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Semantics-Preserving Dimensionality
Reduction: Rough and Fuzzy-Rough-Based

Approaches
Richard Jensen and Qiang Shen

Abstract—Semantics-preserving dimensionality reduction refers to the problem of selecting those input features that are most

predictive of a given outcome; a problem encountered in many areas such as machine learning, pattern recognition, and signal

processing. This has found successful application in tasks that involve data sets containing huge numbers of features (in the order of

tens of thousands), which would be impossible to process further. Recent examples include text processing and Web content

classification. One of the many successful applications of rough set theory has been to this feature selection area. This paper reviews

those techniques that preserve the underlying semantics of the data, using crisp and fuzzy rough set-based methodologies. Several

approaches to feature selection based on rough set theory are experimentally compared. Additionally, a new area in feature selection,

feature grouping, is highlighted and a rough set-based feature grouping technique is detailed.

Index Terms—Dimensionality reduction, feature selection, feature transformation, rough selection, fuzzy-rough selection.

�

1 INTRODUCTION

MANY problems in machine learning involve high-

dimensional descriptions of input features. It is
therefore not surprising that much research has been

carried out on dimensionality reduction [12], [26], [29],

[30], [31]. However, existing work tends to destroy the

underlying semantics of the features after reduction (e.g.

transformation-based approaches [13]) or require additional

information about the given data set for thresholding (e.g.

entropy-based approaches [32]). A technique that can

reduce dimensionality using information contained within
the data set and that preserves the meaning of the features

(i.e., semantics-preserving) is clearly desirable. Rough set

theory (RST) can be used as such a tool to discover data

dependencies and to reduce the number of attributes

contained in a data set using the data alone and no

additional information [38], [41].
Over the past 10 years, RST has indeed become a topic of

great interest to researchers and has been applied to many

domains. Given a data set with discretized attribute values,

it is possible to find a subset (termed a reduct) of the original

attributes using RST that are the most informative; all other

attributes can be removed from the data set with minimal

information loss. From the dimensionality reduction per-

spective, informative features are those that are most useful

in determining classifications from their values.

However, it is most often the case that the values of
attributes may be both crisp and real-valued, and this is
where traditional rough set theory encounters a problem. It
is not possible in the original theory to say whether two
attribute values are similar and to what extent they are the
same; for example, two close values may only differ as a
result of noise, but in RST, they are considered to be as
different as two values of a different order of magnitude. As
a result of this, extensions to the original theory have been
proposed, for example, those based on similarity or
tolerance relations [55], [61], [62].

It is, therefore, desirable to develop techniques to
provide the means of data reduction for crisp and real-
value attributed data sets which utilizes the extent to which
values are similar. This can be achieved through the use of
fuzzy-rough sets. Fuzzy-rough sets encapsulate the related
but distinct concepts of vagueness (for fuzzy sets [70]) and
indiscernibility (for rough sets), both of which occur as a
result of uncertainty in knowledge [17].

This review focuses on those recent techniques for
feature selection that employ a rough-set-based methodol-
ogy for this purpose, highlighting current trends and future
directions for this promising area. The second section
introduces rough set fundamentals and extensions which
enable various approaches to feature selection. Several of
these are evaluated experimentally and compared. Section 3
introduces the fuzzy extension to rough sets, fuzzy-rough
sets, and details how this may be applied to the feature
selection problem, with the aid of a simple example data
set. Rough set-based feature grouping is also discussed. The
review is concluded in Section 4.

2 ROUGH SELECTION

Rough set theory [18], [37], [48], [56], [57] is an extension of
conventional set theory that supports approximations in
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decision making. It possesses many features in common (to
a certain extent) with the Dempster-Shafer theory of
evidence [54] and fuzzy set theory [39], [68]. The rough
set itself is the approximation of a vague concept (set) by a
pair of precise concepts, called lower and upper approx-
imations, which are a classification of the domain of interest
into disjoint categories. The lower approximation is a
description of the domain objects which are known with
certainty to belong to the subset of interest, whereas the
upper approximation is a description of the objects which
possibly belong to the subset. This section focuses on
several rough set-based techniques for feature selection.
Some of the techniques described here can be found in
rough set systems available online [44], [45].

To illustrate the operation of these, an example data set
(Table 1) will be used. Here, the table consists of four
conditional features (a; b; c; d), one decision feature (e) and
eight objects. The task of feature selection here is to choose
the smallest subset of these conditional features so that the
resulting reduced data set remains consistent with respect
to the decision feature. A data set is consistent if for every
set of objects whose attribute values are the same, the
corresponding decision attributes are identical. Throughout
this section, the terms attribute and feature are used
interchangeably.

2.1 Rough Set Attribute Reduction

Rough Set Attribute Reduction (RSAR) [10], [22], [38], [53],
[63] provides a filter-based tool by which knowledge may
be extracted from a domain in a concise way; retaining the
information content while reducing the amount of knowl-
edge involved. The main advantage that rough set analysis
has is that it requires no additional parameters to operate
other than the supplied data [19]. It works by making use of
the granularity structure of the data only. This is a major
difference when compared with Dempster-Shafer theory
[49] and fuzzy set theory which require probability assign-
ments and membership values, respectively. However, this
does not mean that no model assumptions are made. In fact,
by using only the given information, the theory assumes
that the data is a true and accurate reflection of the real
world (which may not be the case). The numerical and other
contextual aspects of the data are ignored which may seem
to be a significant omission, but it keeps model assumptions
to a minimum.

2.1.1 Theoretical Background

Central to RSAR is the concept of indiscernibility. Let I ¼
ðUU;AAÞ be an information system, where UU is a nonempty

set of finite objects (the universe) and AA is a nonempty finite

set of attributes such that a : UU ! Va for every a 2 AA. With

any P � AA there is an associated equivalence relation

INDðP Þ:

INDðP Þ ¼ fðx; yÞ 2 UU2 j 8 a 2 P; aðxÞ ¼ aðyÞg:

The partition of UU, generated by IND(P) is denoted as UU /

IND(P) and can be calculated as follows:

UU=INDðP Þ ¼ �fa 2 P : UU=INDðfagÞg; ð1Þ

where

A�B ¼ fX \ Y : 8X 2 A; 8Y 2 B;X \ Y 6¼ ;g: ð2Þ

If ðx; yÞ 2 INDðP Þ, then x and y are indiscernible by

attributes from P . The equivalence classes of the

P-indiscernibility relation are denoted ½x�P . For the illus-

trative example, if P ¼ fb; cg, then objects 1, 6, and 7 are

indiscernible; as are objects 0 and 4. IND(P) creates the

following partition of UU:

UU=INDðP Þ ¼ UU=INDðbÞ �UU=INDðcÞ
¼ ff0; 2; 4g; f1; 3; 6; 7g; f5gg � ff2; 3; 5g; f1; 6; 7g; f0; 4gg
¼ ff2g; f0; 4g; f3g; f1; 6; 7g; f5gg:

Let X � UU. X can be approximated using only the

information contained within P by constructing the P-lower

and P-upper approximations of X:

PX ¼ fx j ½x�P � Xg; ð3Þ

P ¼ fx j ½x�P \X 6¼ ;g: ð4Þ

Let P and Q be equivalence relations over UU, then the

positive, negative, and boundary regions can be defined as:

