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Abstract: We propose a new feature selection strategy based on rough sets and Particle Swarm 

Optimization (PSO). Rough sets has been used as a feature selection method with much success, 

but current hill-climbing rough set approaches to feature selection are inadequate at finding 

optimal reductions as no perfect heuristic can guarantee optimality. On the other hand, complete 

searches are not feasible for even medium-sized datasets. So, stochastic approaches provide a 

promising feature selection mechanism. Like Genetic Algorithms, PSO is a new evolutionary 

computation technique, in which each potential solution is seen as a particle with a certain velocity 

flying through the problem space. The Particle Swarms find optimal regions of the complex search 

space through the interaction of individuals in the population. PSO is attractive for feature 

selection in that particle swarms will discover best feature combinations as they fly within the 

subset space. Compared with GAs, PSO does not need complex operators such as crossover and 

mutation, it requires only primitive and simple mathematical operators, and is computationally 

inexpensive in terms of both memory and runtime. Experimentation is carried out, using UCI data, 

which compares the proposed algorithm with a GA-based approach and other deterministic rough 

set reduction algorithms. The results show that PSO is efficient for rough set-based feature 

selection. 
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1. Introduction 
 

In many fields such as data mining, machine learning, pattern recognition and signal 

processing, datasets containing huge numbers of features are often involved. In such cases, 

feature selection will be necessary (Liu and Motoda, 1998; Guyon and Elisseeff, 2003). 

Feature selection is the process of choosing a subset of features from the original set of 

features forming patterns in a given dataset. The subset should be necessary and sufficient 

to describe target concepts, retaining a suitably high accuracy in representing the original 

features. The importance of feature selection is to reduce the problem size and resulting 

search space for learning algorithms. In the design of pattern classifiers it can improve the 

quality and speed of classification. (Kudo and Sklansky, 2000). 

Due to the abundance of noisy, irrelevant or misleading features, the ability to handle 

imprecise and inconsistent information in real world problems has become one of the most 

important requirements for feature selection. Rough sets (Pawlak, 1982, 1991, 1997) can 

handle uncertainty and vagueness, discovering patterns in inconsistent data. Rough sets 

have been a useful feature selection method in pattern recognition (Chouchoulas and Shen, 

2001). The rough set approach to feature selection is to select a subset of features (or 

attributes), which can predict the decision concepts as well as the original feature set. The 

optimal criterion for rough set feature selection is to find shortest or minimal reducts while 

obtaining high quality classifiers based on the selected features (Swiniarski and Skowron, 

2003). 

There are many rough set algorithms for feature selection. The most basic solution to 

finding minimal reducts is to generate all possible reducts and choose any with minimal 

cardinality, which can be done by constructing a kind of discernibility function from the 
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dataset and simplifying it (Bazan et al, 2000; Komorowski et al, 1999). Starzyk uses 

strong equivalence to simplify discernibility functions (Starzyk et al., 1998; Janusz et al., 

2000). Obviously, this is an expensive solution to the problem and is only practical for 

very simple datasets. It has been shown that finding minimal reducts or all reducts are both 

NP-hard problems (Skowron, 1992). Therefore, heuristic approaches have to be 

considered.   

In general, there are two kinds of rough set methods for feature selection, hill-climbing 

(or greedy) methods and stochastic methods (Vafaie and Imam, 1994). The hill-climbing 

approaches usually employ rough set attribute significance as heuristic knowledge. They 

start off with an empty set or attribute core and then adopt forward selection or backward 

elimination. Forward selection adds in turn, one at a time, the most significant attribute 

from the candidate set, until the selected set is a reduct. Backward elimination is the 

reverse, starting with the full attribute set and removing attributes incrementally. X. Hu 

gives a reduction algorithm using the positive region-based attribute significance as the 

guiding heuristic (X. Hu 1995a, 1995b). Wang develops a conditional information 

entropy-based reduction algorithm, using conditional entropy-based attribute significance 

(Wang, 2004, 2002). K. Hu computes the significance of an attribute making use of 

heuristic ideas from discernibility matrices and proposes a heuristic reduction algorithm 

(K. Hu et al., 2003). The positive region and conditional entropy-based methods choose a 

minimal feature subset that fully describes all concepts in a given dataset. The 

discernibility matrix-based method is to select a feature subset with high discriminatory 

power, which guarantees the maximal between-class separability for the reduced data sets. 

These methods consider the best candidate attribute, trying to find a minimal reduct. 
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However, hill-climbing methods do not guarantee to find an optimal or minimal reduct. As 

no perfect heuristic exists, there can be no guarantee of optimality. Using attribute 

significance to discriminate between candidates may lead the search down a non-minimal 

path. It is impossible to predict which combinations of attributes will lead to an optimal 

reduct with the addition or deletion of single attributes.  

Some researchers use stochastic methods for rough set feature selection (Bazan, 2000). 

