are two parameters corresponding to the

importance of classification quality and subset length,]1,0[∈α and αβ −= 1 .

This formula means that the classification quality and feature subset length have

different significance for feature selection task. In our experiment we assume that

classification quality is more important than subset length and set 1.0,9.0 == βα . The

high α assures that the best position is at least a real rough set reduct. The goodness of

each position is evaluated by this fitness function. The criteria are to maximize fitness

values.

4. Experimental Results and Discussions

We implement the PSORSFS algorithm and other four feature selection algorithms in

MatLab 6.5. The computer is Intel P4, 2.66 GHz CPU; 512MB RAM and the system is

Windows XP Professional. The five algorithms are tested and compared on 27 discrete

 17

UCI datasets (Blake et al., 1998). The two algorithms, GAAR and PSORSFS require

additional parameter settings for their operation. These are given in Table 1.

Table 1 PSORSFS&GAAR parameter settings

 Population Generation Crossover
Probability

Mutation
Probability c_1 c_2 weight Velocity

GA 100 100 0.6 0.4 - - - -
PSO 20 100 - - 2.0 2.0 1.4~0.4 1~(1/3)*N

In PSORSFS, the inertia weight decreases along with the iterations, varying from 1.4

to 0.4 according to the equation (14).

Weight = (weight-0.4) * (MAXITER – Iter) /MAXITER +0.4 (14)

Where MAXITER is the maximum iteration (generation) and Iter is the current iteration.

 For 14 of 27 datasets, the five algorithms find the same reducts. These are listed in

Table 2. The ‘Features’ column and ‘Instances’ column give out the total number of

features (attributes) and instances in the datasets. The number of decision rules and the

classification accuracy with different reducts are also shown. We use the LEM2 algorithm

(Stefanowski, 1998) to extract rules from the data and the global strength (Bazan, 1998,

2000) for rule negotiation in classification. We apply ten-fold cross validation to estimate

the classification accuracy. We also show the time in seconds for 100 generations

necessary for the generation of reducts by PSORSFS.

Table 2 Experimental results on 14 datasets
Dataset Features Instances Reduct

size
Number
of rules

Classification
accuracy (%)

Time of
PSORSFS (s)

Balloon1 4 20 2 4 100 10.172
Balloon2 4 20 2 8 100 9.75
Balloon3 4 20 2 4 100 10.984
Balloon4 4 16 4 6 80 14.078
Balance-Scale 4 625 4 207 88.5 3001.1
Lenses 4 24 4 9 87.6 24.844
Hayes-Roth 4 132 3 15 89.5 95.422
Corral 6 64 4 6 100 36.016
Monk1 6 124 3 20 93.5 103.406

 18

Monk2 6 169 6 82 65.4 297.875
Monk3 6 432 3 9 97.2 327.406
PostoperativePatient 8 90 8 37 59.9 138.75
Parity5+2 10 1024 5 128 100 615.844
Parity5+5 10 1024 5 32 100 722.14

 Table 3 Reduct sizes found by Feature Selection algorithms
Rough set Reduction Algorithms

Dataset Features Instances
POSAR CEAR DISMAR GAAR PSORSFS

Tic-tac-toe 9 958 8 7 8 8 8
Breastcancer 9 699 4 4 5 4 4
M-of-N 13 1000 7 7 6 6 6
Exactly 13 1000 8 8 6 6 6
Exactly2 13 1000 10 ** 11 10** 11 10**
Vote 16 300 9 11 8** 9 8**
Zoo 16 101 5 10 5 6 5
Lymphography 18 148 6** 8 7 8 7
Mushroom 22 8124 5 5 6 5 4*
Led 24 2000 6 12 18 8 5**
Soybean-small 35 47 2 2 2 6 2
Lung 56 32 4 5 4 6 4
DNA 57 318 7 6 6 7 6

* Optimal solution ** Exclusive optimal solution

Table 4 Classification results with different reducts
1: Number of rules; 2: Classification accuracy