POSP ðQÞ ¼
[

X2UU=Q

PX

NEGP ðQÞ ¼ UU�
[

X2UU=Q

PX

BNDP ðQÞ ¼
[

X2UU=Q

PX �
[

X2UU=Q

PX:

The positive region contains all objects of UU that can be

classified to classes of UU/Q using the knowledge in

attributes P . The boundary region, BNDP ðQÞ, is the set of

objects that can possibly, but not certainly, be classified in

this way. The negative region, NEGP ðQÞ, is the set of

objects that cannot be classified to classes of UU=Q. For

example, let P ¼ fb; cg and Q ¼ feg, then

POSINDðP ÞðQÞ ¼
[

f;; f2; 5g; f3gg ¼ f2; 3; 5g;
NEGINDðP ÞðQÞ ¼ UU�

[
ff0; 4g; f2; 0; 4; 1; 6; 7; 5g

f3; 1; 6; 7gg ¼ ;;
BNDINDðP ÞðQÞ ¼ UU� f2; 3; 5g ¼ f0; 1; 4; 6; 7g:
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This means that objects 2, 3, and 5 can certainly be

classified as belonging to a class in attribute e, when

considering attributes b and c. The rest of the objects cannot

be classified as the information that would make them

discernible is absent.
An important issue in data analysis is discovering

dependencies between attributes. Intuitively, a set of

attributes Q depends totally on a set of attributes P ,

denoted P ) Q, if all attribute values from Q are uniquely

determined by values of attributes from P . If there exists a

functional dependency between values of Q and P , then Q

depends totally on P . Dependency can be defined in the

following way:
For P , Q � AA, it is said that Q depends on P in a degree

kð0 � k � 1Þ, denoted P )k Q, if

k ¼ �P ðQÞ ¼ jPOSP ðQÞj
jUUj : ð5Þ

If k ¼ 1, Q depends totally on P , if 0 < k < 1, Q depends

partially (in a degree k) on P , and if k ¼ 0, then Q does not

depend on P . In the example, the degree of dependency of

attribute feg from the attributes fb; cg is:

�fb;cgðfegÞ ¼
jPOSfb;cgðfegÞj

jUUj

¼ jf2; 3; 5gj
jf0; 1; 2; 3; 4; 5; 6; 7gj ¼

3

8
:

By calculating the change in dependency when an

attribute is removed from the set of considered conditional

attributes, a measure of the significance of the attribute can

be obtained. The higher the change in dependency, the

more significant the attribute is. If the significance is 0, then

the attribute is dispensable. More formally, given P;Q and

an attribute a 2 P ,

�P ðQ; aÞ ¼ �P ðQÞ � �P�fagðQÞ: ð6Þ

For example, ifP ¼ fa; b; cg and Q ¼ e, then

�fa;b;cgðfegÞ ¼ jf2; 3; 5; 6gj=8 ¼ 4=8

�fa;bgðfegÞ ¼ jf2; 3; 5; 6gj=8 ¼ 4=8

�fb;cgðfegÞ ¼ jf2; 3; 5gj=8 ¼ 3=8

�fa;cgðfegÞ ¼ jf2; 3; 5; 6gj=8 ¼ 4=8:

And, calculating the significance of the three attributes

gives:

�P ðQ; aÞ ¼ �fa;b;cgðfegÞ � �fb;cgðfegÞ ¼ 1=8

�P ðQ; bÞ ¼ �fa;b;cgðfegÞ � �fa;cgðfegÞ ¼ 0

�P ðQ; cÞ ¼ �fa;b;cgðfegÞ � �fa;bgðfegÞ ¼ 0:

From this, it follows that attribute a is indispensable, but

attributes b and c can be dispensed with.

2.1.2 Reduction Method

The reduction of attributes is achieved by comparing

equivalence relations generated by sets of attributes.

Attributes are removed so that the reduced set provides

the same quality of classification as the original. A reduct is

defined as a subset of minimal cardinality Rmin of the

conditional attribute set CC such that �RðDDÞ ¼ �CCðDDÞ.

R ¼ fX : X � CC; �XðDDÞ ¼ �CCðDDÞg; ð7Þ

Rmin ¼ fX : X 2 R; 8Y 2 R; jXj � jY jg: ð8Þ

The intersection of all the sets in Rmin is called the core,

the elements of which are those attributes that cannot be

eliminated without introducing more contradictions to the

data set. In RSAR, a subset with minimum cardinality is

searched for.
Using the example, the dependencies for all possible

subsets of CC can be calculated as:

�fa;b;c;dgðfegÞ ¼ 8=8 �fb;cgðfegÞ ¼ 3=8
�fa;b;cgðfegÞ ¼ 4=8 �fb;dgðfegÞ ¼ 8=8
�fa;b;dgðfegÞ ¼ 8=8 �fc;dgðfegÞ ¼ 8=8
�fa;c;dgðfegÞ ¼ 8=8 �fagðfegÞ ¼ 0=8
�fb;c;dgðfegÞ ¼ 8=8 �fbgðfegÞ ¼ 1=8
�fa;bgðfegÞ ¼ 4=8 �fcgðfegÞ ¼ 0=8
�fa;cgðfegÞ ¼ 4=8 �fdgðfegÞ ¼ 2=8
�fa;dgðfegÞ ¼ 3=8:

Note that the given data set is consistent since

�fa;b;c;dgðfegÞ ¼ 1. The minimal reduct set for this example is:

Rmin ¼ ffb; dg; fc; dgg:

If fb; dg is chosen, then the data set can be reduced as in

Table 2. Clearly, each object can be uniquely classified

according to the attribute values remaining.
The problem of finding a reduct of an information or

decision system has been the subject of much research [2],

[22], [58], [53]. The most basic solution to locating such a

subset is to simply generate all possible subsets and retrieve

those with a maximum rough set dependency degree.

Obviously, this is an expensive solution to the problem and

is only practical for very simple data sets. Most of the time

only one reduct is required, so all the calculations involved

in discovering the rest are pointless.
To improve the performance of the above method, an

element of pruning can be introduced. By noting the

cardinality of any prediscovered reducts, the current

possible subset can be ignored if it contains more elements.

However, a better approach is needed—one that will avoid

wasted computational effort.
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The QUICKREDUCT Algorithm given in Fig. 1 (adapted
from [10]), attempts to calculate a reduct without exhaus-
tively generating all possible subsets. It starts off with an
empty set and adds, in turn, one at a time, those attributes
that result in the greatest increase in the rough set
dependency metric, until this produces its maximum
possible value for the data set. Other such techniques may
be found in [40].

According to the QUICKREDUCT algorithm, the depen-
dency of each attribute is calculated, and the best candidate
chosen. In Fig. 2, this stage is illustrated using the example
data set. As attribute d generates the highest dependency
degree, then that attribute is chosen and the sets fa; dg,
fb; dg, and fc; dg are evaluated. This process continues until
the dependency of the reduct equals the consistency of the
data set (1 if the data set is consistent). The generated reduct
shows the way of reducing the dimensionality of the
original data set by eliminating those conditional attributes
that do not appear in the set.

This, however, is not guaranteed to find a minimal subset
as has been shown in [11]. Using the dependency function
to discriminate between candidates may lead the search
down a nonminimal path. It is impossible to predict which
combinations of attributes will lead to an optimal reduct
based on changes in dependency with the addition or
deletion of single attributes. It does result in a close-to-
minimal subset, though, which is still useful in greatly
reducing data set dimensionality.