Wróblewski uses genetic algorithms to find minimal reducts (Wróblewski, 1995). He 

combines a genetic algorithm with a greedy algorithm to generate short reducts. However, 

it uses highly time-consuming operations and cannot assure that the resulting subset is 

really a reduct. Bjorvand applies genetic algorithms to compute approximate reducts 

(Bjorvand, 1997a, 1997b). He takes Wróblewski’s work as a foundation, but makes 

several variations and practical improvements both in speed and the quality of 

approximation. To obtain a good initial population for the GA, Bjorvand includes the 

attribute core in all candidates. In addition to this, he uses domain knowledge to get the 

average size of actual reducts and lets the number of features in the candidates be similar 

to the number in the reducts. Also, he allows the user to assign a relative weight to each 

attribute when creating the initial population. To avoid wasting much processing power in 

a wrong search direction, he adopts a dynamic mutation rate that is proportional to the 

redundancy in the population, preventing all individuals from becoming equal. Zhai 

proposes an integrated feature extraction approach based on rough set theory and genetic 

algorithms (Zhai, 2002). Rough sets are used to perform consistency checks, concept 

formation and approximation. By calculating the lower and upper approximations, 

training data is split into certain training data and possible training data. Then, a GA 
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discovers best rules from the data sets. The fitness function is defined as the classification 

quality of the extracted rules. Ultimately, the features or attributes within rules with 

highest indices are selected. Jensen finds minimal rough set reducts using another 

stochastic strategy, Ant Colony Optimization (ACO) (Jensen and Shen, 2003).  

Hill-climbing methods are more efficient when dealing with little noise and a small 

number of interacting features, but are not assured of optimality. Stochastic methods can 

provide a more robust solution at the expense of increased computational effort (Vafaie 

and Imam, 1994). For systems where the optimal or minimal subset is required (perhaps 

due to the cost of feature measurement), stochastic feature selection must be used. 

In this article we propose a new feature selection mechanism, investigating how 

particle swarm optimization (PSO) can be applied to find optimal feature subsets or rough 

set reducts. PSO is a new evolutionary computation technique proposed by Kennedy and 

Eberhart (Kennedy and Eberhart, 1995a, 1995b). The particle swarm concept was 

motivated from the simulation of social behavior. The original intent was to graphically 

simulate the graceful but unpredictable movement of bird flocking. The PSO algorithm 

mimics the behavior of flying birds and their means of information exchange to solve 

optimization problems. Each potential solution is seen as a particle with a certain velocity, 

and “flies” through the problem space. Each particle adjusts its flight according to its own 

flying experience and its companions’ flying experience. The particle swarms find optimal 

regions of complex search spaces through the interaction of individuals in a population of 

particles. PSO has been successfully applied to a large number of difficult combinatorial 

optimization problems; studies show that it often outperforms Genetic Algorithms 

(Kennedy and Spears, 1998). PSO is particularly attractive for feature selection in that 
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particle swarms will discover the best feature combinations as they fly within the problem 

space. The performance of the proposed algorithm is evaluated using several UCI datasets. 

It can be seen that PSO has a strong search capability in the problem space and can 

discover optimal solutions quickly.  

The rest of this paper is structured as follows. Section 2 describes the fundamentals of 

rough set theory. The principles of PSO and PSO for Rough set-based Feature Selection 

algorithm (PSORSFS) are presented in Section 3. The effectiveness of the method is 

demonstrated, compared with other algorithms on UCI datasets and discussed in Section 4. 

Finally, Section 5 concludes the article. 

The algorithms used in the comparison include the positive region-based attribute 

reduction algorithm (POSAR) (Jensen and Shen, 2003; Hu, 1995b; Wang, 2004), 

conditional entropy-based attribute reduction (CEAR) (Wang, 2002, 2004), discernibility 

matrix-based attribute reduction (DISMAR) (Hu, 2003) and GA-based attribute reduction 

(GAAR) (Wroblewslki, 1995; Bazan, 1998, 2000). Due to paper length restrictions, we do 

not describe such algorithms here, more details can be found in the related references.  

 
2. Rough set preliminaries 
 

Rough set theory (Pawlak, 1991, 1997) is a new mathematical approach to imprecision, 

vagueness and uncertainty. In an information system, every object of the universe is 

associated with some information. Objects characterized by the same information are 

indiscernible with respect to the available information about them. Any set of 

indiscernible objects is called an elementary set. Any union of elementary sets is referred 

to as a crisp set- otherwise a set is rough (imprecise, vague). Vague concepts cannot be 

characterized in terms of information about their elements. A rough set is the 
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approximation of a vague concept by a pair of precise concepts, called lower and upper 

approximations. The lower approximation is a description of the domain objects which are 

known with certainty to belong to the subset of interest, whereas the upper approximation 

is a description of the objects which possibly belong to the subset. Relative to a given set 

of attributes, a set is rough if its lower and upper approximations are not equal. 

The main advantage of rough set analysis is that it requires no additional knowledge 

except for the supplied data. Rough sets perform feature selection using only the 

granularity structure of the data (Jensen and Shen, 2003).  

Let I=(U, A) be an information system, where U is the universe, a non-empty finite set 

of objects. A is a non-empty finite set of attributes. For Aa ∈∀  determines a function 

aa VUf →: . If AP ⊆ , there is an associated equivalence relation:    

)}()(,|),{()( yfxfPaUUyxPIND aa =∈∀×∈=    (1) 

The partition of U, generated by IND(P) is denoted U/P. If )(),( PINDyx ∈ , then x and y 

are indiscernible by attributes from P. The equivalence classes of the P-indiscernibility 

relation are denoted Px][ . The indiscernibility relation is the mathematical basis of rough 

set theory.   

Let UX ⊆ , the P-lower approximation XP  and P-upper approximation XP  of set 

X can be defined as: 

}][|{ XxUxXP P ⊆∈=         (2) 

}][|{ φ≠∩∈= XxUxXP P      (3) 

Let AQP ⊆,  be equivalence relations over U, then the positive, negative and boundary 

regions can be defined as: 
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The positive region of the partition U/Q with respect to P, )(QPOSP , is the set of all 

objects of U that can be certainly classified to blocks of the partition U/Q by means of P. A 

set is rough (imprecise) if it has a non-empty boundary region.  