POSAR CEAR DISMAR GAAR PSORSAR
Dataset

1 2 1 2 1 2 1 2 1 2 Time (s)
Tic-tac-toe 93 94.42 126 77.89 161 86.21 91 93.05 70 96.32 5719
Breastcancer 67 95.94 75 94.20 67 95.94 64 95.65 64 95.80 1686.4
M-of-N 35 100 35 100 35 100 35 100 35 100 1576.6
Exactly 50 100 50 100 50 100 50 100 50 100 1671.6
Exactly2 217 83.7 178 69.6 230 83 200 80.8 217 83.7 5834.0
Vote 25 94.33 25 92.33 28 93.67 25 94.0 25 95.33 424.17
Zoo 13 96.0 13 94.0 13 94 13 92.0 10 96.0 87.5
Lymphography 32 85.71 42 72.14 40 74.29 38 70.0 39 75.71 336.172
Mushroom 19 100 61 90.83 19 100 19 100 23 99.70 14176
Led 10 100 228 83.10 257 78.85 10 100 10 100 1758.3
Soybean-small 5 100 4 100 4 100 4 97.50 4 100 25.719
Lung 11 86.67 13 73.33 14 73.3 12 70.0 8 90.0 26.203
DNA 173 33.23 192 26.45 191 36.45 191 33.87 169 49.68 1667.0

 19

Table 5 Experimental Results by RSES

Dataset

Total
Reducts

Minimal
size
Of reducts

Number
of rules

Classification
accuracy (%)

Tic-tac-toe 9 8 1085 100
Breastcancer 20 4 455 94.4
M-of-N 1 6 19 92.9
Exactly 1 6 41 85.9
Exactly2 1 10 242 76.4
Vote 2 8 67 92.9
Zoo 33 5 109 96.8
Lymphography 424 6 353 85.9
Mushroom 292 4 480 98.3
Led 140 5 6636 100
Soybean-small -- 2 31 92.5
Lung -- 4 100 75
DNA -- 5 2592 74.3

Note: For the last three datasets (Soybean-small, Lung and DNA), RSES cannot find all reducts by the
exhaustive algorithm as it requires too much memory. Instead, we use a fast genetic algorithm to find 10
reducts.

The experimental results of the other 13 datasets are listed in Table 3. The five rough

set reduction algorithms are compared. We present the best solution (in terms of feature

subset length) each algorithm finds. For these datasets, some may have more than one

optimal reduct; some however have only one (exclusive) optimal reduct. From the results,

it can be seen that in some situations hill-climbing methods can locate the optimal solution.

For example, POSAR finds the exclusive optimal solution for dataset Exactly2 and

Lymphography. DISMAR finds the exclusive optimal solution for dataset Exactly2 and

Vote. But for other datasets, sub-optimal solutions are found, containing redundant

features. CEAR often contains more redundant features than POSAR and DISMAR.

As for the stochastic search algorithms, GAAR and PSORSFS, from the experimental

results it can be seen that PSORSFS performs better than GAAR. PSORSFS successfully

finds the optimal reducts on most of the datasets. For example, PSORSFS finds an optimal

reduct for the Mushroom data, and finds the exclusive optimal reduct for Exactly2, Vote

 20

and Led.

During the experiments, the rough ordering of techniques with respect to time is:

POSAR<CEAR<PSORSAR<GAAR<DISMAR. DISMAR takes a significant amount of

time for the computation of the discernibility matrix, the time increasing quickly with

increasing number of instances in the dataset. CEAR may cost time on computing

equivalence classes. The stochastic algorithms need time in generation iterations.

Let N be the number of features (conditional attributes) and M the total objects. The

time complexity of POSAR is)(2NMO (Nguyen, 1996; Hu, 1995b), and that of the

reduction based on conditional information entropy (CEAR) is)()(32 MONMO + , which

is composed of the computation of core and non-core attribute reduct (Wang, 2002).

DISMAR has total time complexity))log((2MMNO + (Hu, 2003). For GAAR and

PSORSFS, the complexity of the fitness function is)(2NMO (Wroblewski, 1995). The

other impact on time is the number of generation iterations. For the GA method, the

crossover and mutation operations also take much time. As for PSORSFS, time is mainly

spent on evaluating the particles’ position (fitness function).