In [11], a potential solution to this problem has been
proposed whereby the QUICKREDUCT algorithm is altered,
making it into an n-lookahead approach. However, even
this cannot guarantee a reduct unless n is equal to the
original number of attributes, but this reverts back to
generate-and-test. It still suffers from the same problem as
the original QUICKREDUCT, i.e., it is impossible to tell at

any stage whether the current path will be the shortest to a

reduct.
It is interesting to note that the rough set degree of

dependency measure is very similar to the consistency

criterion used by the FOCUS algorithm and others [1], [46].

In FOCUS, a breadth-first search is employed such that any

subset is rejected if this produces at least one inconsistency.

If this is converted into a guided search using the

consistency measure as a heuristic, it should behave exactly

as QUICKREDUCT. Consistency is defined as the number of

discernible objects out of the entire object set—exactly that

of the dependency measure.

2.2 Discernibility Matrix Approach

Many applications of rough sets to feature selection make

use of discernibility matrices for finding reducts. A

discernibility matrix [27], [53] of a decision table D ¼
ðUU;CC [DDÞ is a symmetric jUUj � jUUj matrix with entries

defined as:

dij ¼ fa 2 CCjaðxiÞ 6¼ aðxjÞg i; j ¼ 1; . . . ; jUUj: ð9Þ

Each dij contains those attributes that differ between

objects i and j. For finding reducts, the decision-relative

discernibility matrix is of more interest. This only considers

those object discernibilities that occur when the corre-

sponding decision attributes differ. Returning to the

example data set, the decision-relative discernibility matrix

found in Table 3 is produced. For example, it can be seen

from the table that objects 0 and 1 differ in each attribute.

Although some attributes in objects 1 and 3 differ, their

corresponding decisions are the same so no entry appears

in the decision-relative matrix. Grouping all entries

containing single attributes forms the core of the data set

(those attributes appearing in every reduct). Here, the core

of the data set is fdg.
From this, the discernibility function can be defined. This

is a concise notation of how each object within the data set

may be distinguished from the others. A discernibility

function fD is a Boolean function of m Boolean variables

a�1; . . . ; a
�
m (corresponding to the attributes a1; . . . ; am)

defined as below:

fDða�1; . . . ; a�mÞ ¼ ^f_c�ijj1 � j � i � jUUj; cij 6¼ ;g; ð10Þ

where c�ij ¼ fa�ja 2 cijg. By finding the set of all prime

implicants of the discernibility function, all the minimal

reducts of a system may be determined. From Table 3, the
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decision-relative discernibility function is (with duplicates

removed):

fDða; b; c; dÞ ¼fa _ b _ c _ dg ^ fa _ c _ dg ^ fb _ cg
^ fdg ^ fa _ b _ cg ^ fa _ b _ dg
^ fb _ c _ dg ^ fa _ dg:

Further simplification can be performed by removing those

sets that are supersets of others:

fDða; b; c; dÞ ¼ fb _ cg ^ fdg

The reducts of the data set may be obtained by

converting the above expression from conjunctive normal

form to disjunctive normal form (without negations).

Hence, the minimal reducts are fb; dg and fc; dg. Although

this is guaranteed to discover all minimal subsets, it is a

costly operation rendering the method impractical for even

medium-sized data sets.
For certain applications, a single minimal subset is all

that is required for data reduction. For example, dimen-

sionality reduction within text classification tends to use

only one subset to remove unnecessary keywords [25], [65].

This has led to approaches that consider finding individual

shortest prime implicants from the discernibility function.

A common method is to incrementally add those attributes

that occur with the most frequency in the function,

removing any clauses containing the attributes, until all

clauses are eliminated [35], [66]. However, even this does

not ensure that a minimal subset is found—the search can

proceed down nonminimal paths.
It may also be desirable to locate several minimal subsets

for some applications [24], [67]. Once a collection of such

subsets has been found, a choice is made as to which of

these are the most informative for the application task at

hand. This decision can be made manually, or by the use of

a suitable measure such as entropy [42] to distinguish

between the subsets.

2.3 Reduction with Variable Precision Rough Sets

Variable precision rough sets (VPRS) [72] attempts to

improve upon rough set theory by relaxing the subset

operator. It was proposed to analyze and identify data

patterns which represent statistical trends rather than

functional. The main idea of VPRS is to allow objects to

be classified with an error smaller than a certain predefined

level. Let X;Y � UU, the relative classification error is

defined by:

cðX;Y Þ ¼ 1� jX \ Y j
jXj :

Observe that cðX;Y Þ ¼ 0 if and only if X � Y . A degree

of inclusion can be achieved by allowing a certain level of

error, �, in classification:

X �� Y iff cðX;Y Þ � �; 0 � � < 0:5:

Using �� instead of � , the �-upper and �-lower

approximations of a set X can be defined as:

R�X ¼
[

f½x�R 2 UU=Rj½x�R �� Xg
R�X ¼

[
f½x�R 2 UU=Rjcð½x�R;XÞ < 1� �g:

Note that R�X ¼ RX for � ¼ 0. The positive, negative, and

boundary regions in the original rough set theory can now

be extended to:

POSR;�ðXÞ ¼ R�X; ð11Þ

NEGR;�ðXÞ ¼ UU�R�X; ð12Þ

BNDR;�ðXÞ ¼ R�X �R�X: ð13Þ

Returning to the example data set in Table 1, (11) can be

used to calculate the �-positive region for R ¼ fb; cg,
X ¼ feg, and � ¼ 0:4. Setting � to this value means that a

set is considered to be a subset of another if they share

about half the number of elements. The partitions of the

universe of objects for R and X are:

UU=R ¼ ff2g; f0; 4g; f3g; f1; 6; 7g; f5gg
UU=X ¼ ff0g; f1; 3; 6g; f2; 4; 5; 7gg:

For each set A 2 UU=R and B 2 UU=X, the value of cðA;BÞ
must be less than � if the equivalence class A is to be

included in the �-positive region. Considering A ¼ f2g gives

cðf2g; f0gÞ ¼ 1 > �

cðf2g; f1; 3; 6gÞ ¼ 1 > �

cðf2g; f2; 4; 5; 7gÞ ¼ 0 < �:

So, object 2 is added to the �-positive region as it is a

�-subset of f2; 4; 5; 7g (and is, in fact, a traditional subset of

the equivalence class). Taking A ¼ f1; 6; 7g, a more inter-

esting case is encountered:

cðf1; 6; 7g; f0gÞ ¼ 1 > �

cðf1; 6; 7g; f1; 3; 6gÞ ¼ 0:3333 < �

cðf1; 6; 7g; f2; 4; 5; 7gÞ ¼ 0:6667 > �:

Here, the objects 1, 6, and 7 are included in the �-positive

region as the set f1; 6; 7g is a �-subset of f1; 3; 6g. Calculating
the subsets in this way leads to the following �-positive

region:

POSR;�ðXÞ ¼ f1; 2; 3; 5; 6; 7g:

Compare this with the positive region generated pre-

viously: f2; 3; 5g. Objects 1, 6, and 7 are now included due

to the relaxation of the subset operator. Consider a decision

table A ¼ ðUU;CC [DDÞ, where CC is the set of conditional

attributes and DD is the set of decision attributes. The

�-positive region of an equivalence relation Q on UU may be

determined by

POSR;�ðQÞ ¼
[

X2UU=Q

R�X;

where R is also an equivalence relation on UU. This can then

be used to calculate dependencies and, thus, determine

�-reducts. The dependency function becomes:

JENSEN AND SHEN: SEMANTICS-PRESERVING DIMENSIONALITY REDUCTION: ROUGH AND FUZZY-ROUGH-BASED APPROACHES 5



�R;�ðQÞ ¼ jPOSR;�ðQÞj
jUUj :

It can be seen that the QUICKREDUCT algorithm outlined
previously can be adapted to incorporate the reduction
method built upon VPRS theory. By supplying a suitable �
value to the algorithm, the �-lower approximation, �-positive
region, and �-dependency can replace the traditional calcula-
tions. This will result in a more approximate final reduct,
which may be a better generalization when encountering
unseen data. Additionally, setting � to 0 forces such a
method to behave exactly like RSAR.