An important issue in data analysis is discovering dependencies between attributes. 

Dependency can be defined in the following way. For AQP ⊆, , P depends totally on Q, 

if and only if )()( QINDPIND ⊆ . That means that the partition generated by P is finer 

than the partition generated by Q. We say that Q depends on P in a degree k� 10 ≤≤ k ��

denoted QP k� , if 

U

QPOS
Qk P

P

)(
)( == γ        (7) 

If k=1, Q depends totally on P, if 0<k<1, Q depends partially on P, and if k=0 then Q does 

not depend on P. In other words, Q depends totally (partially) on P, if all (some) objects of 

the universe U can be certainly classified to blocks of the partition U/Q, employing P.  

In a decision system the attribute set contains the condition attribute set C and decision 

attribute set D, i.e. DCA ∪= . The degree of dependency between condition and decision 

attributes, )(DCγ , is called the quality of approximation of classification, induced by the 

set of decision attributes (Pawlak, 1997). 

The goal of attribute reduction is to remove redundant attributes so that the reduced set 

provides the same quality of classification as the original. A reduct is defined as a subset R 
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of the conditional attribute set C such that )()( DD CR γγ = . A given decision table may 

have many attribute reducts, the set of all reducts is defined as:   

)}()(,),()(|{Re DDRBDDCRd CBCR γγγγ ≠⊂∀=⊆=   (8) 

In rough set attribute reduction, a reduct with minimal cardinality is searched for. An 

attempt is made to locate a single element of the minimal reduct set dd ReRe min ⊆ :  

},Re|Re{Re min RRdRdRd ′≤∈′∨∈=   (9) 

The intersection of all reducts is called the core, the elements of which are those 

attributes that cannot be eliminated. The core is defined as: 

dCCore Re)( ∩=    (10) 

 
 

3. PSO for Feature Selection 
 
3.1 The principle of PSO 
 

Particle swarm optimization (PSO) is an evolutionary computation technique 

developed by Kennedy and Eberhart in 1995 (Kennedy and Eberhart, 1995a, 1995b). The 

original intent was to graphically simulate the graceful but unpredictable movements of a 

flock of birds. Initial simulations were modified to form the original version of PSO. Later, 

Shi introduced inertia weight into the particle swarm optimizer to produce the standard 

PSO (Shi and Eberhart, 1998a, 2001).  

PSO is initialized with a population of random solutions, called ‘particles’. Each 

particle is treated as a point in an S-dimensional space. The ith particle is represented as 

),...,,( 21 iSiii xxxX = . The best previous position (pbest, the position giving the best fitness 

value) of any particle is recorded and represented as ),...,,( 21 iSiii pppP = . The index of 
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the best particle among all the particles in the population is represented by the symbol 

‘gbest’. The rate of the position change (velocity) for particle i is represented as 

),...,,( 21 iSiii vvvV = . The particles are manipulated according to the following equation: 

)(*()*)(*()** 21 idgdidididid xpRandcxprandcvwv −+−+=     (11) 

ididid vxx +=                                             (12) 

Where Sd ,...,2,1= , w is the inertia weight, it is a positive linear function of time 

changing according to the generation iteration. Suitable selection of the inertia weight 

provides a balance between global and local exploration, and results in fewer iterations on 

average to find a sufficiently optimal solution. The acceleration constants c1 and c2 in 

equation (11) represent the weighting of the stochastic acceleration terms that pull each 

particle toward pbest and gbest positions. Low values allow particles to roam far from 

target regions before being tugged back, while high values result in abrupt movement 

toward, or past, target regions. rand() and Rand() are two random functions in the range 

[0,1].  

Particles’ velocities on each dimension are limited to a maximum velocity, Vmax. It 

determines how large steps through the solution space each particle is allowed to take. If 

Vmax is too small, particles may not explore sufficiently beyond locally good regions. 

They could become trapped in local optima. On the other hand, if Vmax is too high 

particles might fly past good solutions.  

The first part of equation (11) provides the “flying particles” with a degree of memory 

capability allowing the exploration of new search space areas. The second part is the 

“cognition” part, which represents the private thinking of the particle itself. The third part 

is the “social” part, which represents the collaboration among the particles. Equation (11) 
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is used to calculate the particle’s new velocity according to its previous velocity and the 

distances of its current position from its own best experience (position) and the group’s 

best experience. Then the particle flies toward a new position according to equation (12). 

The performance of each particle is measured according to a pre-defined fitness function. 

 

 
(a)                                        (b) 

Figure 1: (a) PSO process. (b) PSO-based Feature Selection. The principle of updating velocity. 
Individual particles (1 and 2) are accelerated toward the location of the best solution, gbest, and the 
location of their own personal best, pbest, in the two dimension problem space (feature number 
and classification quality) 
 

We give the pseudo code of the PSO algorithm here, with a graphic demonstration of 

PSO given in figure 1.  