To graphically illustrate the progress of the particle swarm as it searches for optimal

solutions, we take generation as the horizontal coordinate and the fitness value as the

vertical coordinate. This should illustrate the process of improvement of the global best as

the number of generations increase. To further highlight the search process, we graph

subset length of every particle’s current position (horizontal coordinate) against

classification quality (vertical coordinate). Each point in the figure is a particle.

The example for Exactly2 is given below and the other examples are listed in appendix

A.

 21

Example 1

The process of the particle swarms searching for optimal solutions for dataset Exactly2

is given in Table 6 and Figures 2 and 3. In Table 6, “Best Solution” lists the best feature

subset encountered at a particular iteration, in which each number denotes one feature of

the dataset.

Table 6 PSO searching process on Exactly2
Iter Best Solution Fitness Value Feature Subset Length
1 1,2, 4, 5, 7, 8, 9, 10, 11, 12, 13 0.8272 11
2 1,2, 4, 5, 6, 7, 8, 9, 10, 11, 13 0.8362 11
3 1,2, 4, 5, 6, 7, 8, 9, 10, 11, 13 0.8362 11
4--11 1,2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 0.8663 12
12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13 0.9154 11
13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 0.9231 10

Fig.2 (a) Generation 1 of PSO on dataset Exactly2

 22

Fig.2 (b) Generation 2 of PSO on dataset Exactly2

Fig.2 (c) Generation 4 of PSO on dataset Exactly2

 23

Fig.2 (d) Generation 12 of PSO on dataset Exactly2

Fig.2 (e) Generation 13 of PSO on dataset Exactly2

 24

Fig.3 Evolution process of the global best on dataset Exactly2.

(PSORSFS, GAAR, CEAR)

The evaluation criteria or fitness function is a critical issue in the implementation of

stochastic algorithms. In the fitness function we use, because the classification quality

parameter outclasses that of subset length (9.0=α , 1.0=β), the optimal solution is

assured to be a real rough set reduct or super-reduct. So, the fitness function in PSO is

efficient.

From the results and figures, we can see that, compared with GA, PSO is quicker in

locating the optimal solution. In general, it can find the optimal solution within tens of

generations. If exhaustive search is used to find the optimal reduct in the dataset DNA,

there will be tens of thousands of candidate subsets, which is impossible to execute. But

with PSO, at the 32nd generation the optimal solution is found.

 25

PSO has a powerful exploration ability; it is a gradual searching process that

approaches optimal solutions. The running time of PSO is affected less by the problem

dimension (feature numbers), but more by the size of data (see Tables 2 and 4). Mushroom

is the largest dataset and requires the largest time for PSORSFS (14176 seconds). Most of

the time is spent on the basic computations of rough sets (computing equivalence classes).

For some datasets with more features, for example Lung and DNA, after finding a

sub-optimal solution, the GA cannot find a better one: the fitness/generation graph is a line.

However, PSO can search in the feature space until the optimal solution is found. The GA

is affected greatly by the number of features.

PSO comprises a very simple concept, and the ideas can be implemented in a few lines

of computer code. It requires only primitive mathematical operators, and is

computationally inexpensive in terms of both memory requirements and speed. This

optimization technique does not suffer, however, from some of the difficulties of GAs;

interaction in the group enhances rather than detracts from progress toward the solution.

Further, a particle swarm system has memory, which the genetic algorithm does not have.

Changes in genetic populations result in the destruction of previous knowledge of the

problem. In particle swarm optimization, individuals who fly past optima are tugged to

return towards them; knowledge of good solutions is retained by all particles.

As for PSO, every particle flies in the candidate problem space, adjusts their velocity

and position according to the local best and global best. So, all the particles have a

powerful search capability, which can help the swarm avoid dead ends.

The comparison of the number of decision rules and the classification accuracy with

different reducts are shown in Table 4. We show the time in seconds for 100 generations

 26

necessary for generation of reducts by PSORSFS.