Extended classification of reducts in the VPRS approach
may be found in [6], [7], [28]. However, the variable
precision approach requires the additional parameter �
which has to be specified from the start. By repeated
experimentation, this parameter can be suitably approxi-
mated. However, problems arise when searching for true
reducts as VPRS incorporates an element of imprecision in
determining the number of classifiable objects.

2.4 Dynamic Reducts

Reducts generated from information systems are sensitive
to changes in the system. This can be seen by removing a
randomly chosen set of objects from the original object set.
Those reducts frequently occurring in random subtables can
be considered to be stable; it is these reducts that are
encompassed by dynamic reducts [3]. Let A ¼ ðUU;CC [ dÞ be a
decision table, then any system B ¼ ðUU0;CC [ dÞðUU0 � UUÞ is
called a subtable ofA. If F is a family of subtables ofA, then

DRðA;FÞ ¼ RedðA; dÞ \
\
B2F

RedðB; dÞ
( )

defines the set of F -dynamic reducts of A. From this
definition, it follows that a relative reduct of A is dynamic if
it is also a reduct of all subtables in F . In most cases, this is
too restrictive, so a more general notion of dynamic reducts
is required.

By introducing a threshold, 0 � � � 1, the concept of
ðF ; �Þ-dynamic reducts can here be defined:

DR�ðA;FÞ ¼ fC 2 RedðA; dÞ : sF ðCÞ 	 �g;

where

sF ðCÞ ¼ jfB 2 F : C 2 RedðB; dÞgj
jF j

is the F -stability coefficient of C. This lessens the
previous restriction that a dynamic reduct must appear
in every generated subtable. Now, a reduct is considered
to be dynamic if it appears in a certain percentage of
subtables, determined by the value �. For example, by
setting � to 0.5, a reduct is considered to be dynamic if it
appears in at least half of the subtables. Note that if
F ¼ fAg, then DRðA;FÞ ¼ RedðA; dÞ. Dynamic reducts
may then be calculated according to the algorithm given
in Fig. 3. First, all reducts are calculated for the given
information system, A. Then, the new subsystems Aj are
generated by randomly deleting one or more rows from
A. All reducts are found for each subsystem, and the
dynamic reducts are computed using sF ðC;RÞ which

denotes the significance factor of reduct C within all
reducts found, R.

Returning to the example decision table (call this A), the
first step is to calculate all its reducts. This produces the set
of all reducts A ¼ ffb; dg; fc; dg; fa; b; dg; fa; c; dg; fb; c; dgg.
The reduct fa; b; c; dg is not included as this will always be a
reduct of any generated subtable (it is the full set of
conditional attributes). The next step randomly deletes a
number of rows from the original table A. From this, all
reducts are again calculated producing, for one subtable
this might be R ¼ ffb; dg; fb; c; dg; fa; b; dgg. In this case, the
subset fc; dg is not a reduct (though it was for the original
data set). If the number of iterations is set to just one, and if
� is set to a value less than 0.5 (implying that a reduct
should appear in half of the total number of discovered
reducts), then the reduct fc; dg is deemed not to be a
dynamic reduct.

Intuitively, this is based on the hope that by finding
stable reducts they will be more representative of the real
world, i.e., it is more likely that they will be reducts for
unseen data. A comparison of dynamic and nondynamic
approaches can be found in [4], where various methods
were tested on extracting laws from decision tables. In the
experiments, the dynamic method and the conventional RS
method both performed well. In fact, it appears that the RS
method has, on average, a lower error rate of classification
than the dynamic RS method.

A disadvantage of this dynamic approach is that several
subjective choices have to be made before the dynamic
reducts can be found (for instance, the choice of the value of
�); these values are not contained in the data. Also, the huge
complexity of finding all reducts within subtables forces the
use of heuristic techniques such as genetic algorithms. For
large data sets, this step may well be too costly.

2.5 Others

Other approaches to generating reducts from information
systems have been developed and can be found in [9], [58],
[67]. Among the first rough set-based approaches is the
PRESET algorithm [33] which is another feature selector that
uses rough set theory to rank heuristically the features,
assuming a noise free binary domain. Since PRESET does
not try to explore all combinations of the features, it is
certain that it will fail on problems whose attributes are
highly correlated. There have also been investigations into
the use of different reduct quality measures [40].
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In [71], a heuristic filter-based approach is presented
based on rough set theory. The algorithm proposed, as
reformalized in Fig. 4, begins with the core of the data set
(those attributes that cannot be removed without introdu-
cing inconsistencies) and incrementally adds attributes
based on a heuristic measure. Additionally, a threshold
value is required as a stopping criterion to determine when
a reduct candidate is “near enough” to being a reduct. On
each iteration, those objects that are consistent with the
current reduct candidate are removed (an optimization that
can be used with RSAR). As the process starts with the core
of the data set, this has to be calculated beforehand. Using
the discernibility matrix for this purpose can be quite
impractical for data sets of large dimensionality. However,
there are other methods that can calculate the core in an
efficient manner [38]. For example, this can be done by
calculating the degree of dependency of the full feature set
and the corresponding dependencies of the feature set
minus each attribute. Those features that result in a
dependency decrease are core attributes. There are also
alternative methods available that allow the calculation of
necessary information about the discernibility matrix with-
out the need to perform operations directly on it [34].

Also worth mentioning are the approaches reported in
[9], [67] which use genetic algorithms to discover optimal or
close-to-optimal reducts. Reduct candidates are encoded as
bit strings, with the value in position i set if the ith attribute
is present. The fitness function depends on two parameters.
The first is the number of bits set. The function penalizes
those strings which have larger numbers of bits set, driving
the process to find smaller reducts. The second is the
number of classifiable objects given this candidate. The
reduct should discern between as many objects as possible
(ideally all of them).

Although this approach is not guaranteed to find
minimal subsets, it may find many subsets for any given
data set. It is also useful for situations where new objects are
added to or old objects are removed from a data set—the
reducts generated previously can be used as the initial
population for the new reduct-determining process. The
main drawback is the time taken to compute each bit
string’s fitness, which is Oða:o2Þ, where a is the number of
attributes and o the number of objects in the data set. The
extent to which this hampers performance depends on
several factors, including the population size.

2.6 Experimental Evaluation

In order to evaluate several of the approaches to rough set-
based feature selection, an investigation into how these
methods perform in terms of resulting subset optimality has
been carried out. Several real and artificial data sets are
used for this purpose. In particular, it is interesting to
compare those methods that employ an incremental-based
search strategy with those that adopt a more complex
stochastic/probabilistic mechanism.