Algorithm PSO  

Input: 

m: the swarm size; 1c , 2c : positive acceleration constants; w: inertia weight 

MaxV: maximum velocity of particles 

MaxGen: maximum generation 

MaxFit: maximum fitness value 

Output: 
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Pgbest: Global best position 

Begin 

Swarms }{ , idid vx =Generate(m); /* Initialize a population of particles with random 

positions and velocities on S dimensions*/ 

Pbest(i)=0; Sdmi ,...,1,,...,1 ==  

Gbest=0; Iter=0; 

While(Iter<MaxGen and Gbest<MaxFit) 

  { For(every particle i) 

     { Fitness(i)=Evaluate(i); 

       IF(Fitness(i)>Pbest(i)) 

        {Pbest(i)=Fitness(i); idid xp = ; Sd ,...,1= } 

       IF(Fitness(i)>Gbest) 

        {Gbest=Fitness(i); gbest=i;} 

     } 

For(every particle i) 

 { For(every d ){  

)(*()*)(*()** 21 idgdidididid xpRandcxprandcvwv −+−+=     

          IF( MaxVvid > ) { MaxVvid = ;} 

          IF( MaxVvid −< ) { MaxVvid −= ;} 

ididid vxx +=     

   } 

 }  
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Iter=Iter+1; 

  }/*rand() and Rand() are two random functions in the range [0,1]*/   

Return P_{gbest} 

End 

 
3.2 PSO and Rough set-based Feature Selection (PSORSFS) 
 

We can use the idea of PSO for the optimal feature selection problem. Consider a large 

feature space full of feature subsets. Each feature subset can be seen as a point or position 

in such a space. If there are N total features, then there will be 2N kinds of subset, different 

from each other in the length and features contained in each subset. The optimal position is 

the subset with least length and highest classification quality. Now we put a particle swarm 

into this feature space, each particle takes one position. The particles fly in this space, their 

goal is to fly to the best position. Over time, they change their position, communicate with 

each other, and search around the local best and global best position. Eventually, they 

should converge on good, possibly optimal, positions. It is this exploration ability of 

particle swarms that should better equip it to perform feature selection and discover 

optimal subsets. 

To apply the PSO idea to feature selection, some matters must first be considered. 

 
Representation of position 
 

We represent the particle's position as binary bit strings of length N, where N is the 

total number of attributes. Every bit represents an attribute, the value 1̀' means the 

corresponding attribute is selected while 0̀' not selected. Each position is an attribute 

subset. 
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Representation of Velocity 
 

The velocity of each particle is represented as a positive integer, varying between 1 

and Vmax. It implies how many of the particle’s bits (features) should be changed, at a 

particular moment in time, to be the same as that of the global best position, i.e. the 

velocity of the particle flying toward the best position. The number of different bits 

between two particles relates to the difference between their positions. See Fig.1(b) for the 

principle of velocity updating. 

For example, Pgbest=[1 0 1 1 1 0 1 0 0 1], iP =[0 1 0 0 1 1 0 1 0 1]. The difference 

between gbest and the particle’s current position is Pgbest-Pi=[1 –1 1 1 0 –1 1 –1 0 0 ]. A 

value of 1 indicates that compared with the best position, this bit (feature) should be 

selected but is not, which will decrease classification quality and lead to a lower fitness 

value. Assume that the number of 1’s is a. On the other hand, a value of -1 indicates that, 

compared with the best position, this bit should not be selected, but is selected. Redundant 

features will make the length of the subset longer and lead to a lower fitness value. The 

number of -1’s is b. We use the value of (a-b) to express the distance between two 

positions; (a-b) may be positive or negative. Such variation makes particles exhibit an 

exploration ability within the solution space. In this example, (a-b)=4-3=1, so ig PP − =1.  

 
Position Update Strategies 
 

After updating the velocity, a particle’s position will be updated by the new velocity. 

Assume that the new velocity is V; the number of different bits between the current 

particle and gbest is gx . Two cases exist when updating the position: 

1) V<= gx . In this case, the particle’s velocity is less than, or equal to, the position 
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difference between the particle and gbest. V bits of the particle are randomly changed, 

different from that of gbest. The particle then moves toward the global best while still 

exploring the search space, instead of simply being same as gbest.  

2) V> gx . In this case, the particle’s velocity overruns the position difference between the 

particle and gbest. In addition to changing all the different bits to be same as that of 

gbest, we should further randomly (‘random’ implies ‘exploration ability’) change 

(V- gx ) bits outside the different bits between the particle and gbest. So after the 

particle reaches the global best position, it keeps on moving some distance toward 

other directions, enabling further search.  

 
Velocity Limitation (Maximum Velocity, Vmax) 
 

The maximum velocity Vmax serves as a constraint to control the global exploration 

ability of a particle swarm. A larger Vmax facilitates global exploration, while a smaller 

Vmax encourages local exploitation. When Vmax is too low, particles have more 

difficulty escaping from locally optimal regions. If Vmax is too high, particles might fly 

past good solutions (Kennedy, 1997). 

In our experimentation, we initially limited the particles’ velocity in the region [1, N]. 

However, it was noticed that after several generations the swarms converged to a good but 

non-optimal solution, and in the following generations the gbest remained stationary. This 

indicates that the velocity is too high and particles often ‘fly past’ the optimal solution.  

We set Vmax= (1/3)*N and limit the velocity within the range [1, (1/3)*N], which 

prevents an overly-large velocity. A particle can be near to an optimal solution, but a high 

velocity may make it move far away. By limiting the maximum velocity, particles cannot 

fly too far away from the optimal solution. Once finding a global best position, other 
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particles will adjust their velocities and positions, searching around the best position. After 

many tests, we found that an appropriate maximum velocity value is (1/3)*N. If V<1, then 

V=1. If V>(1/3)*N, V=(1/3)*N. PSO can often find the optimal solution quickly under 

such a limit.      