The results are also compared with the rough set system RSES (Skowron et al, 2005)

(see Table 5). RSES is an excellent toolset for analyzing data with the use of methods

based on Rough Set Theory, and is developed by researchers in Warsaw University. We

use the Exhaustive algorithm to find reducts. It presents two deterministic algorithms for

the computation of the whole reduct set, both algorithms compute the discernibility matrix

for this purpose (Bazan et al, 2000). The complexity is exponential. The time complexity

to find all reducts is)2(TO N , where T is the computational cost of finding one reduct, and

N is the number of attributes (Bell, 1998). For the last three datasets (Soybean-small, Lung

and DNA), RSES cannot find all reducts by the exhaustive algorithm, due to memory

limitations. As a result of this, we use a fast genetic algorithm to find 10 reducts. We use

the decision rules classifier, LEM2 algorithm for global rules generation and 10-fold

cross-validation estimation method. We set “Shortening ratio” to 0.9, in order to get a

short and minimal rule set. Conflicts are resolved by Standard Voting. Most of the reducts

found by PSORSFS result in smaller rules and exhibit higher classification accuracy.

5. Conclusion

This paper discusses the shortcomings of conventional hill-climbing rough set

approaches to feature selection. These techniques often fail to find optimal reductions, as

no perfect heuristic can guarantee optimality. On the other hand, complete searches are not

feasible for even medium-sized datasets. So, stochastic approaches provide a promising

feature selection mechanism.

We propose a new optimal feature selection technique based on rough sets and Particle

Swarm Optimization (PSO). PSO has the ability to quickly converge (Shi and Eberhart,

 27

1999), it has a strong search capability in the problem space and can efficiently find

minimal reducts. Experimental results demonstrate competitive performance. PSO is a

promising method for rough set reduction.

More experimentation and further investigation into this technique may be required.

The inertia weight (w) and maximum velocity (Vmax) have an important impact on the

performance of PSO. The selection of the parameters may be problem-dependent. Vmax

serves as a constraint that controls the maximum global exploration ability PSO can have.

In many practical problems, it’s difficult to select the best Vmax without trial-and-error

(Shi and Eberhart, 1998b). In our feature selection problem, we first limit the particles’

velocity to N, since [1, N] is the dynamic range of the feature space of each particle. But

we find that under such a limitation, particles have poor local exploration ability. So after

many tests, we set Vmax to (1/3)*N, which is suitable for our problem (see Section 3.2).

The inertia weight balances the global and local exploration abilities. In our experiments,

we let it decrease from 1.4 to 0.4 along with the iterations. The performance of the PSO

algorithm with linearly decreasing inertia weight can be improved greatly and have better

results. The larger inertia weights at the beginning help to find good seeds and the later

small inertia weights facilitate fine search (Shi and Eberhart, 1998b, 1999).

In this paper, we apply PSO to find reducts of minimal cardinality and, like classical

genetic algorithms, the particle's position is a binary representation for attribute subsets.

An extension to the approach would be to select reducts due to the number of decision

rules it generates rather than its length alone. If a reduct generates fewer rules, it means

that the rules are more general and they should better recognize new objects (Bazan et al,

2000). We should also extend to hybrid algorithms (Wroblewski, 1995, 1996),

 28

order-based PSO for searching approximate entropy reducts (Slezak and Wroblewski,

2003), where the particle's position is a permutation of attributes and PSO is used to find

the proper order. Such reducts are much more applicable in practice. The fitness function

and position-updating strategy are also key factors in PSO for feature selection, which

need to be improved further.

References

Bazan, J., Nguyen, H.S., Nguyen, S.H., Synak, P., Wroblewski, J., 2000. Rough set algorithms in

classification problem. Polkowski, L., Tsumoto, S. and Lin, T.Y. (eds.): Rough Set Methods

and Applications. Physica-Verlag, Heidelberg, New York, pp. 49-88.

Bazan, J., 1998. A Comparison of Dynamic and non-Dynamic Rough Set Methods for Extracting

Laws from Decision Table. In: Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge

Discovery. Heidelberg: Physica-Verlag, pp. 321-365.

Bell, D., Guan, J., 1998. Computational methods for rough classification and discovery. Journal of

ASIS. 49 (5), 403–414.