2.6.1 Dependency Degree-Based Approaches

Five techniques for finding crisp rough set reducts are tested
here on 13 data sets. These techniques are: RSAR (using
QUICKREDUCT), EBR (using the same search mechanism as
QUICKREDUCT), GenRSAR (genetic algorithm-based), An-
tRSAR (ant-based), and SimRSAR (simulated annealing-
based). Before the experiments are described, a few points
must be made about the later three approaches, GenRSAR,
AntRSAR, and SimRSAR.

GenRSAR employs a genetic search strategy in order to
determine rough set reducts. The initial population consists
of 100 randomly generated feature subsets, the probability
of mutation and crossover set to 0.4 and 0.6 respectively,
and the number of generations is set to 100. The fitness
function considers both the size of subset and its evaluated
suitability, and is defined as follows:

fitnessðRÞ ¼ �RðDDÞ � jCCj � jRj
jCCj : ð14Þ

AntRSAR follows the mechanism described in [24]. Here,
the precomputed heuristic desirability of edge traversal is
the entropy measure, with the subset evaluation performed
using the rough set dependency heuristic (to guarantee that
true rough set reducts are found). The number of ants used
is set to the number of features, with each ant starting on a
different feature. Ants construct possible solutions until
they reach a rough set reduct. To avoid fruitless searches,
the size of the current best reduct is used to reject those
subsets whose cardinality exceed this value. Pheromone
levels are set at 0.5 with a small random variation added.
Levels are increased by only those ants who have found
true reducts. The global search is terminated after 250
iterations, � is set to 1 and � is set to 0.1.

SimRSAR employs a simulated annealing-based feature
selection mechanism [24]. The states are feature subsets,
with random state mutations set to changing three features
(either adding or removing them). The cost function
attempts to maximize the rough set dependency (�) while
minimizing the subset cardinality. For these experiments,
the cost of subset R is defined as:

costðRÞ ¼
�CCðDDÞ � �RðDDÞ

�CCðDDÞ

" #a

þ jRj
jCCj

� �b
; ð15Þ

where a and b are defined in order to weight the
contributions of dependency and subset size to the overall
cost measure. In the experiments here, a ¼ 1 and b ¼ 3. The
initial temperature of the system is estimated as 2 � jCCj and
the cooling schedule is T ðtþ 1Þ ¼ 0:93 � T ðtÞ.
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The experiments were carried out on three data sets from

[43], namely m-of-n, exactly and exactly2. The remaining data

sets are from the machine learning repository [8]. Those

data sets containing real-valued attributes have been

discretized to allow all methods to be compared fairly.

2.6.2 Experimental Results

Table 4 shows the results of the five methods on the 13 data

sets. It shows the size of reduct found for each method.

RSAR and EBR produced the same subset every time,

unlike AntRSAR and SimRSAR that often found different

subsets and sometimes different subset cardinalities. On the

whole, it appears to be the case that AntRSAR and

SimRSAR outperform the other three methods. This is at

the expense of the time taken to discover these reducts as

can be seen in Fig. 5 (results for RSAR and EBR do not

appear as they are consistently faster than the other

methods). In all experiments, the rough ordering of

techniques with respect to time is: RSAR < EBR �
SimRSAR � AntRSAR � GenRSAR. AntRSAR and

SimRSAR perform similarly throughout—for some data

sets, AntRSAR is better (e.g., Vote) and, for others,

SimRSAR is best (e.g., LED). The performance of these

two methods may well be improved by fine-tuning the
parameters to each individual data set.

From these results, it can be seen that even for small and
medium-sized data sets, incremental hill-climbing techni-
ques often fail to find minimal subsets. For example, RSAR
is misled early in the search for the LED data set, resulting
in it choosing seven extraneous features. Although this fault
is due to the nonoptimality of the guiding heuristic, a
perfect heuristic does not exist rendering these approaches
unsuited to problems where a minimal subset is essential.
However, for most real-world applications, the extent of
reduction achieved via such methods is acceptable. For
systems where the minimal subset is required (perhaps due
to the cost of feature measurement), stochastic feature
selection must be used.

2.7 Discernibility Matrix-Based Approaches

Three techniques that use the discernibility matrix to locate
reducts are evaluated here on the same data sets used
previously. HC is a simple hill climber that selects the next
attribute based on its frequency in the clauses appearing in
the discernibility matrix, following a similar strategy to that
of the reduction method based on Johnson’s algorithm in
RSES [45]. NS follows a similar strategy to HC, but also uses
information about the size of the clauses in the guiding
heuristic.

Clause-based Search (CS), introduced here, performs
search in a breadth-first manner. The process starts with an
empty list, Subsets, which keeps a record of all current
feature subsets. Clauses from the discernibility matrix are
considered one at a time in the order of their size, with
those of the smallest cardinality chosen first. When a clause
is selected, the features appearing within the clause are
added to every set in Subsets. For example, if Subsets
contains fa; bg and fc; dg, and the next considered clause is
fd _ eg, then each appearing attribute is added. The Subsets
list will now contain fa; b; dg, fa; b; eg, fc; dg, and fc; d; eg.
This guarantees that each set in Subsets satisfies all the
clauses that have been encountered so far. If one of these
subsets satisfies all clauses, the algorithm terminates as a
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reduct has been found. If not, then the process continues by
selecting the next clause and adding these features. This
process will result in a minimal subset, but has an
exponential time and space complexity.

The results of the application of these three methods to
the 13 data sets can be found in Table 5. HC and NS
perform similarly throughout, differing only in their results
for the Letters and WQ data sets. CS will always find the
smallest valid feature subset, though is too costly to apply
to larger data sets in its present form. On the whole, all
three methods perform as well as or better than the
dependency-based methods. HC, NS, and CS all require
the calculation of the discernibility matrix beforehand,
however, there are methods to avoid such computation [34].

The utility of rough set-selected subsets in classification
has been shown in [50], where several dimensionality
reducers were used for neural network-based image
classification. The reduct produced by RSAR resulted in
the lowest classification error of the trained network, even
surpassing PCA. The features selected by the rough set
method also correspond to those chosen by experts in
determining manual classifications.

3 FUZZY ROUGH ATTRIBUTE REDUCTION

All rough set-based FS methods previously described can
only operate effectively with data sets containing discrete
values. As most data sets contain real-valued attributes, it is
necessary to perform a discretization step beforehand.
Boolean discretization can be very difficult to match human
understanding of the respective domains, however. To
reduce this difficulty, discretization can be implemented by
a standard fuzzification technique [51]. Nevertheless,
membership degrees of attribute values to fuzzy sets are
typically not exploited in the process of dimensionality
reduction. This is counterintuitive. By using fuzzy-rough sets
[17], [36], [64], [25], it is possible to use this information to
better guide feature selection. The approach presented here
differs significantly from those such as [59] that are
concerned with discrete but inconsistent data. The novel

fuzzy-rough method and grouping mechanism presented
here are concerned with real valued attributes with
corresponding fuzzifications.