 
Fitness Function 
 

We define the fitness function in equation (13):  

C

RC
DFitness R

−
+= *)(* βγα            (13) 

Where )(DRγ  is the classification quality of condition attribute set R relative to 

decision D, |R| is the ‘1’ number of a position or the length of selected feature subset. |C| is 

the total number of features. α  and β  are two parameters corresponding to the 

importance of classification quality and subset length, ]1,0[∈α  and αβ −= 1 . 

This formula means that the classification quality and feature subset length have 

different significance for feature selection task. In our experiment we assume that 

classification quality is more important than subset length and set 1.0,9.0 == βα . The 

high α assures that the best position is at least a real rough set reduct. The goodness of 

each position is evaluated by this fitness function. The criteria are to maximize fitness 

values. 

 
4. Experimental Results and Discussions 
 

We implement the PSORSFS algorithm and other four feature selection algorithms in 

MatLab 6.5. The computer is Intel P4, 2.66 GHz CPU; 512MB RAM and the system is 

Windows XP Professional. The five algorithms are tested and compared on 27 discrete 
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UCI datasets (Blake et al., 1998). The two algorithms, GAAR and PSORSFS require 

additional parameter settings for their operation. These are given in Table 1.  

 
Table 1 PSORSFS&GAAR parameter settings 

 Population Generation Crossover 
Probability 

Mutation 
Probability c_1 c_2 weight Velocity 

GA 100 100 0.6 0.4 - - - - 
PSO 20 100 - - 2.0 2.0 1.4~0.4 1~(1/3)*N 
   

In PSORSFS, the inertia weight decreases along with the iterations, varying from 1.4 

to 0.4 according to the equation (14).  

Weight = (weight-0.4) * (MAXITER – Iter) /MAXITER +0.4  (14) 

Where MAXITER is the maximum iteration (generation) and Iter is the current iteration. 

 For 14 of 27 datasets, the five algorithms find the same reducts. These are listed in 

Table 2. The ‘Features’ column and ‘Instances’ column give out the total number of 

features (attributes) and instances in the datasets. The number of decision rules and the 

classification accuracy with different reducts are also shown. We use the LEM2 algorithm 

(Stefanowski, 1998) to extract rules from the data and the global strength (Bazan, 1998, 

2000) for rule negotiation in classification. We apply ten-fold cross validation to estimate 

the classification accuracy. We also show the time in seconds for 100 generations 

necessary for the generation of reducts by PSORSFS. 

 

Table 2 Experimental results on 14 datasets  
Dataset Features Instances Reduct  

size 
Number 
of rules 

Classification 
accuracy (%) 

Time of 
PSORSFS (s) 

Balloon1  4 20 2  4 100 10.172 
Balloon2  4 20 2  8 100 9.75 
Balloon3  4 20 2  4 100 10.984 
Balloon4  4 16 4 6 80 14.078 
Balance-Scale   4 625 4   207 88.5 3001.1 
Lenses  4 24 4 9 87.6 24.844 
Hayes-Roth  4 132 3  15 89.5 95.422 
Corral  6 64 4  6 100 36.016 
Monk1 6 124 3 20 93.5 103.406 
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Monk2  6 169 6 82 65.4 297.875 
Monk3  6 432 3  9 97.2 327.406 
PostoperativePatient 8 90 8 37 59.9 138.75 
Parity5+2  10 1024 5 128 100 615.844 
Parity5+5  10 1024 5 32 100 722.14 
 

   
 

 Table 3 Reduct sizes found by Feature Selection algorithms  
Rough set Reduction Algorithms 

Dataset Features Instances 
POSAR CEAR DISMAR GAAR PSORSFS 

Tic-tac-toe 9 958 8 7 8 8 8 
Breastcancer 9 699 4 4 5 4 4 
M-of-N  13 1000 7 7 6 6 6 
Exactly 13 1000 8 8 6 6 6 
Exactly2  13 1000 10 ** 11 10** 11 10** 
Vote  16 300 9 11 8** 9 8** 
Zoo  16 101 5 10 5 6 5 
Lymphography 18 148 6** 8 7 8 7 
Mushroom 22 8124 5 5 6 5 4* 
Led  24 2000 6 12 18 8 5** 
Soybean-small  35 47 2 2 2 6 2 
Lung  56 32 4 5 4 6 4 
DNA  57 318 7 6 6 7 6 

* Optimal solution  ** Exclusive optimal solution 
 
 
 
 
 

Table 4 Classification results with different reducts 
1: Number of rules; 2: Classification accuracy 

POSAR CEAR DISMAR GAAR PSORSAR  
Dataset 

1 2 1 2 1 2 1 2 1 2 Time (s) 
Tic-tac-toe 93 94.42 126 77.89 161 86.21 91 93.05 70 96.32 5719 
Breastcancer 67 95.94 75 94.20 67 95.94 64 95.65 64 95.80 1686.4 
M-of-N 35 100 35 100 35 100 35 100 35 100 1576.6 
Exactly 50 100 50 100 50 100 50 100 50 100 1671.6 
Exactly2 217 83.7 178 69.6 230 83 200 80.8 217 83.7 5834.0 
Vote 25 94.33 25 92.33 28 93.67 25 94.0 25 95.33 424.17 
Zoo 13 96.0 13 94.0 13 94 13 92.0 10 96.0 87.5 
Lymphography 32 85.71 42 72.14 40 74.29 38 70.0 39 75.71 336.172 
Mushroom 19 100 61 90.83 19 100 19 100 23 99.70 14176 
Led 10 100 228 83.10 257 78.85 10 100 10 100 1758.3 
Soybean-small 5 100 4 100 4 100 4 97.50 4 100 25.719 
Lung 11 86.67 13 73.33 14 73.3 12 70.0 8 90.0 26.203 
DNA 173 33.23 192 26.45 191 36.45 191 33.87 169 49.68 1667.0 
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Table 5 Experimental Results by RSES 