Bjorvand, A.T., Komorowski, J., 1997a. Practical Applications of Genetic Algorithms for Efficient

Reduct Computation, Wissenschaft & Technik Verlag, 4, 601-606.

Bjorvand, A.T., 1997b. 'Rough Enough'-a system supporting the rough sets approach. Sixth

Scandinavian Conference on Artificial Intelligence SCAI'97.

Blake, C., Keogh, E., Merz, C. J., 1998. UCI repository of machine learning databases. Tech. rep.,

Department of Information and Computer Science, University of California, Irvine, CA,

http://www.ics.uci.edu/mlearn/MLRepository.htm.

Chouchoulas, A., Shen, Q., 2001. Rough set-aided keyword reduction for text Categorization.

Applied Artificial Intelligence. 15 (9), 843-873.

Eberhart R.C., Shi, Y., 2001. Particle swarm optimization: Developments, applications and

 29

resources. Proc. IEEE Int. Conf. On Evolutionary Computation. Seoul, pp. 81-86.

Guyon, I., Elisseeff, A., 2003. An Introduction to Variable and Feature Selection. Journal of

Machine Learning Research. 3, 1157-1182.

Hu, K., Lu, Y.C., Shi, C.Y., 2003. Feature ranking in rough sets. AI Communications 16(1), 41-50.

Hu, X., Cereone, N., 1995a. Learning in relational databases: A rough set approach.

Computational Intelligence. 11 (2), 323~337.

Hu, X., 1995b. Knowledge discovery in databases: An attribute-oriented rough set approach, PhD

thesis, Regina university.

Janusz, A., Starzyk, J., Nelson, D.E., Sturtz, K., 2000. A Mathematical Foundation for Improved

Reduct Generation in Information Systems. Knowledge and Information Systems. 2, 131-146.

Jensen, R., Shen, Q., 2003. Finding Rough Set Reducts with Ant Colony Optimization.

Proceedings of the 2003 UK Workshop on Computational Intelligence, pp 15-22.

Kennedy, J., Eberhart, R.C., 1995a. Particle Swarm Optimization. Proc IEEE Int. Conf. On Neural

Networks, Perth, pp. 1942-1948.

Kennedy, J., Eberhart, R.C., 1995b. A new optimizer using particle swarm theory. Sixth

International Symposium on Micro Machine and Human Science. Nagoya, pp. 39-43.

Kennedy, J., 1997. The particle swarm: social adaptation of knowledge. IEEE International

Conference on Evolutionary Computation, April 13-16, pp. 303 – 308.

Kennedy, J., Spears, W.M., 1998. Matching Algorithms to Problems: An Experimental Test of the

Particle Swarm and Some Genetic Algorithms on the Multimodal Problem Generator.

Proceedings of the IEEE Int'l Conference on Evolutionary Computation. pp. 39-43.

Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A., 1999. Rough Sets: A Tutorial. In: S.K.

Pal, A. Skowron (eds.), Rough Fuzzy Hybridization. A New Trend in Decision-Making.

Springer-Verlag Singapore Pte., Ltd., Singapore, pp. 3-98.

Kudo, M., Sklansky, J., 2000. Comparison of algorithms that select features for pattern classifiers.

Pattern Recognition, 33 (1), 25–41.

 30

Liu, H., Motoda, H. 1998. Feature selection for Knowledge Discovery and Data Mining, Kluwer

Academic Publishers.

Nguyen, H.S., 1996. Some efficient algorithms for rough set methods. In: Proceedings of the Sixth

International Conference, Information Processing and Management of Uncertainty in

Knowledge-Based Systems (IPMU'96) 2, July 1-5, 1996, Granada, Spain pp. 1451-1456.

Pawlak, Z., 1982. Rough Sets. Int. Journal of Computer and Information Sciences 11(5), 341-356.

Pawlak, Z., 1991. Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic

Publishing, Dordrecht.

Pawlak, Z., 1997. Rough set approach to knowledge-based decision support. European Journal of

Operational Research 99, 48-57

Swiniarski, R.W., Skowron, A., 2003. Rough set methods in feature selection and recognition.