3.1 Fuzzy Equivalence Classes

In the same way that crisp equivalence classes are central to
rough sets, fuzzy equivalence classes are central to the fuzzy-
rough set approach [17]. In classification applications, for
example, this means that the decision values and the
conditional values may all be fuzzy. The concept of crisp
equivalence classes can be extended by the inclusion of a
fuzzy similarity relation S on the universe, which deter-
mines the extent to which two elements are similar in S [21].
The usual properties of reflexivity (�Sðx; xÞ ¼ 1), symmetry
(�Sðx; yÞ ¼ �Sðy; xÞ), and transitivity (�Sðx; zÞ 	 �Sðx; yÞ
^ �Sðy; zÞ, where ^ is a t-norm) hold.

Using the fuzzy similarity relation S, the fuzzy equiva-
lence class ½x�S for objects close to x can be defined:

�½x�S ðyÞ ¼ �Sðx; yÞ: ð16Þ

The following axioms should hold for a fuzzy equivalence
class F ¼ ½x�S [21]:

. 9x, �F ðxÞ ¼ 1,

. �F ðxÞ ^ �Sðx; yÞ � �F ðyÞ, and

. �F ðxÞ ^ �F ðyÞ � �Sðx; yÞ.
The first axiom corresponds to the requirement that an

equivalence class is nonempty. The second axiom states
that elements in y’s neighborhood are in the equivalence
class of y. The final axiom states that any two elements in
F are related via S. Obviously, this definition degenerates
to the normal definition of equivalence classes when S is
nonfuzzy.

The family of normal fuzzy sets produced by a fuzzy
partitioning of the universe of discourse can play the role of
fuzzy equivalence classes [17]. Consider the crisp partition-
ing UU=Q ¼ ff1; 3; 6g; f2; 4; 5gg. This contains two equiva-
lence classes (f1; 3; 6g and f2; 4; 5g) that can be thought of as
degenerated fuzzy sets, with those elements belonging to the
class possessing a membership of one, zero otherwise. For
the first class, for instance, the objects 2, 4, and 5 have a
membership of zero. Extending this to the case of fuzzy
equivalence classes is straightforward: Objects can be
allowed to assume membership values, with respect to any
given class, in the interval [0,1].UU=Q is not restricted to crisp
partitions only; fuzzy partitions are equally acceptable.

3.2 Fuzzy Lower and Upper Approximations

From the literature, the fuzzy P -lower and P -upper
approximations are defined as [17]:

�PXðFiÞ ¼ infxmaxf1� �Fi
ðxÞ; �XðxÞg 8i; ð17Þ

�PXðFiÞ ¼ supxminf�Fi
ðxÞ; �XðxÞg 8i; ð18Þ

where Fi denotes a fuzzy equivalence class belonging to
UU=P . Note that, although the universe of discourse in
attribute reduction is finite, this is not the case in general,
hence, the use of sup and inf . These definitions diverge a
little from the crisp upper and lower approximations, as the
memberships of individual objects to the approximations
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are not explicitly available. As a result of this, the fuzzy
lower and upper approximations are herein redefined as:

�PXðxÞ ¼ sup
F2UU=P

minð�F ðxÞ; inf
y2UU

maxf1� �F ðyÞ; �XðyÞgÞ;

ð19Þ

�PXðxÞ ¼ sup
F2UU=P

minð�F ðxÞ; sup
y2UU

minf�F ðyÞ; �XðyÞgÞ: ð20Þ

In implementation, not all y 2 UU are needed to be
considered—only those where �F ðyÞ is nonzero, i.e., where
object y is a fuzzy member of (fuzzy) equivalence class F .

The tuple < PX;PX > is called a fuzzy-rough set. It can
be seen that these definitions degenerate to traditional
rough sets when all equivalence classes are crisp. It is useful
to think of the crisp lower approximation as characterized
by the following membership function:

�PXðxÞ ¼
1; x 2 F; F � X
0; otherwise

�
ð21Þ

This states that an object x belongs to the P -lower

approximation of X if it belongs to an equivalence class
that is a subset of X. The behavior of the fuzzy lower
approximation must be exactly that of the crisp definition
for crisp situations. This is indeed the case as the fuzzy
lower approximation may be rewritten as

�PXðxÞ ¼ sup
F2UU=P

minð�F ðxÞ; inf
y2UU

f�F ðyÞ ! �XðyÞgÞ; ð22Þ

where ! denotes the fuzzy implication operator. In the
crisp case, �F ðxÞ and �XðxÞ will take values from f0; 1g.
Hence, it is clear that the only time �PXðxÞ will be zero is
when at least one object in its equivalence class F fully
belongs to F but not to X. This is exactly the same as the
definition for the crisp lower approximation. Similarly, the
definition for the P -upper approximation can be established
to make sense in being the generalization of the crisp
definition.

3.3 Fuzzy-Rough Reduction Process

Fuzzy RSAR (abbreviated FRAR hereafter) builds on the
notion of the fuzzy lower approximation to enable reduc-
tion of data sets containing real-valued attributes. As will be
shown, the process becomes identical to the traditional
approach when dealing with nominal well-defined attri-
butes. This feature selection method has been used in Web
categorization [25] and complex systems monitoring [52].

The crisp positive region in traditional rough set theory
is defined as the union of the lower approximations. By the
extension principle, the membership of an object x 2 UU,
belonging to the fuzzy positive region can be defined by

�POSP ðQÞðxÞ ¼ sup
X2UU=Q

�PXðxÞ: ð23Þ

Object x will not belong to the positive region only if the
equivalence class it belongs to is not a constituent of the
positive region. This is equivalent to the crisp version where
objects belong to the positive region only if their underlying
equivalence class does so.

Using the definition of the fuzzy positive region, the new
dependency function can be defined as follows:

�0P ðQÞ ¼
j�POSP ðQÞðxÞj

jUUj ¼
P

x2UU �POSP ðQÞðxÞ
jUUj : ð24Þ

As with crisp rough sets, the dependency of Q on P is the
proportion of objects that are discernible out of the entire
data set. In the present approach, this corresponds to
determining the fuzzy cardinality of �POSP ðQÞðxÞ divided by
the total number of objects in the universe.

The definition of dependency degree covers the crisp
case as its specific instance. This can be easily shown by
recalling the definition of the crisp dependency degree
given in (24). If a function �POSP ðQÞðxÞ is defined which
returns 1 if the object x belongs to the positive region, 0
otherwise, then the above definition may be rewritten as:

�P ðQÞ ¼
P

x2UU �POSP ðQÞðxÞ
jUUj ; ð25Þ

which is identical to (24).
If the fuzzy-rough reduction process is to be useful, it

must be able to deal with multiple attributes, finding the
dependency between various subsets of the original
attribute set. For example, it may be necessary to be able
to determine the degree of dependency of the decision
attribute(s) with respect to P ¼ fa; bg. In the crisp case, UU=P
contains sets of objects grouped together that are indis-
cernible according to both attributes a and b. In the fuzzy
case, objects may belong to many equivalence classes, so the
Cartesian product of UU=INDðfagÞ and UU=INDðfbgÞ must
be considered in determining UU=P . In general,

UU=P ¼ �fa 2 P : UU=INDðfagÞg ð26Þ

Each set in UU=P denotes an equivalence class. For
example, if P ¼ fa; bg, UU=INDðfagÞ ¼ fNa; Zag, and
UU=INDðfbgÞ ¼ fNb; Zbg, then

UU=P ¼ fNa \Nb;Na \ Zb; Za \Nb; Za \ Zbg:

The extent to which an object belongs to such an
equivalence class is therefore calculated by using the
conjunction of constituent fuzzy equivalence classes, say
Fi, i ¼ 1; 2; . . . ; n:

�F1\...\Fn
ðxÞ ¼ minð�F1

ðxÞ; �F2
ðxÞ; . . . ; �Fn

ðxÞÞ: ð27Þ

3.4 Reduct Computation

In conventional RSAR, a reduct is defined as a subset R of
the attributes which have the same information content as
the full attribute set A. In terms of the dependency function,
this means that the values �ðRÞ and �ðAÞ are identical and
equal to 1 if the data set is consistent. However, in the
fuzzy-rough approach, this is not necessarily the case as the
uncertainty encountered when objects belong to many
fuzzy equivalence classes results in a reduced total
dependency.