 
Dataset 

Total 
Reducts 

Minimal 
size 
Of reducts 

Number 
of rules 

Classification 
accuracy (%) 

Tic-tac-toe 9 8 1085 100 
Breastcancer 20 4 455 94.4 
M-of-N 1 6 19 92.9 
Exactly 1 6 41 85.9 
Exactly2 1 10 242 76.4 
Vote 2 8 67 92.9 
Zoo 33 5 109 96.8 
Lymphography 424 6 353 85.9 
Mushroom 292 4 480 98.3 
Led 140 5 6636 100 
Soybean-small -- 2 31 92.5 
Lung -- 4 100 75 
DNA -- 5 2592 74.3 

Note: For the last three datasets (Soybean-small, Lung and DNA), RSES cannot find all reducts by the 
exhaustive algorithm as it requires too much memory. Instead, we use a fast genetic algorithm to find 10 
reducts. 

 
 
The experimental results of the other 13 datasets are listed in Table 3. The five rough 

set reduction algorithms are compared. We present the best solution (in terms of feature 

subset length) each algorithm finds. For these datasets, some may have more than one 

optimal reduct; some however have only one (exclusive) optimal reduct. From the results, 

it can be seen that in some situations hill-climbing methods can locate the optimal solution. 

For example, POSAR finds the exclusive optimal solution for dataset Exactly2 and 

Lymphography. DISMAR finds the exclusive optimal solution for dataset Exactly2 and 

Vote. But for other datasets, sub-optimal solutions are found, containing redundant 

features. CEAR often contains more redundant features than POSAR and DISMAR.  

As for the stochastic search algorithms, GAAR and PSORSFS, from the experimental 

results it can be seen that PSORSFS performs better than GAAR. PSORSFS successfully 

finds the optimal reducts on most of the datasets. For example, PSORSFS finds an optimal 

reduct for the Mushroom data, and finds the exclusive optimal reduct for Exactly2, Vote 
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and Led.  

During the experiments, the rough ordering of techniques with respect to time is: 

POSAR<CEAR<PSORSAR<GAAR<DISMAR. DISMAR takes a significant amount of 

time for the computation of the discernibility matrix, the time increasing quickly with 

increasing number of instances in the dataset. CEAR may cost time on computing 

equivalence classes. The stochastic algorithms need time in generation iterations.   

Let N be the number of features (conditional attributes) and M the total objects. The 

time complexity of POSAR is )( 2NMO  (Nguyen, 1996; Hu, 1995b), and that of the 

reduction based on conditional information entropy (CEAR) is )()( 32 MONMO + , which 

is composed of the computation of core and non-core attribute reduct (Wang, 2002). 

DISMAR has total time complexity ))log(( 2MMNO + (Hu, 2003). For GAAR and 

PSORSFS, the complexity of the fitness function is )( 2NMO  (Wroblewski, 1995). The 

other impact on time is the number of generation iterations. For the GA method, the 

crossover and mutation operations also take much time. As for PSORSFS, time is mainly 

spent on evaluating the particles’ position (fitness function).  

To graphically illustrate the progress of the particle swarm as it searches for optimal 

solutions, we take generation as the horizontal coordinate and the fitness value as the 

vertical coordinate. This should illustrate the process of improvement of the global best as 

the number of generations increase. To further highlight the search process, we graph 

subset length of every particle’s current position (horizontal coordinate) against 

classification quality (vertical coordinate). Each point in the figure is a particle.  

The example for Exactly2 is given below and the other examples are listed in appendix 

A. 
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Example 1 
 

The process of the particle swarms searching for optimal solutions for dataset Exactly2 

is given in Table 6 and Figures 2 and 3. In Table 6, “Best Solution” lists the best feature 

subset encountered at a particular iteration, in which each number denotes one feature of 

the dataset. 

Table 6 PSO searching process on Exactly2 
Iter Best Solution  Fitness Value Feature Subset Length 
1 1,2, 4, 5, 7, 8, 9, 10, 11, 12, 13 0.8272 11 
2 1,2, 4, 5, 6, 7, 8, 9, 10, 11, 13 0.8362 11 
3 1,2, 4, 5, 6, 7, 8, 9, 10, 11, 13 0.8362 11 
4--11 1,2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 0.8663 12 
12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13 0.9154 11 
13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 0.9231 10 

 
 
 

 

 
Fig.2 (a) Generation 1 of PSO on dataset Exactly2 
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Fig.2 (b) Generation 2 of PSO on dataset Exactly2 

 
 
 
 
 
 

 
Fig.2 (c) Generation 4 of PSO on dataset Exactly2 
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Fig.2 (d) Generation 12 of PSO on dataset Exactly2 

 
 
 
 
 
 

 
Fig.2 (e) Generation 13 of PSO on dataset Exactly2 
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Fig.3 Evolution process of the global best on dataset Exactly2.  

(PSORSFS, GAAR, CEAR)  
 
 
The evaluation criteria or fitness function is a critical issue in the implementation of 

stochastic algorithms. In the fitness function we use, because the classification quality 

parameter outclasses that of subset length ( 9.0=α , 1.0=β ), the optimal solution is 

assured to be a real rough set reduct or super-reduct. So, the fitness function in PSO is 

efficient.  