Pattern Recognition Letters. 24(6), 833–849.

Shi, Y., Eberhart, R.C., 1998a. A modified particle swarm optimizer. Proc. IEEE Int. Conf. On

Evolutionary Computation. Anchorage, AK, USA, pp. 69-73.

Shi, Y., Eberhart, R. C. 1998b. Parameter selection in particle swarm optimization. In

Evolutionary Programming VII: Proc. EP98, New York: Springer-Verlag, pp. 591-600.

Shi, Y., Eberhart, R. C., 1999. Empirical study of particle swarm optimization. In: Proceedings

of the 1999 Congress on Evolutionary Computation. Piscataway, NJ: IEEE Service Center,

pp.1945–1950.

Skowron, A., Rauszer, C., 1992. The discernibility matrices and functions in information systems.

In: Slowinski, R. (Eds.): Intelligent Decision Support--Handbook of Applications and

Advances of the Rough Sets Theory, Kluwer Academic Publishers, Dordrecht, pp. 311-362.

Skowron, A., Bazan, J., Son, N.H., Wroblewski, J., et al. RSES 2.2 User’s Guide.

http://logic.mimuw.edu.pl/~rses. Institute of Mathematics, Warsaw University, Warsaw,

Poland. January 19, 2005.

 31

Slezak, D., Wroblewski, J., 2003. Order based genetic algorithms for the search of approximate

entropy reducts. In: Wang, G.Y. et al. (eds.): RSFDGrC. LNAI, Vol. 2693. Chongqing, China

(2003), pp. 08-311.

Starzyk, J. Nelson, D.E., Sturtz, K., 1998. Reduct generation in information systems. Bulletin of

international rough set society. 3, 19-22

Stefanowski, J., 1998. On rough set based approaches to induction of decision rules. In: Skowron,

A., Polkowski, L. (eds.): Rough Sets in Knowledge Discovery, Vol. 1. Physica Verlag,

Heidelberg, pp. 500-529.

Vafaie, H., Imam, I.F., 1994. Feature selection methods: genetic algorithms vs. greedy-like search.

In: Proceedings of International Conference on Fuzzy and Intelligent Control Systems.

Wang, G.Y., Yu, H., 2002. Decision Table Reduction based on Conditional Information Entropy.

Chinese Journal of Computer, 25 (7), 759-766.

Wang, G.Y. Zhao, J., 2004. Theoretical Study on Attribute Reduction of Rough Set Theory:

Comparison of Algebra and Information Views. Proceedings of the Third IEEE International

Conference on Cognitive Informatics.

Wroblewski, J., 1995. Finding minimal reducts using genetic algorithms. Proc. of the Second

Annual Join Conference on Information Sciences, Wrightsville Beach, NC. September

28-October 1, pp.186-189.

Wroblewski, J., 1996. Theoretical Foundations of Order-Based Genetic Algorithms. Fundamenta

Informaticae. IOS Press, 28(3-4), 423-430.

Zhai, L.Y., et al., 2002. Feature extraction using rough set theory and genetic algorithms—an

application for the simplification of product quality evaluation. Computers & Industrial

Engineering. 43, 661-676.

 32

Appendix A (Experimental Examples)

Example 2

The process of the particle swarms searching for optimal solutions for dataset Vote is

given in Table 7 and Figure 4.

Table 7 PSO searching process on Vote

Iter Best Solution Fitness Value Feature Subset Length
1-45 1,2,3,4,7,9,11,13,16 0.9437 9
46-52 1,2,3,4,7,11,13,16 0.9440 8
53 1,2,3,4,11,13,16 0.9443 7
54 1,2,3,4,9,11,13,16 0.9500 8

Fig.4 Evolution process of the global best on dataset Vote.

(PSORSFS, GAAR, POSAR)

 33

Example 3

The process of the particle swarms searching for optimal solutions for dataset

Mushroom is given in Table 8 and Figure 5.