A possible way of combatting this would be to determine
the degree of dependency of the full attribute set and use
this as the denominator (for normalization rather than jUUj),
allowing �0 to reach 1. With these issues in mind, a new
QUICKREDUCT algorithm has been developed as given in
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Fig. 6. It employs the new dependency function �0 to choose
which attributes to add to the current reduct candidate in
the same way as the original QUICKREDUCT process. The
algorithm terminates when the addition of any remaining
attribute does not increase the dependency (such a criterion
could be used with the original QUICKREDUCT algorithm).
As with the original QUICKREDUCT algorithm, for a
dimensionality of n, the worst-case data set will result in
ðn2 þ nÞ=2 evaluations of the dependency function. How-
ever, as both fuzzy and crisp RSAR is used for dimension-
ality reduction prior to any involvement of an application
system which will employ those attributes belonging to the
resultant reduct, this potentially costly operation has no
negative impact upon the runtime efficiency of the system.

Note that it is also possible to reverse the search
process; that is, start with the full set of attributes and
incrementally remove the least informative attributes. This
process continues until no more attributes can be removed
without reducing the total number of discernible objects in
the data set.

3.5 Fuzzy RSAR Example

To illustrate the operation of fuzzy RSAR, an example data
set is given in Fig. 7. In crisp RSAR, the data set would be
discretized using the nonfuzzy sets. However, in the new
approach, membership degrees are used in calculating the
fuzzy lower approximations and fuzzy positive regions. To
begin with, the fuzzy-rough QUICKREDUCT algorithm
initializes the potential reduct (i.e., the current best set of
attributes) to the empty set.

Using the fuzzy sets defined in Fig. 7 (for all conditional
attributes for illustrative simplicity), and setting A ¼ fag,

B ¼ fbg, C ¼ fcg, and Q ¼ fqg, the following equivalence
classes are obtained:

UU=A ¼ fNa; Zag
UU=B ¼ fNb; Zbg
UU=C ¼ fNc; Zcg
UU=Q ¼ ff1; 3; 6g; f2; 4; 5gg:

The first step is to calculate the lower approximations of
the sets A, B, and C. For straightforwardness, only the
calculations involving A are demonstrated here; that is,
using A to approximate Q. For the first decision equivalence
class X ¼ f1; 3; 6g; �Af1;3;6gðxÞ is calculated:

�Af1;3;6gðxÞ ¼
sup

F2UU=A

minð�F ðxÞ; inf
y2UU

maxf1� �F ðyÞ; �f1;3;6gðyÞgÞ:

Considering the first fuzzy equivalence class of A, Na:

minð�Na
ðxÞ; inf

y2UU
maxf1� �Na

ðyÞ; �f1;3;6gðyÞgÞ:

For object 2, this can be calculated as follows:

minð0:8; inff1; 0:2; 1; 1; 1; 1gÞ ¼ 0:2

Similarly, for Za,

minð0:2; inff1; 0:8; 1; 0:6; 0:4; 1g ¼ 0:2:

Thus,

�Af1;3;6gð2Þ ¼ 0:2:

Calculating the A-lower approximation of X ¼ f1; 3; 6g for
every object gives

�Af1;3;6gð1Þ ¼ 0:2 �Af1;3;6gð2Þ ¼ 0:2
�Af1;3;6gð3Þ ¼ 0:4 �Af1;3;6gð4Þ ¼ 0:4
�Af1;3;6gð5Þ ¼ 0:4 �Af1;3;6gð6Þ ¼ 0:4:

The corresponding values for X ¼ f2; 4; 5g can also be
determined this way. Using these values, the fuzzy positive
region for each object can be calculated via using

�POSAðQÞðxÞ ¼ sup
X2UU=Q

�AXðxÞ:

This results in:

�POSAðQÞð1Þ ¼ 0:2 �POSAðQÞð2Þ ¼ 0:2
�POSAðQÞð3Þ ¼ 0:4 �POSAðQÞð4Þ ¼ 0:4
�POSAðQÞð5Þ ¼ 0:4 �POSAðQÞð6Þ ¼ 0:4:
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It is a coincidence here that �POSAðQÞðxÞ ¼ �Af1;3;6gðxÞ for this
example. The next step is to determine the degree of
dependency of Q on A:

�0AðQÞ ¼
P

x2U �POSAðQÞðxÞ
jUj ¼ 2=6:

Similarly, calculating for B and C gives:

�0BðQÞ ¼ 2:4

6
; �0CðQÞ ¼ 1:6

6
:

From this, it can be seen that attribute b will cause the
greatest increase in dependency degree. This attribute is
chosen and added to the potential reduct. The process
iterates and the two dependency degrees calculated are

�0fa;bgðQÞ ¼ 3:4

6
; �0fb;cgðQÞ ¼ 3:2

6
:

Adding attribute a to the reduct candidate causes the larger
increase of dependency, so the new candidate becomes
fa; bg. Last, attribute c is added to the potential reduct:

�0fa;b;cgðQÞ ¼ 3:4

6
:

As this causes no increase in dependency, the algorithm
stops and outputs the reduct fa; bg (see Fig. 8). The data set
can now be reduced to only those attributes appearing in
the reduct. When crisp RSAR is performed on this data set
(after using the same fuzzy sets to discretize the real-valued
attributes), the reduct generated is fa; b; cg, i.e., the full
conditional attribute set. Unlike crisp RSAR, the true
minimal reduct was found using the information on
degrees of membership. It is clear from this example alone
that the information lost by using crisp RSAR can be
important when trying to discover the smallest reduct from
a data set.

3.6 Rough Set-Based Feature Grouping

By its definition, the degree of dependency measure
(whether using crisp or fuzzy-rough sets) always lies in
the range [0,1], with 0 indicating no dependency and 1
indicating total dependency. For example, two subsets of
the conditional attributes in a data set may have the
following dependency degrees:

�0fa;b;cgðDDÞ ¼ 0:54; �0fa;c;dgðDDÞ ¼ 0:52:

In traditional rough sets, it would be said that the
attribute set fa; b; cg has a higher dependency value than
fa; c; dg and so would make the better candidate to produce
a minimal reduct. This may not be the case when

considering real data sets that contain noise and other
discrepancies. In fact, it is possible that fa; c; dg is the best
candidate for this and other unseen related data sets. By
fuzzifying the output values of the dependency function,
this problem may be successfully tackled. In addition to
this, attributes may be grouped at stages in the selection
process depending on their dependency label, speeding up
the reduct search.

In order to achieve this, several fuzzy sets must be
defined over the dependency range (for example, Fig. 9).
This leads to the next problem area: How are these sets to be
defined? There is also the problem of how many fuzzy sets
should be used to produce the most useful results. Initially,
these may be defined beforehand by an expert and refined
through experimentation. However, to fit in with the rough
set ideology, it would be interesting to investigate how to
automatically generate these sets purely from the data set
itself (perhaps using a clustering method). For the time
being, it is assumed that these fuzzy sets have already been
defined.