From the results and figures, we can see that, compared with GA, PSO is quicker in 

locating the optimal solution. In general, it can find the optimal solution within tens of 

generations. If exhaustive search is used to find the optimal reduct in the dataset DNA, 

there will be tens of thousands of candidate subsets, which is impossible to execute. But 

with PSO, at the 32nd generation the optimal solution is found.  
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PSO has a powerful exploration ability; it is a gradual searching process that 

approaches optimal solutions. The running time of PSO is affected less by the problem 

dimension (feature numbers), but more by the size of data (see Tables 2 and 4). Mushroom 

is the largest dataset and requires the largest time for PSORSFS (14176 seconds). Most of 

the time is spent on the basic computations of rough sets (computing equivalence classes). 

For some datasets with more features, for example Lung and DNA, after finding a 

sub-optimal solution, the GA cannot find a better one: the fitness/generation graph is a line. 

However, PSO can search in the feature space until the optimal solution is found. The GA 

is affected greatly by the number of features.  

PSO comprises a very simple concept, and the ideas can be implemented in a few lines 

of computer code. It requires only primitive mathematical operators, and is 

computationally inexpensive in terms of both memory requirements and speed. This 

optimization technique does not suffer, however, from some of the difficulties of GAs; 

interaction in the group enhances rather than detracts from progress toward the solution. 

Further, a particle swarm system has memory, which the genetic algorithm does not have. 

Changes in genetic populations result in the destruction of previous knowledge of the 

problem. In particle swarm optimization, individuals who fly past optima are tugged to 

return towards them; knowledge of good solutions is retained by all particles. 

As for PSO, every particle flies in the candidate problem space, adjusts their velocity 

and position according to the local best and global best. So, all the particles have a 

powerful search capability, which can help the swarm avoid dead ends. 

The comparison of the number of decision rules and the classification accuracy with 

different reducts are shown in Table 4. We show the time in seconds for 100 generations 



 26 

necessary for generation of reducts by PSORSFS.  

The results are also compared with the rough set system RSES (Skowron et al, 2005) 

(see Table 5). RSES is an excellent toolset for analyzing data with the use of methods 

based on Rough Set Theory, and is developed by researchers in Warsaw University. We 

use the Exhaustive algorithm to find reducts. It presents two deterministic algorithms for 

the computation of the whole reduct set, both algorithms compute the discernibility matrix 

for this purpose (Bazan et al, 2000). The complexity is exponential. The time complexity 

to find all reducts is )2( TO N , where T is the computational cost of finding one reduct, and 

N is the number of attributes (Bell, 1998). For the last three datasets (Soybean-small, Lung 

and DNA), RSES cannot find all reducts by the exhaustive algorithm, due to memory 

limitations. As a result of this, we use a fast genetic algorithm to find 10 reducts. We use 

the decision rules classifier, LEM2 algorithm for global rules generation and 10-fold 

cross-validation estimation method. We set “Shortening ratio” to 0.9, in order to get a 

short and minimal rule set. Conflicts are resolved by Standard Voting. Most of the reducts 

found by PSORSFS result in smaller rules and exhibit higher classification accuracy.  

 
5. Conclusion  
 

This paper discusses the shortcomings of conventional hill-climbing rough set 

approaches to feature selection. These techniques often fail to find optimal reductions, as 

no perfect heuristic can guarantee optimality. On the other hand, complete searches are not 

feasible for even medium-sized datasets. So, stochastic approaches provide a promising 

feature selection mechanism.  

We propose a new optimal feature selection technique based on rough sets and Particle 

Swarm Optimization (PSO). PSO has the ability to quickly converge (Shi and Eberhart, 
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1999), it has a strong search capability in the problem space and can efficiently find 

minimal reducts. Experimental results demonstrate competitive performance. PSO is a 

promising method for rough set reduction. 

More experimentation and further investigation into this technique may be required. 

The inertia weight (w) and maximum velocity (Vmax) have an important impact on the 

performance of PSO. The selection of the parameters may be problem-dependent. Vmax 

serves as a constraint that controls the maximum global exploration ability PSO can have. 

In many practical problems, it’s difficult to select the best Vmax without trial-and-error 

(Shi and Eberhart, 1998b). In our feature selection problem, we first limit the particles’ 

velocity to N, since [1, N] is the dynamic range of the feature space of each particle. But 

we find that under such a limitation, particles have poor local exploration ability. So after 

many tests, we set Vmax to (1/3)*N, which is suitable for our problem (see Section 3.2). 

The inertia weight balances the global and local exploration abilities. In our experiments, 

we let it decrease from 1.4 to 0.4 along with the iterations. The performance of the PSO 

algorithm with linearly decreasing inertia weight can be improved greatly and have better 

results. The larger inertia weights at the beginning help to find good seeds and the later 

small inertia weights facilitate fine search (Shi and Eberhart, 1998b, 1999). 

In this paper, we apply PSO to find reducts of minimal cardinality and, like classical 

genetic algorithms, the particle's position is a binary representation for attribute subsets. 