Table 8 PSO searching process on Mushroom

Iter Best Solution Fitness Value Feature Subset Length
1 3,5,6,9,11,12,14,18,22 0.9591 9
2 3,5,6,9,11,18,21,22 0.9636 8
3 3,5,6,11,18,21,22 0.9682 7
4--15 3,5,13,21,22 0.9773 5
16 3,5,11,22 0.9818 4
… … … …

Fig.5 Evolution process of the global best on dataset Mushroom.

(PSORSFS, GAAR, POSAR)

 34

Example 4

The process of the particle swarms searching for optimal solutions for dataset

Soybean-small is given in Table 9 and Figure 6.

Table 9 PSO searching process on Soybean-small

Iter Best Solution Fitness Value Feature Subset Length
1 5,11,13,18,21,22,23,28,29,32,33,35 0.9657 12
2 5,11,13,18,21,22,23,29,32,33,35 0.9686 11
3--5 1,5,9,11,13,19,22,23,33,35 0.9714 10
6 1,9,13,18,19,22,23,33,35 0.9743 9
7 1,9,13,19,22,23,33,35 0.9771 8
8--15 3,9,13,19,22,23,33 0.9800 7
16--19 3,13,19,22,23,33 0.9829 6
20--21 13,15,22,23,33 0.9857 5
22--27 13, 22,23,33 0.9886 4
28--32 22,23,33 0.9914 3
33 22,23 0.9943 2
… … … …

Fig.6 Evolution process of the global best on dataset Soybean-small

(PSORSFS, GAAR, POSAR)

 35

Example 5

The process of the particle swarms searching for optimal solutions for dataset Lung is

given in Table 10 and Figure 7.

Table 10 PSO searching process on Lung
Iter Best Solution Fitness

Value
Feature Subset Length

1 2,9,14,15,24,25,30,31,32,36,40,42,43,44,51,54,55 0.9696 17
2--5 2,9,14,15,25,30,31,32,36,40,42,43,44,51,54,55 0.9714 16
6 2,9,15,25,30,31,32,40,42,43,44,48,51,54,55 0.9732 15
7--8 2,9,15,25,30,32,40,42,43,44,48,51,54,55 0.9750 14
9 2,9,15,25,29,30,40,42,43,44,48,51,55 0.9768 13
10--21 9,15,25,30,33,35, 40,42,43,44, 51,55 0.9786 12
22--23 9,15,25,30, 33,35, 40,42,43,44,55 0.9804 11
24--25 9,15,25,30,33, 40,42,43,44,55 0.9821 10
26 9,15,25,30,33, 40,42, 44,55 0.9839 9
27--31 9,15,25,30,33, 42, 44,55 0.9857 8
32 9,25,30,33, 42, 55 0.9893 6
33--39 9,25,30,33,55 0.9911 5
40 9,30,33,55 0.9929 4

Fig.7 Evolution process of the global best on dataset Lung

(PSORSFS, GAAR, POSAR)

 36

Example 6

The process of the particle swarms searching for optimal solutions for dataset DNA is

given in Table 11 and Figure 8.

Table 11 PSO searching process on DNA
Iter Best Solution Fitness

Value
Feature Subset Length

1 2,3,9,10,12,16,21,25,27,30,31,36,40,4247,50,52,56 0.9684 18
2 2,3,9,10,12,25,27,29,30,31,36,40,4247,50,52,56 0.9702 17
3 2,3,9,10,12,25,29,31,36,40,42,52,54,56 0.9737 15
4--7 2,9,10,12, 29,31,36, 40,42, 52, 54,56,57 0.9772 13
8--11 2,9,12, 29,31,34,36, 42, 52, 54,56,57 0.9789 12
12--15 2,9,12, 29,31,34,36, 42, 52,56,57 0.9807 11
16--19 9,12, 29,31,34,36, 42, 52,56,57 0.9825 10
20--23 9,12, 29,31,36, 42, 52,56,57 0.9842 9
24--27 9,12, 29,31, 36, 42, 52,57 0.9860 8
28--31 9,12, 29,31, 36, 42,57 0.9877 7
32 9,12, 29,31, 36, 42 0.9895 6

Fig.8 Evolution process of the global best on dataset DNA

(PSORSFS, GAAR, POSAR)