The goal of RSAR and FRAR is to find a (possibly
minimal) subset of the conditional attributes for which the
degree of dependency is at a maximum (ideally, the value
1). In the case of fuzzy equivalence classes, where an
element of uncertainty is introduced, the maximum degree
of dependency may be substantially less than this. In fact,
the maximum dependency for different data sets may be
quite different due to differing levels of uncertainty. The
maximum for data set A may be 0.9 whereas, for data set B,
the maximum may be only 0.2. Given a degree of
dependency of 0.19, for data set A, this is quite a small
value, but for data set B, this is quite large, so some way of
scaling the dependency value depending on the data set is
required. The following is one potential way of achieving
this for a subset P of all conditional attributes CC:

�00P ðDDÞ ¼ �0P ðDDÞ
�0
CC
ðDDÞ :

In the example above, the scaled dependency degree for
data set A is now 0.21 (which fuzzifies to Small) and for
data set B is 0.95 (which fuzzifies to Large). However, a
further problem is encountered as the search for a reduct
nears its conclusion. In this situation, almost all of the
dependency values are mapped to Large due to their
underlying closeness in value. This means that too large a
group of attributes will be selected every time. Addition-
ally, if the data is noisy, it may be the case that �00P ðDDÞ > 1 as
the dependency degree of the full set of conditional
attributes may be greater than that of a particular attribute
subset. An alternative scaling approach to combat both of
these problems is to use the extreme values at each level of
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Fig. 8. Path taken by the fuzzy-rough QUICKREDUCT algorithm.

Fig. 9. Possible fuzzification of dependency.



search. As soon as the reduct candidates have been
evaluated, the highest and lowest dependencies (�0highðDDÞ
and �0lowðDDÞ) are used as follows to scale the dependency
degree of subset P :

�00P ðDDÞ ¼ �0P ðDDÞ � �0lowðDDÞ
�0highðDDÞ � �0lowðDDÞ :

By this method, the attribute subset with the highest
dependency value will have a scaled dependency (�00P ðDDÞ)
of 1. The subset with the lowest will have a scaled
dependency of 0. In so doing, the definition of the fuzzy
sets need not be changed for different data sets; one
definition should be applicable to all.

The next question to address is how to handle those
scaled dependencies that fall at the boundaries. For
example, a value may partially belong to both Small and
Medium. A simple strategy is to choose the single fuzzy
label with the highest membership value. However, this
loses the potentially useful information of dual fuzzy set
membership. Another strategy is to take both labels as
valid, considering both possibilities within the feature
selection process. If, for example, a dependency value lies
within the labels Small and Medium then it is considered to
belong to both groups.

The new fuzzy-rough QUICKREDUCT algorithm (FQR)
which employs scaling and fuzzy dependencies can be seen
in Fig. 10. In this algorithm, Cands contains sets of
attributes and their corresponding dependency degrees
when added to the current reduct candidate. Once each
remaining attribute has been evaluated, the dependencies
are scaled according to �0high and �0low. Next, the decision is
made on which feature(s) to add to the current reduct. In
the previous fuzzy-rough QUICKREDUCT algorithm, this
would amount to selecting the feature providing the highest
gain in dependency degree. Here, other strategies may be
employed; for example, attributes may be selected indivi-
dually or in groups. This is discussed in more detail next.

Note that, in addition to applying this method to fuzzy-
rough attribute reduction, it may also be applied to crisp
RSAR. Given a data set containing crisp values, the

dependency values may be fuzzified similarly (with
scaling) so that groups of attributes may be selected at
one time. The algorithm for this is exactly the same as the
one given in (10), except the dependency function used is
now based on crisp rough sets.

3.7 Selection Strategies

When using fuzzy degrees of dependency, it is possible to
change strategy at any stage of the attribute selection
process. The main distinction to make in the set of possible
strategies is whether features are chosen individually or in
groups.

3.7.1 Individuals

In this subset of strategies, attributes are chosen one at a
time in a similar fashion to that of FRAR. However, the
choice of attribute depends on its corresponding linguistic
label(s) obtained from the dependency degree. In the
example, fuzzification of dependency given in Fig. 9,
attributes are grouped into the categories Small, Medium,
and Large. A representative attribute of the required label
can be chosen randomly or based on the extent to which the
attribute belongs to the fuzzy set itself. Those individual
attributes lying on set boundaries are assigned both fuzzy
labels. Other issues include which particular group of
attributes to consider. Intuitively, it would seem most
appropriate to consider those belonging to the Large group
only, however, it may be worthwhile investigating Small
and Medium-grouped attributes at different stages of the
search process.

3.7.2 Grouping

To speed up the reduct search process, many attributes
may be added to a reduct candidate at once, according to
their label. For instance, selecting only those attributes
considered to be Large would appear to be a suitable
strategy. It may also be beneficial to add different groups
of attributes at various stages of the search. To include
diversity, crossgroup selection is a method that picks
representative attributes from each fuzzy label and adds
them to the reduct candidate. Again, strategies may be
changed during search; for example, it might be worth-
while using the crossgroup strategy first, followed by
selecting Large-grouped attributes later.

One problem encountered in grouping attributes in this
way is that, in later stages, there are sometimes too many
attributes in the required label. Therefore, it is usually best
to revert to individual selection when this becomes a
problem, making the search more accurate. Initial results of
the application of this feature grouping technique to
complex systems monitoring can be found in [23]. FQR
performs at least as well as FRAR in this study.

4 CONCLUSION

Feature selection seeks to reduce data while retaining
semantics by selecting attributes as opposed to transform-
ing them. This aspect is particularly useful when feature
selection precedes other processes that require the original
feature meanings to be intact, for example, rule induction
where rules may need to be human-readable. This review
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Fig. 10. The new fuzzy-rough QUICKREDUCT algorithm with fuzzy

dependencies.



focused on some of the recent developments in rough set

theory for the purpose of feature selection.
Several approaches to discovering rough set reducts

were experimentally evaluated and compared. The results

highlighted the shortcomings of conventional hill-climbing

approaches to feature selection. These techniques often fail

to find minimal data reductions. Some guiding heuristics

are better than others for this, but, as no perfect heuristic

exists, there can be no guarantee of optimality. From the

experimentation, it appears that the entropy-based measure

is a more useful hill-climbing heuristic than the rough set-

based one. However, the entropy measure is a more costly

operation than that of dependency evaluation which may

be an important factor when processing large data sets. Due

to the failure of hill-climbing methods and the fact that

exhaustive searches are not feasible for even medium-sized

data sets, stochastic approaches provide a promising

feature selection mechanism.
Conventional rough set methods are unable to deal with

real-valued attributes effectively. This prompted research

into the use of fuzzy-rough sets for feature selection.

Additionally, the new direction in feature selection, feature

grouping, was highlighted. It was shown how fuzzifying a

particular evaluation function, the rough set dependency

degree, can lead to group and individual selection based on

linguistic labels—more closely resembling human reason-

ing. In fact, this can be applied to most FS algorithms that

use an evaluation function that returns values in ½0; 1�.
Choosing grouped features instead of individuals also

decreases the time taken to reach potentially optimal

subsets.
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