An extension to the approach would be to select reducts due to the number of decision 

rules it generates rather than its length alone. If a reduct generates fewer rules, it means 

that the rules are more general and they should better recognize new objects (Bazan et al, 

2000). We should also extend to hybrid algorithms (Wroblewski, 1995, 1996), 
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order-based PSO for searching approximate entropy reducts (Slezak and Wroblewski, 

2003), where the particle's position is a permutation of attributes and PSO is used to find 

the proper order. Such reducts are much more applicable in practice. The fitness function 

and position-updating strategy are also key factors in PSO for feature selection, which 

need to be improved further.  
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Appendix A (Experimental Examples) 
 
Example 2 

The process of the particle swarms searching for optimal solutions for dataset Vote is 

given in Table 7 and Figure 4. 

 
Table 7 PSO searching process on Vote 

Iter Best Solution  Fitness Value Feature Subset Length 
1-45 1,2,3,4,7,9,11,13,16 0.9437 9 
46-52 1,2,3,4,7,11,13,16 0.9440 8 
53 1,2,3,4,11,13,16 0.9443 7 
54 1,2,3,4,9,11,13,16  0.9500 8 

 
Fig.4 Evolution process of the global best on dataset Vote.  

(PSORSFS, GAAR, POSAR) 
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Example 3 

The process of the particle swarms searching for optimal solutions for dataset 

Mushroom is given in Table 8 and Figure 5. 

 
Table 8 PSO searching process on Mushroom 

Iter Best Solution  Fitness Value Feature Subset Length 
1 3,5,6,9,11,12,14,18,22 0.9591 9 
2 3,5,6,9,11,18,21,22 0.9636 8 
3 3,5,6,11,18,21,22 0.9682 7 
4--15 3,5,13,21,22 0.9773 5 
16 3,5,11,22 0.9818 4 
… … … … 

 

 
Fig.5 Evolution process of the global best on dataset Mushroom.  

(PSORSFS, GAAR, POSAR) 
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Example 4 

The process of the particle swarms searching for optimal solutions for dataset 

Soybean-small is given in Table 9 and Figure 6. 

 
Table 9 PSO searching process on Soybean-small 

Iter Best Solution  Fitness Value Feature Subset Length 
1 5,11,13,18,21,22,23,28,29,32,33,35 0.9657 12 
2 5,11,13,18,21,22,23,29,32,33,35 0.9686 11 
3--5 1,5,9,11,13,19,22,23,33,35 0.9714 10 
6 1,9,13,18,19,22,23,33,35 0.9743 9 
7 1,9,13,19,22,23,33,35 0.9771 8 
8--15 3,9,13,19,22,23,33 0.9800 7 
16--19 3,13,19,22,23,33 0.9829 6 
20--21 13,15,22,23,33 0.9857 5 
22--27 13, 22,23,33 0.9886 4 
28--32 22,23,33 0.9914 3 
33 22,23 0.9943 2 
… … … … 

 
Fig.6 Evolution process of the global best on dataset Soybean-small 

(PSORSFS, GAAR, POSAR) 
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Example 5 

The process of the particle swarms searching for optimal solutions for dataset Lung is 

given in Table 10 and Figure 7. 

Table 10 PSO searching process on Lung 
Iter Best Solution  Fitness 

Value 
Feature Subset Length 

1 2,9,14,15,24,25,30,31,32,36,40,42,43,44,51,54,55 0.9696 17 
2--5 2,9,14,15,25,30,31,32,36,40,42,43,44,51,54,55 0.9714 16 
6 2,9,15,25,30,31,32,40,42,43,44,48,51,54,55 0.9732 15 
7--8 2,9,15,25,30,32,40,42,43,44,48,51,54,55 0.9750 14 
9 2,9,15,25,29,30,40,42,43,44,48,51,55 0.9768 13 
10--21 9,15,25,30,33,35, 40,42,43,44, 51,55 0.9786 12 
22--23 9,15,25,30, 33,35, 40,42,43,44,55 0.9804 11 
24--25 9,15,25,30,33, 40,42,43,44,55 0.9821 10 
26 9,15,25,30,33, 40,42, 44,55 0.9839 9 
27--31 9,15,25,30,33, 42, 44,55 0.9857 8 
32 9,25,30,33, 42, 55 0.9893 6 
33--39 9,25,30,33,55 0.9911 5 
40 9,30,33,55 0.9929 4 

    
Fig.7 Evolution process of the global best on dataset Lung 

(PSORSFS, GAAR, POSAR) 
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Example 6 

The process of the particle swarms searching for optimal solutions for dataset DNA is 

given in Table 11 and Figure 8. 

Table 11 PSO searching process on DNA 
Iter Best Solution  Fitness 

Value 
Feature Subset Length 

1 2,3,9,10,12,16,21,25,27,30,31,36,40,4247,50,52,56 0.9684 18 
2 2,3,9,10,12,25,27,29,30,31,36,40,4247,50,52,56 0.9702 17 
3 2,3,9,10,12,25,29,31,36,40,42,52,54,56 0.9737 15 
4--7 2,9,10,12, 29,31,36, 40,42, 52, 54,56,57 0.9772 13 
8--11 2,9,12, 29,31,34,36, 42, 52, 54,56,57 0.9789 12 
12--15 2,9,12, 29,31,34,36, 42, 52,56,57 0.9807 11 
16--19 9,12, 29,31,34,36, 42, 52,56,57 0.9825 10 
20--23 9,12, 29,31,36, 42, 52,56,57 0.9842 9 
24--27 9,12, 29,31, 36, 42, 52,57 0.9860 8 
28--31 9,12, 29,31, 36, 42,57 0.9877 7 
32 9,12, 29,31, 36, 42 0.9895 6 

 
Fig.8 Evolution process of the global best on dataset DNA 

(PSORSFS, GAAR, POSAR) 


